An efficient one-pot synthesis of α-aminophosphonic acid esters from Schiff bases using sodium ethoxide as a catalyst (Pudovik reaction) and their bio-activity

Ch. Mohan¹, C. N. Raju¹*, A. J. Rao¹, R. U. N. Lakshmi²

¹ Department of Chemistry, Sri Venkateswara University, Tirupati, India ² Department of Botany, Sri Venkateswara University, Tirupati, India

Received June 6, 2008

Synthesis of novel α-aminophosphonic acid esters was achieved through a one-pot two-step reaction process (Pudovik reaction). In the first step tryptophan methyl ester is reacted with substituted aromatic aldehydes in absolute ethanol to form Schiff bases. In the second step, these are treated with dialkyl/diaryl phosphites *in situ* using sodium ethoxide as a catalyst at refluxing temperature. The structures of these compounds were established by elemental analyses IRS, ¹H, ¹³C, ³¹P NMR and mass spectral data. All the title compounds exhibited moderate antimicrobial activity.

Key words: α-aminophosphonic acid esters, dialkyl/diaryl phosphites, aldehydes, tryptophan methyl ester, sodium ethoxide, antimicrobial activity.

INTRODUCTION

α-Aminophosphonic acid esters are an important class of compounds since they are structural analogues of the corresponding α -aminoacids [1]. Recently they have been receiving considerable attention due to their wide applications in the synthesis of phosphanopeptides [2]. The utilization of α -aminophosphonic acid esters as peptide mimics [3], haptens of catalytic antibodies [4], enzyme inhibitors [5], antibiotics and pharmacological agents [6] is also well established. Even though few synthetic approaches are available [7] for α -aminophosphonic acid esters, nucleophilic addition of dialkyl/ diaryl phosphites to imines (Pudovik reaction) [8] is one of the most convenient methods. This method has been successfully used for the synthesis of title compounds.

Tryptophan itself is an important bio-active aminoacid [9], which undergoes enzymatic decarboxylation to tryptamine. It plays an important role in nerve functioning. Its hydroxy derivative is a well known antimigraine drug. Tryphtophan is phosphorylated in the present investigation to increase its bioactivity [10, 11].

RESULTS AND DISCUSSION

The synthesis of the title compounds (5a–1) was accomplished by the conversion of tryptophan methyl ester to the corresponding Schiff's base (3) by the

Absorption bands were present in the regions 3354–3413, 1200–1250, 951–957, 1175–1191, 737–748 and 1039–1094 cm $^{-1}$ for –NH, P=O, P–O, O–C, P–C_(aliphatic) and P–O–C_(aliphatic) respectively [12], in compound **5a–l** (Table 1).

The ¹H NMR spectral data of compound **5a–l** are given in Table 2. The aromatic protons [13] of α aminophosphonic acid esters showed a complex multiplet at δ 6.67–8.85. The P–C–H protons resonated as a multiplet [14] at δ 3.58–3.74 due to coupling with phosphorus and N–H. The N–H proton signals appeared at δ 2.94–3.75 (J = 6.5-8.8 Hz) as doublets and aromatic NH appeared at δ 10.73–10.90 as a singlet. These signals are confirmed by D₂O exchange spectral recording. The -CH₂ protons showed a doublet at δ 2.93–3.61 (J = 7.1-8.7 Hz) and –CH proton appeared at δ 3.55–3.64 as a multiplet and – COO-CH₃ as a singlet at δ 2.30-2.85. The proton signal of P-OCH₂-CH₃ appeared as a multiplet and P-OCH₂-CH₃ gave a triplet at δ 3.61-3.68 and 1.08-1.20 (J = 6.9-7.0 Hz) respect-ively. The P-OCH₃ appeared as a singlet at δ 2.31–2.50.

reaction with the respective aldehydes. Compound 3 upon treatment with diphenyl/diethyl/dimethyl phosphite in the presence of catalytic amount of sodium ethoxide in absolute ethanol at reflux temperature for 4–5 hours afforded α-aminophosphonic acid esters (5a–l) in 72–82% yield. Thin layer chromatography was employed to monitor the reaction progress and to determine the purity of the products. All the title compounds (5a–l) were readily soluble in polar solvents and melted in the temperature range of 90–302°C.

