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Control of production campaigns with optimal loading of the power systems during 
multipurpose and multiproduct batch chemical plants operation 
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The paper is devoted to the problem of optimal loading of the joint systems of power supply of multipurpose and 
multiproduct batch chemical plants (MMBCP) operating in regime of production campaign. Mathematical method is 
proposed for determining the control independent variables that ensures minimum deviation of the loading 
characteristics of power demand of the related power systems from the ideal ones. The models developed for power 
consumption of the individual productions that belong to a production campaign were based on Fourier series. The task 
of optimum control was formulated as a non-linear mathematical programming one. The method proposed is verified by 
a test example. 
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INTRODUCTION 

Up to 50% of the world industrial units, related 
to chemical industry, are batch operating ones 
Stoltze et al. [1]. The chemical industry is a large 
power consumer and its effective use of power is 
very important. Referring to the continuous systems, 
the problem of effective use of their power 
utilization nets is most often seen as reduction of the 
power demand by effective utilization of the net 
internal power or introduction of energy-saving 
technologies. This is realized mainly by process heat 
integration according to Linnhoff [2]. However, the 
power bills of the batch processing systems 
represent only 5−10% of the total production costs 
per unit of product [3]. The power effectiveness of 
these systems depends strongly on the optimal load 
of the external power supply systems that is tem-
porally non-uniform. Characteristic property of their 
performance is the fact that during simultaneous 
operation of a set of batch productions it is possible 
to reach the loading threshold values leading to 
emergency situations or to experience falls of the 
effectiveness parameters of the external power 
supply systems. The occurrence of such problems is 
characteristic of the operation of this class of 
systems. They are often met in various industries, 
such as the food processing, pharmaceutical, oils 
and paints and fine chemicals processing and they 
are considered widely in the literature [4, 5]. 

Referring to available sources, the problem of 
optimal loading of the various power systems 

connected with multipurpose and multiproduct 
batch chemical plants (MMBCP) has two aspects. 
The first aspect includes problems of shrinking 
demands of any kind of power by process heat 
integration [3, 6–8,]. This approach is known to lead 
to high utilization effectiveness of the systems’ 
internal power, and, while using appropriate sche-
dules and heat integration flow charts, also to 
loading reduction and therefore to more uniform 
load of the particular external power system. How-
ever, the ideas of heat integration may not be always 
applicable, as they are intercorrelated with system 
reconstruction activities that require proofs of eco-
nomical feasibility. Besides, one may not reach the 
desirable loading non-uniformity. 

Another approach to deal with effective power 
utilization is referring to development of appropriate 
production schedules [3, 4, 6, 9–12] that lead to 
decrease in loading non-uniformity. The latter unila-
terally leads to higher performance effectiveness of 
the relevant power system. 

Among the first papers to consider the issue of 
optimal loading of the power systems during 
operation of a group of batch productions is the one 
of Bieler et al. [13]. This work proposed a method 
for assessing the performance conditions of systems 
including batch production units that leads to a 
decrease in the peak load of the power systems. The 
task has been solved by analytical models of power 
consumption, based on Fourier series, while the 
optimal operation conditions were found by formu-
lating this task in terms of mathematical pro-
gramming. The formulation thus proposed by  
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Ivanov et al. [9] considered the deviation of the 
instant power of start-up of batch production as a 
single control variable. In this way, the possibility to 
achieve optimal load of the power demand systems 
can be largely limited. 

Referring to another work by Badel. et al. [14], 
the issue of optimal loading of multipurpose plant 
systems has been discussed from the point of view 
of financial resources. This work assumes operation 
of the system in a production schedule “follow-up” 
regime of the type Job Shop Scheduling. 

An interesting approach is reported in refs. [13, 
15, 16], where mathematical models of power con-
sumption of some charts of batch reactors have been 
proposed. Nevertheless, the approach of MMBCP 
operation control considered in this group of works 
is not enough general to be used. 

From the above review of the literature, it 
becomes clear that the issues related to optimal 
loading of the power systems during operation of 
multipurpose and multi-product chemical plants can 
be resolved following two main directions, namely: 
1. Using means and charts allowing maximum 
utilization of the systems’ internal energy by 
process heat integration, and 2. Creating perfor-
mance conditions that lead to optimal load of the 
external power systems by formulation of appro-
priate schedules of operation and selection of 
appropriate production technologies for the majority 
of the products.  

In any case, the issue of formulation of appro-
priate mathematical criteria for evaluation of the 
power effectiveness as well as effective methods for 
determination of the control variables leading to 
optimal loading of the various power systems still 
remains to be targeted. 