^{*} To whom all correspondence should be sent: E-mail: naga raju04@yahoo.co.in

Table 1. Physical, analytical, infrared and ³¹P NMR spectral data of 5a-l.

Comp.	m. p., °C	Yield ^a ,	Molecular formula		nental An nd (Calc.)	2	IRS λ_{max} , cm ⁻¹			³¹ P NMR ^b			
				С	Н	N	-NH	P=O	P-O-	-C _{aryl}	P-C _(aliphatic)	P-O-	•
								-	Р-О	О-С	-	$C_{(aliphatic)}$	
5a	249–251	72	C ₂₁ H ₂₄ N ₂ O ₅ PCl	55.89	5.26	6.15	3413	1203	-	-	745	1078	2.44
				(55.96)	(5.30)	(6.20)							
5b	278-280	76	$C_{23}H_{28}N_2O_5PC1$	57.60	5.81	5.78	3404	1230	-	-	746	1094	1.62
				(57.68)	(5.89)	(5.84)							
5c	300-302	74	$C_{31}H_{28}N_2O_5PC1$	64.65	4.87	4.77	3412	1227	951	1180	-		5.14
				(64.71)	(4.90)	(4.82)						A	
5d	115-117	80	$C_{21}H_{24}N_3O_7P$	54.58	5.18	9.07	3408	1201	-	-	747	1054	2.79
				(54.61)	(5.24)	(9.10)					A		
5e	120-122	82	$C_{23}H_{28}N_3O_7P$	56.37	5.70	8.47	3413	1208	-	-	737	1079	2.31
				(56.42)	(5.76)	(8.53)							
5f	109-111	79	$C_{31}H_{28}N_3O_7P$	63.47	4.76	7.12	3410	1203	957	1175	-	-	5.19
				(63.51)	(4.82)	(7.17)							Ď.
5g	117-119	79	$C_{21}H_{25}N_2O_6P$	58.25	5.77	6.40	3389	1211	-	-	746	1054	2.30
0			2. 20 2 0	(58.30)	(5.82)	(6.47)				A Partie No.	Section 2		
5h	114-116	80	$C_{23}H_{29}N_2O_6P$	59.91	6.25	6.01	3354	1250	-	_	747	1039	2.96
			23 2, 2 0	(59.99)	(6.34)	(6.08)		A STATE OF THE STA					
5i	120-122	78	$C_{31}H_{29}N_2O_6P$	66.86	5.19	4.97	3351	1249	955	1182	-	-	5.14
			3. 2, 2 0	(66.90)	(5.25)	(5.03)				1			
5j	95–97	78	$C_{23}H_{28}N_2O_5P$	62.22	6.29	6.25	3401	1220	-	-	743	1077	2.96
- 3			23 20 2 3	(62.29)	(6.36)	(6.31)	1			A			
5k	90-92	77	$C_{25}H_{32}N_2O_5P$	63.55	6.78	5.83	3395	1200	inama n dis ^{aga}	-	746	1075	2.43
			23 32 2 3	(63.60)	(6.83)	(5.90)							
51	91–93	76	$C_{33}H_{32}N_2O_5P$	69.75	5.60	4.87	3392	1219	954	1191	_	-	5.17
	•	, -	- 33322 ~ 3*	(69.83)	(5.68)	(4.93)							

a - After one crystallization; b - Recorded in DMSO- d_6 .

Comp.	R'	(OR) ₂	Comp.	R'	(OR) ₂
5a	$4-Cl-C_6H_4$	CH_3	5g	$2\text{-OH}C_6H_4$	CH ₃
5b	$4-Cl-C_6H_4$	C_2H_5	5h	2-OH-C_6H_4	C_2H_5
5c	$4-Cl-C_6H_4$	C_6H_5	5i	2-OH-C_6H_4	C_6H_5
5d	$3-NO_2-C_6H_4$	CH_3	5j	C_6H_5 – CH = CH	CH_3
5e	$3-NO_2-C_6H_4$	C_2H_5	5k	C_6H_5 – CH = CH	C_2H_5
5f	$3-NO_2-C_6H_4$	C_6H_5	51	C_6H_5 – CH = CH	C_6H_5

Sheme 1.

There is corresponding doubling of signals of the ethoxy group in ¹³C NMR spectra (Table 3).

In fact, P–O–CH₂–<u>CH₃</u> group resonated [15] as a doublet at δ 13.2–13.5 (${}^3J_{\text{P-O-C-C}}$ = 8.2–9.1 Hz) and at δ 14.2–15.6 (${}^3J_{\text{P-O-C-C}}$ = 8.2–9.2 Hz), the P–O–CH₂–CH₃ group gave two doublets one at δ 62.3–63.1 (${}^2J_{\text{P-O-C}}$ = 6.9–7.0 Hz) and the other one at δ 63.1–64.2 (${}^2J_{\text{P-O-C}}$ = 7.0–7.1 Hz) and –COO–<u>CH₃</u> resonated at δ 50.2–50.9. The chiral carbon of tryptophan methyl ester (–<u>C</u>H–CO₂CH₃) resonated in the region δ 60.5–63.4. The chiral carbon of P–C–H gave a doublet in the range of δ 39.5–49.2 (d, J_{P-C} = 143–147 Hz). The methoxy carbon (P–<u>OCH₃</u>) resonated as a doublet due to coupling with phosphorus at δ 51.8 (d, ${}^2J_{P-O-C}$ = 16.9 Hz). These values are in agreement with the literature data [16, 17].

³¹P NMR chemical shifts [14, 18] (Table 1) of these compounds (**5a–l**) appeared in the down field region 1.62–5.19 ppm.

In the FAB mass spectra [19] (Table 4), compounds **5a**, **5d**, **5e**, **5g** and **5i** exhibited their respective molecular ions at m/z 450 (7), 461 (11), 489 (7), 432 (10) and 528 (10).

ANTIBACTERIAL ACTIVITY

Compounds **5a–l** were screened in regard to their antibacterial activity against gram positive bacteria,

Staphylococcus aureus, Bacillus faecalis and gram negative bacteria, Escherichia coli, Klebsiella pneumoniae by the disc diffusion method [20, 21], in luria bertani nutrient agar medium at various concentrations (75, 100 μg/ml) in DMSO. These solutions containing 10⁶ cells/ml were added to each Whatmann No.1 (made in UK) filter paper disc (6 mm diameter) and DMSO was used as the control. The freshly prepared agar medium containing the bacteria species was loaded on the discs by using micropipette. The plates were incubated at 35°C and examined for zone of inhibition around each disc after 24 h. The results were compared with the activity of the standard antibiotic Penicillin (75 μg/ml).

EXPERIMENTAL

Solvents were used after purifying them by the established procedure. The progress of the reaction and purity of the compounds were monitored by thin layer chromatography (TLC) using *n*-hexane and ethylacetate (2:1, by volume) as eluating system on silica gel and iodine as visualizing agent. Melting

points were determined in open capillary tubes on Mel-temp apparatus and were uncorrected. Microanalysis was performed at Indian Institute of Science, Bangalore, India.

IR spectra were recorded using KBr pellets on Nicolet 380 double beam spectrophotometer ($\overline{\nu}$ in cm⁻¹) in Environmental Engineering Lab, Sri Venkateswara University, Tirupati. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX 400 MHz spectrometer operating at 400 MHz for ¹H and 100 MHz for ¹³C, 161.9 MHz for ³¹P NMR as solutions in DMSO-d₆. The ¹H and ¹³C chemical shifts were referenced with respect to tetramethyl silane, and ³¹P chemical shifts to 85% H₃PO₄ (ortho-phosphoric acid). The techniques of double heteronuclear resonance were used while recording ¹H NMR spectra. ¹H, ¹³C and ³¹P NMR spectral data were obtained by Indian Institute of Science, Bangalore, India. Mass spectra were recorded on a Jeol SX 102 DA/600 mass spectrometer using Argon/Xenon (6 kV, 10 mA) as the fast atom bombardment (FAB) gas and also a Shimadzu QP-2000 GC-MS (gas chromatography-mass spectroscopy) instrument.