PROBLEM DESCRIPTION 

Let us consider a multipurpose chemical plant 
producing simultaneously a given amount of 
products within a production campaign (Fig. 1). The 
productions included in the campaign are batch ones 
with fixed production cycle. Assume that some 
stages of these productions, related to fixed power 
types, are power consuming and that they load the 
relevant external power supply system batchwise 
during the process stage time. Referring to fixed 
schedules and vessel parameters, one can determine 
the amount of power corresponding to any heat 
carrier required to produce a unit of end product 
(electrical power, cold, steam, cooling water, etc.). 
The consumption of any power type in the various 
stages of the process is carried out at constant 
intensity. During the operation of the set of produc-

tions simultaneously within a campaign using the 
various external power systems, depending on the 
process arrangement in time one may obtain dif-
ferent loading and often in some time periods it may 
exceed significantly the allowable threshold level of 
the external power system. 

 
Fig. 1. Gant’s chart of a production campaign of two 

processes. 

Considering the operation of such a production 
system, one may find ways to dislocate the produc-
tions themselves in the course of overall production 
or to delay the start-up of any one of the batches in a 
series or to change its size. Obviously, using these 
control variables one can reach optimal load of the 
relevant power systems. 

The aim of the study was to determine, within a 
campaign and for batch production, the values of the 
batch size, the delay of production start-up in a 
campaign, compared to a pre-selected basic pro-
duction, as well as the waiting time interval among 
the individual batches - in such a way as to ensure 
the external power system by type the best loading 
in terms of a pre-selected criterion. Additionally, the 
number of batches in each production, pre-deter-
mined in order to fulfil the planned overall pro-
duction program, has to be determined. In order to 
solve such a task, it is evident that one has to 
propose appropriate criterion relationships to be able 
to evaluate the power demand, as well as to for-
mulate appropriate mathematical models, describing 
the power consumption in time. 

The aim of the study was to formulate a mathe-
matical model for evaluation of the control inde-
pendent variables that ensure pre-determined 
loading requirements of the power systems during 
MMBCP operation in a fixed production campaign. 

Theory 

Basic data. Let us consider the sets of variables, 
as follows: 
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Set { }NiiiI ,...,, 21  – set of products subject to 
simultaneous production. 

Set { }Ni jjjJ ,...,, 21  – set of stages of any 
separate production process. 

Set  { }Nij pppP ,....., 21  – set of processes 
within any production stage. 

Additionally, also consider the data, as follows: 
ijpwе – the amount of power of type w, required 

to produce a unit mass of end product during the p-
th process of the j-th stage and in the i-th production 
line.  

The power demand in the case of permanent 
loading during the process will be: 

ijp

iijpw
ijpw

Be
p

τ
= , respectively, 

where τijp is the time interval of the relevant process, 
and Bi is the batch size. 

The duration of each stage of a given production 
will be: 

    JjIi
ijp

ijpij ∈∀∈∀=∑ ,    ,  ττ . 

The amount of mass of product of any kind for 
the planning horizon H should not be less than the 
previously fixed value, namely, min

iG . 
The cycle time intervals of the productions 

operating in regime of overlapping cycles is calcu-
lated by means of the equation ( ) ττ ijji max= , and 
in the cases where the production arrangement is 
without overlapping of cycles, the cycle time will be 

∑=
j

iji ττ . 

It is assumed also that the relationships for 
determination of the process time intervals as a 
function of the batch size are known: 

),( i
f

ijpijp BF=τ   ijpiji PJI ∈∀∈∀∈∀ ,,   

The Max and Min batch size are also previously 
calculated for any product:  
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where MAX
ij

MIN
ij VV ,  indicate the maximum and the 

minimum permissible volumes of the vessels used 
in the relevant production stages, and sij is the 
dimension coefficient that determines the vessel’s 
volume required to produce a unit mass of end 
product corresponding to the i-th production j-th-
stage. Besides, one assumes the maximum per-

missible average intensity of loading of the relevant 
power system, max

wP , to be predetermined. 

 
Fig. 2. Gant’s chart of a production including three 

stages. 

Control variables. The following sets of 
continuous control variables are entered: 

- Time intreval of dislocation of the start-up of 
operation of the separate productions IiX i ∈∀     , . 

- Waiting time interval among the separate 
production batches IiSi ∈∀     , . 

- Size of the batch mass produced - 
IiBi ∈∀     , . 