Table 2. ¹H NMR chemical shifts ^{a,b} of **5a–l**.

Comp.	Ar– <u>H</u>	-С <u>Н</u> 2	-С <u>Н</u>	Р-С-Н	N- <u>H</u>	-COO-	P-O <u>CH</u> ₂ -	P-OCH ₂ -	Ar–N <u>H</u>	Other H's
-		(d, 2H)	(m, 1H)	(m, 1H)	(d, 1H)	C <u>H</u> 3	CH ₃	CH ₃ /OCH ₃	(s, 1H)	
						(s, 3H)	(m, 2H)	(3H)		
5a	7.85–6.91	2.93	3.61-3.58	3.70-3.68	3.01	2.32	-	2.31	10.80	-
	(m, 9H)	(J = 7.1)		47638	(J = 6.5)	No.		(s)		
5b	7.83-6.95	2.94	3.60-3.57	3.69-3.67	2,94	2.32	3.65-3.61	1.08	10.87	-
	(m, 9H)	(J = 7.0)			(J = 8.3)			(t, J = 6.9)		
5c	8.52-6.87	2.94	3.58-3.55	3.74-3.70	2.98	2.30	-	-	10.90	-
	(m, 19H)	(J = 6.8)			(J = 6.8)					
5d	7.86-6.90	3.12	3.60-3.58	3.72-3.68	3.13	2.31	-	2.30	10.90	-
	(m, 9H)	(J = 8.1)			(J = 8.4)			(s)		
5e	7.84-6.95	3.06	3.60-3.57	3.71-3.69	3.12	2.31	3.67-3.64	1.09	10.87	-
	(m, 9H)	(J = 8.2)		1 /	(J = 8.5)			(t, J = 7.0)		
5f	8.85-7.22	3.36	3.59-3.55	3.62-3.59	3.35	2.50	-	-	10.88	-
	(m, 19H)	(J = 8.3)			(J = 8.1)					
5g	7.44-6.68	3.03	3.61-3.58	3.64-3.63	3.71	2.85	-	2.49	10.74	10.42
	(m, 9H)	(J = 7.9)			(J = 8.3)			(s)		(s, 1H, OH)
5h	7.43-6.67	3.30	3.60-3.58	3.63-3.61	3.72	2.49	3.68-3.64	1.18	10.75	10.41
	(m, 9H)	(J = 7.9)			(J = 8.4)			(J = 6.9)		(s, 1H, OH)
5i	8.13-6.76	3.28	3.60-3.59	3.61-3.58	3.75	2.51	-	-	10.73	10.40
	(m, 19H)	(J = 8.2)			(J = 8.2)					(s, 1H, OH)
5 <u>j</u>	7.87-6.95	3.60	3.62-3.59	3.70-3.67	3.33	2.61	-	2.50	10.81	7.45 ($-$ <u>CH</u> $=$ CH ₂ , t,
•	(m, 10H)	(J = 8.6)			(J = 8.8)			(s)		J = 11.4 Hz, 1H),
										6.65 ($-CH = CH_2$, d,
										$J = 13.3 \text{ Hz}, 1\overline{\text{H}})$
5k	7.85-6.93	3.60	3.61-3.57	3.71 - 3.68	3.34	2.49	3.67-3.62	1.20	10.80	7.44 (-CH=CH ₂ , t,
	(m, 10H)	(J = 8.5)			(J = 8.6)			(t, J = 7.0)		J = 11.2, 1H),
										$6.64 (-CH = CH_2, d,$
										$J = 13.1, 1H\overline{)}$
51	8.15-6.73	3.61	3.64-3.60	3.71 - 3.67	3.35	2.71	-	-	10.82	7.46 ($-$ <u>CH</u> $=$ CH ₂ , t,
	(m, 19H)	(J = 8.7)			(J = 8.2)					J = 11.5 Hz, 1H),
										$6.60 (-CH = CH_2, d,$
										$J = 13.5, \overline{1H}$

⁻ No such type of protons present; a - Chemical shifts in ppm from TMS and coupling constants J in Hz in parenthesis; b - Recorded in DMSO- d_6 .

Table 3. ¹³C NMR spectral data^{a,b} of compounds 5b, 5e, 5g and 5l.

Comp.	Chemical shifts in ppm
5b	128.6 (C-2). 115.8 (C-3), 127.5 (C-4), 128.4 (C-5), 119.7 (C-6), 111.0 (C-7), 136.4 (C-8), 131.9 (C-9), 30.9 ($-\underline{\text{CH}}_2$ -CHCOOCH ₃), 64.3 ($-\text{CH}_2$ - $\underline{\text{CHCOOCH}}_3$), 171.2 ($-\text{CH}_2$ -CH $\underline{\text{COOCH}}_3$), 50.3 ($-\text{CH}_2$ -CHCOOCH ₃), 48.9 (d, J_{P-C} = 143 Hz, 1C, P-C- $\underline{\text{H}}$), 136.1 (C-1'), 129.5 (C-2'&C-6'), 128.7 (C-3'&C-5'), 132.4 (C-4'), 62.3 (d, $^2J_{P-C-C}$ = 6.9 Hz, IC, $-\underline{\text{OCH}}_2$ -CH ₃), 14.5 (d, $^3J_{P-C-C-C}$ = 8.2 Hz, IC, $-\text{OCH}_2$ - $\underline{\text{CH}}_3$), 63.1 (d, $^2J_{P-C-C}$ = 7.0 Hz, IC, $-\underline{\text{OCH}}_2$ -CH ₃), 15.6 (d, $^3J_{P-C-C-C}$ = 8.2 Hz, IC, $-\text{OCH}_2$ - $\underline{\text{CH}}_3$).
5e	128.9 (C-2). 115.9 (C-3), 127.8 (C-4), 128.5 (C-5), 119.7 (C-6), 111.0 (C-7), 136.7 (C-8), 132.1 (C-9), 31.3 ($-\underline{\text{CH}}_2\text{-}\text{CHCOOCH}_3$), 63.4 ($-\underline{\text{CH}}_2\text{CHCOOCH}_3$), 172.3 ($-\underline{\text{CH}}_2\text{CH}\underline{\text{COOCH}}_3$), 50.5 ($-\underline{\text{CH}}_2\text{CHCOO}\underline{\text{CH}}_3$), 42.3 (d, J_{P-C} = 145 Hz, 1C, P-C- $\underline{\text{H}}$), 138.2 (C-1'), 123.3 (C-2'), 148.3 (C-3'), 121.9 (C-4'), 129.2 (C-5'), 134.2 (C-6'), 63.1 (d, ${}^2J_{P-O-C}$ = 7.0 Hz, IC, $-\underline{\text{OCH}}_2\text{-}\text{CH}_3$), 13.2 (d, ${}^3J_{P-O-C-C}$ = 9.1 Hz, IC, $-\underline{\text{OCH}}_2\text{-}\underline{\text{CH}}_3$), 64.2 (d, ${}^2J_{P-O-C}$ = 7.1 Hz, IC, $-\underline{\text{OCH}}_2\text{-}\underline{\text{CH}}_3$), 14.2 (d, ${}^3J_{P-O-C-C}$ = 9.2 Hz, IC, $-\underline{\text{OCH}}_2\text{-}\underline{\text{CH}}_3$).
5g	128.7 (C-2). 115.7 (C-3), 127.4 (C-4), 128.4 (C-5), 118.4 (C-6), 111.2 (C-7), 136.2 (C-8), 133.4 (C-9), 28.9 ($-\underline{\text{CH}}_2\text{CHCOOCH}_3$), 60.5 ($-\text{CH}_2\underline{\text{CHCOOCH}}_3$), 172.8 ($-\text{CH}_2\text{CHCOOCH}_3$), 50.5 ($-\text{CH}_2\text{CHCOOCH}_3$), 39.5 (d, J_{P-C} = 147 Hz, 1C, P-C-H), 120.8 (C-1'), 156.4 (C-2'), 117.5 (C-3'), 129.1 (C-4'), 126.5 (C-5'), 129.4 (C-6'), 51.8 (d, ${}^2J_{P-O-C}$ = 16.9 Hz, IC, $-\text{O}-\underline{\text{CH}}_3$).
51	128.5 (C-2). 116.0 (C-3), 127.9 (C-4), 128.6 (C-5), 119.6 (C-6), 111.0 (C-7), 136.5 (C-8), 131.7 (C-9), 31.5 ($-\underline{\text{CH}}_2\text{-}\text{CHCOOCH}_3$), 63.4 ($-\text{CH}_2\underline{\text{CHCOOCH}}_3$), 172.3 ($-\text{CH}_2\underline{\text{CHCOOCH}}_3$), 50.2 ($-\text{CH}_2\underline{\text{CHCOOCH}}_3$), 49.2 (d, J_{P-C} = 147 Hz, 1C, P-C-H), 135 (C-1'), 126.3 (C-2'&C-6'), 128.3 (C-3'&C-5'), 127.3 (C-4'), 127.4 (C-7'), 123.3 (C-8'), 157.3 (C-1''), 115.8 (C-2'' & C-6''), 129.2 (C-3'' & C-5'', 121.2 (C-4'').