The size of the batch mass produced, 
corresponding to each product, may assume values 
within the fixed range MAX

i
MIN
i BB , , previously cal-

culated and depending on the degree of com-
pleteness of the individual batch vessels, engaged in 
the production of a given product. The intensity of 
the power demand of given type and/or the time 
interval of the individual processes are directly 
related to the size of the production lot.  

Constraints. The following sets of inequality 
constraints are entered: 

- Constraints of permissible size of the batch of 
product: 

IiBBB MAX
ii

MIN
i ∈∀≤≤     ,    (1) 

- Constraints for permissible waiting time inter-
val between the batches: 

Ii
N
NH

S
i

i
i ∈∀≤≤    ,   

τ-
0 i   (2) 

where  

     Ii
B

GN
i

∈∀











=   ,   

min
i

i  
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means permissible minimum number of batches that 
has to be produced in each production process for 
the planning horizon H. 

- Constraints for the allowable dislocation time 
intervals for the start-up of each batch relevant to 
one basic production process: 

( ) IiSX iii ∈∀+≤≤    ,  0 τ   (3) 

- Constraints providing for execution of the 
programme by quantities: 

IiB
S

HG
ii

i ∈∀







+

≤     ,  
τ i

min   (4) 

- Constraints providing for execution of the time 
programme: 

( ) IiHNSii ∈∀≤+    , τ i   (5) 

- Constraint providing for permissible average 
power demand during production of the products in 
the campaign in the course of the planning: 

( ) WwBSP
i

ii
const

iw ∈∀≤∑  ,P max
w,  (6) 

Mathematical model of power consumption during 
production campaign 

The function of variation of the intensity of 
power of any type for each process and stage of 
production can be written analytically by repre-
senting the periodical function of loading through 
Fourier series (Fig. 2): 
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where τi* = τi + Si, 

   ∀  

   ,τ 
 

ττ+τ+=τ ∑∑ ∑∑
1∈

1
1=

1
1=∈

pji

X
Pp

pi

j

j
ij

P

p
ijp

Pp
ijpi

shift
ijp

j

,,

 

k is the harmonic number of the development in 
series of Fourier, k

ijpw
k
ijpwijpw BAA  , ,0  are the Fourier 

coefficients that can be determined, depending on 
the loading curve by using analytical relationships 
reported for the most frequent cases or for arbitrary 

curves by using numerical methods. The coeffi-
cients referring to the cases of permanent loading 
during some process (which is the most frequent 
case) depend only on the process time interval and 
on the constant power -component and they can be 
written, as shown below: 
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Based on the Fourier transformation of the sepa-
rate processes, one can write the analytical equa-
tions of the stages, of the productions and of the 
campaign, as follows: 

- The capacity of power demand of any kind in 
stage j of a given production i is described as: 

( ) ( )
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- Capacity of power demand of any type for 
production i is described as: 

WwIitBXSP

BSPtBXP

iii

ii
const

iii

∈∀∈∀+

+=

, ),,,,(

),(),,,(S 
var

iw
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where 

( ) ( )
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  (13) 
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( ) ( )

WwIi

tBXStBXS
j

iiii

∈∀∈∀

=∑
,

,,,P,,,P varvar

 

   , iijwiiw
(14) 

- Capacity of power demand of any type for the 
whole campaign is described as: 

( ) ( ) ( )+,=S www tBXSPBSPtBXP const ,,,,,, var  
(15) 

where: 

( ) ( )  iiww ∑=
i

i
constconst BSS,B ,PP , 

( ) ( ) iiww ∑=
i

ii tBXStBXS ,,,P,,,P varvar . 

The constant component of the capacity of the 
power demand constPw  does not depend on time and 
it is considered to be the ideal value that should be 
targeted as a result of the control of the production 
campaign based on criterion of minimum oscilla-
tion. The variable component var

wP  shows the power 
variance around the permanent component. This 
function can be used for assessing the degree of de-
viation of the real curve compared to the ideal one. 

The variable component is determined by the 
relationship: 

( ) 0
0

=∫ dttBXSP
H

w ,,,var .      (16) 

Objective function. The deviation of the real 
curve with respect to the ideal one is evaluated by 
the relationship: 

%

),,,(var

1000
const

w

H

w

w
PH

dttBXSP

J
∫

= . (17) 

Formulation of the problem of optimal control 
ensuring minimum variance of the power demand 

The problem of optimal control of a given pro-
duction campaign providing for minimum deviation 
of the curve of the power loading with regard to the 
ideal curve can be formulated as a non-linear pro-
gamming task with continuous independent vari-
ables, as follows: the values of the sets of control 
variables (S, X, B) are found in such a way as to 
ensure minimum of the objective function (Eqn. 
(17)) conforming to the set of inequality constraints 
(Eqns. (1) through (6)). Thus formulated, the task 

can be solved by using some of the known NLP 
techniques [17]. 