a - Chemical shift in ppm from TMS and coupling constants J (Hz) in parenthesis; b - Recorded in DMSO- d_6 .

Table 4. FAB Mass spectral data of compounds **5a**, **5d**, **5e**, **5g** and **5i**.

Comp.	m/z (%)
5a	450 (7.1, M ⁺ •), 417 (81.2), 335 (100), 193 (19.2),
	146 (18.2), 118 (20.3), 64 (14.2).
5d	461 (10.7 M ⁺ •) 428 (17.8), 339 (100), 215 (7.5),
	118 (10.8), 64 (7.1).
5e	489 (7.3, M ⁺ •) 431 (5.2), 399 (10.7), 359 (14.2),
	327 (71.4), 255 (78.5), 118 (100), 64 (71.4).
5g	432 (10.0, M ⁺ •) 390 (14.2), 309 (25.7), 249 (100),
	231 (17.1), 203 (11.4), 188 (77.1).
5i	528 (9.8, M ⁺ •), 492 (7.8), 419 (17.1), 235 (65.2),
	118 (100), 64 (31.2).

Table 5. Antibacterial activity^a of some new α -aminophosphonic acid esters (5a–1).

			2, 0	60000.	10000000000000000000000000000000000000				
Comp.	Staphyl	ococcus'	Bac	illus	Esche	richia	Kleb	siella	
	aureus		faec	faecalis		oli	pneumoniae		
	75	100	75	100	75	100	75	100	
			μg/ml	900 (400 P					
5a	-	-	8	9	-	-	7	8	
5b	6	8		-	10	12	10	12	
5c	- 1	-	10	11	9	12	_`	-	
5d	-	-	9	10	-	-	6	8	
5e	7	9	-	-	8	10	9	10	
5f	13	16	12	14	16	18	10	12	
5g	8	10	-	-	10	11	12	15	
5h	12	13	-	-	11	12	10	11	
5i	8	11	-	-	8	10	-	-	
5j	-	-	6	8	8	10	-	-	
5k	7	8	10	12	8	9	6	9	
51	8	11	14	15	6	10	-	-	
Peni-	9		8	8		7		11	
cillin ^b									

a - Concentration in ppm; b - Standard antibacterial compound.

Synthesis of 2-{[hydroxy-phenyl-methyl-2-di-methoxy-phosphoryl)-methyl]amino}-3-(1H-indol-3-yl)-propionic acid methyl ester (5g). Tryptophanmethyl ester was prepared using the reported procedure [22].

Tryptophan methyl ester (1.09 g, 0.005 mol) and o-hydroxybenzaldehyde (2) (0.52 g, 0.005 mol) in dry ethanol (20 ml) were refluxed upon stirring for 2 hours to form the imine (3). A solution of dimethylphosphite (4) (0.53 ml, 0.005 mol) was added slowly at room temperature, in the presence of catalytic amount of sodium ethoxide without isolating the imine. The reaction temperature was raised to reflux value and maintained for 4 h. Completion of the reaction was monitored by TLC analysis. After completion of the reaction, solvent was removed in a rotary evaporator. The residue was purified by column chromatography using silica gel (60-120 mesh) as adsorbent and hexane and ethylacetate (2:1) as an eluent to afford pure α -aminophosphonic acid ester (5 g) as a solid phase, yield 1.16 g (79%), m. p. 117–119°C.

The results indicate that the compounds **5b**, **5e**, **5f** and **5h** exhibited promising antibacterial activity. The compound 5a showed the same activity against gram positive bacteria *Bacillus faecalis* when compared to that of the standard. The compound **5l** exhibited more activity against gram positive bacteria *Bacillus faecalis* when compared to that of *Penicillin*. It is gratifying to note that the nitro compound **5f** exhibited very high activity against both gram positive and negative bacteria, since it contains nitro-group.

CONCLUSION

In conclusion, synthesis of α -aminophosphonic acid esters is achieved in good yields in a two-step reaction process in the presence of sodium ethoxide as a catalyst. The advantages are smaller reaction time intervals, low cost of the reactant chemicals, simple experimental procedure.

Acknowledgements: The authors express thanks to Prof. C. Devendranath Reddy, Sri Venkateswara University, Tirupati, for his encouragement and helpful discussions and the director of CDRI, Lucknow and SIF, IISC, Bangalore, for the elemental analyses and spectral data.

REFERENCES

- (a) S. C. Fields, *Tetrahedron* 55, 12237 (1999).
 (b) D. Redmore, *J. Org. Chem.*, 43, 992 (1978).
- 2. B. Kaboudin, R. Nazari, *Tetrahedron Lett.*, **42**, 8211 (2001).
- 3. P. Kafarski, B. Lejczak, *Phosphorus, Sulfur, Silicon Relat. Elem.*, **63**, 193 (1991).
- R. Hirschmann, A. B. Smith III, C. M. Taylor, P. A. Venkovic, S. D. Taylor, K. M. Yager, P. A. Sprengler, S. J. Venkovic, *Science*, 265, 234 (1994).
- (a) M. C. Allen, W. Fuhrer, B. Tuck, R. Wade, J. M. Wood, J. Med. Chem., 32, 1652 (1989); (b) P. P. Giannousis, P. A. Bartlet, Ibid. 30, 1603 (1987).
- 6. (a) F. R. Atherton, C. H. Hassal, R. W. Lambert, *J. Med. Chem.*, **29**, 29 (1986); (b) C. H. Hassal, in: Antibiotics, F. E. Halm (ed), vol. 6, Springer-Verlag, Berlin, 1983, p. 1.
- (a) D. Redmore, in: Topics in Phosphorus Chemistry, E. J. Griffith, M. Grayson (eds), vol. 8, John Wiley & Sons, New York, 1976, p. 515; (b) V. P. Kukhar, V. A. Solodenko, *Russ. Chem. Rev.*, 56, 859 (1987).

- 8. A. A. Sobanov, A. V. Zolotukhim, V. I. Galkin, R. A. Cherkasov, A. N. Pudovik, *Russ. J. Chem.*, **72**, 1967 (2002).
- 9. R. A. Cherkasov, V. I. Galkin, *Usp. Khim.*, **67**, 940 (1998).
- G. Syamprasad, J. Radhakrishna, M. Manjunath, O. V. Reddy, M. Kasthuraiah, C. S. Reddy, V. G. Puranik, *Arkivoc*, 13, 133 (2007).
- P. Haranath, V. S. Kumar, C. S. Reddy, C. N. Raju, C. D. Reddy, *J. Heterocyc. Chem.*, 44, 369 (2007).
- 12. L. C. Thomas, Interpretation of the Infrared Spectra of Organophosphorus Compounds, Heydon and Sons Ltd., London, 1974.
- 13. J. S. Yadav, B. V. S. Reddy, K. Saritha Raj, K. B. Reddy, A. R. Prasad, *Synthesis*, **15**, 2277 (2001).
- 14. J. Xu, N. Fu, J. Chem. Soc. Perkin Trans. I, 1223 (2001)
- 15. D. Hall, C. R. Ardrey, R. Dyer, G. Paul, *J. Chem. Soc. Perkin. Trans. II*, 1232 (1977).
- (a) E. D. Matveeva, T. A. Podrugina, E. V. Tishkovskaya,
 L. G. Tomilova, N. S. Zefirov, *Synlett.*, 15, 2321 (2003).
 (b) E. Van Meonen, K. Moonen, D. Ake, V. C. Stevens,
 Arkivoc, 1, 31, (2006).
- (a) W. A. Fadel, N. Tesson, *Eur. J. Org. Chem.*, 2153 (2000).
 (b) H. Firouzabadi, N. Iranpour, S. Sobhani, *Synthesis*, 16, 2692 (2004).
- 18. L. D. Quin, J. G. Verkade (eds), Phosphorus ³¹P NMR Spectral Properties in Compound Characterization and Structural Analysis, VCH Publ., New York, 1994.
- 19. H. Keck, W. Kuchem, H. F. Mahler, *Org. Mass Spectrom*, **15**, 591 (1980).
- K. R. Cruickshan, Medical Microbiology, A Guide to Diagnosis and Control of Infection, II ed. E. S. Livingston Ltd, Edinburgh and London, 1968.
- 21. A. W. Beuer, M. M. Kirby, J. C. Sherries, A. Truck, *Am. J. Clin. Pathol.*, **45**, 493, (1969).
- 22. R. G. Webb, J. Org. Chem., 34, 576 (1969).

ЕФИКАСНА СИНТЕЗА В ЕДИН СЪД НА ЕСТЕРИ НА α-АМИНОФОСФОРНАТА КИСЕЛИНА С ШИФОВИ БАЗИ С ИЗПОЛЗВАНЕ НА НАТРИЕВ ЕТОКСИД КАТО КАТАЛИЗАТОР (РЕАКЦИЯ НА ПУДОВИК) И ТЯХНАТА БИОЛОГИЧНА АКТИВНОСТ

Ч. Мохан 1 , С. Н. Раджу 1* , А. Дж. Рао 1 , Р. Ю. Н. Лакшми 2

 $^{-1}$ Департамент по химия, Университет "Сри Венкатесуара", Тирупати, Индия $^{-2}$ Департамент по ботаника, Университет "Сри Венкатесуара", Тирупати, Индия

Постъпила на 6 юни 2008 г.

(Резюме)

Осъществена е синтеза на нови естери на α-аминофосфорната киселина чрез двустадийна реакция в един съд (Реакция на Пудовик). В първия стадий метилов естер на триптофан реагира със заместени ароматни алдехиди в абсолютен етанол до образуване на Шифови бази. Във втория стадий те взаимодействат *in situ* с диалкил/диарилфосфит с използване на натриев етоксид като катализатор и при нагряване с обратен хладник. Структурата на тези съединения е определена с елементен анализ, ИЧС, ¹H, ¹³C, ³¹P ЯМР и масспектрометрия. Всички споменати съединения показаха умерена антимикробна активност.