Example problem. An example represents the 
production process of three different products, 
carried out simultaneously in one production 
campaign. The workshop, involved in producing the 
three products, contains three reaction units with 
similar vessels of different operating volumes. 

Table 1 contains the data related to the vessels. 
Table 1. Data related to the vessels. 

Ves-
sels 

type P 

Work 
volume 

(min/max)

Ves-
sels 

type V

Work 
volume 

(min/max) 

Ves-
sels 

type D 

Work 
volume 

(min/max)

P1 300/300 V1 300/300 D1 140/140 
P2 250/250 V2 400/400 D2 160/160 
P3 250/250 V3 250/250   

Table 2 contains the time intervals of the 
production stages in terms of products. 
Table 2. Time intervals of the production stages in terms 
of products. 

Stage Production А Production В Production C 

Stage 1 30 min. 30 min. 30 min. 
Stage 2 240 min. 240 min. 240 min. 
Stage 3 30 min. 30 min.  

The size coefficients (indicating the required 
operating volumes for production of unit of end 
product) by individual stages and productions are 
presented in Table 3. 
Table 3. Size coefficients by individual stages and 
productions. 

Stage/Product Stage 1 Stage 2 Stage 3 

Product A 1.2 1.96 6.3 
Product B 1.2 1.23 7.3 
Product C 1.2 1  

The power required to produce a unit of end 
product by individual stages and productions is 
given in Table 4. 
Table 4. Power required to produce an end product unit 
by individual stages and productions. 

Power required for production of a unit product 
in stage 

No 

Stage 1, kW Stage 2, kW Stage 3, kW 

Product A 0.24 0 0.092 
Product B 0.295 0 0.11 
Product C 0.029 0  

The planning horizon of this production 
campaign is H = 100 hours. 

Table 5 describes the vessels for production of 
products “А”, “В” and “С”. 
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The task was solved by using software package 
ECAM performing a NLP task.  

Table 6 contains the optimal values of the control 
variables. 

Figures 3, 4 and 5 illustrate the curves of 
variation of the power demand, corresponding to the 
individual productions and the total loading of the 
power system. 

Table 5. List of the vessels relevant to separate pro- 
ductions. 

Production 
process 

Stage 1 Stage 2 Stage 3 Planned 
amount 

Product A P1 V1 D1 400 
Product B P2 V2 D2 250 
Product C P3 V3  3000 

 
 
 
Table 6. Optimal values of the control variables. 

Production Time of 
starting-up,    

h 

Time of cycle and 
waiting time between 

batches,   h 

Optimum size of a batch 
and total amount produced 

in the horizon,   kg 

Maximum 
peak power,  

kW 

Mean power in 
the planning 

horizon,   kW 

Process 
variability,   

% 

А 0 5.47/1.47 22.22/406.2 10.56 1.34 11.17 
B 1.06 7.33/3.33 21.91/298.9 13.2 1.21 67.5 
C 2.52 6.909/2.909 208.33/3015 12.1 0.87 52.5 

A+B+C    25.01 3.433 16.325 

 
 
 

 
Fig. 3. Loading of the power system at optimal dislocation (arrangement) of the start-up of productions “B” and “C” 

with regard to production “A”. Upper curve – overall loading of the power system during operation of the three 
production processes; Lower curve – loading due to production process “A”. 
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Fig. 4. Loading of the power system at optimal dislocation (arrangement) of the start-up of productions “B” and “C” 

with regard to production “A”. Upper curve – overall loading of the power system during operation of the three 
production processes; Lower curve – loading due to production process “B”. 

 
Fig. 5. Loading of the power system at optimal dislocation (arrangement) of the start-up of productions “B” and “C” 

with regard to production “A”. Upper curve – overall loading of the power system during operation of the three 
production processes; Lower curve – loading due to production process “C”. 
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CONSLUSIONS 

Based on the analysis of production campaigns 
involving power supply systems in MBCP 
operation, the following conclusions could be 
drawn:- A mathematical model of the general 
problem of controlling the production campaigns of 
MBCP operation, while accounting for the power 
loading of the external power supply systems, is 
proposed. 

- The control problem is formulated as a task of 
the non-linear mathematical programming metho-
dology. 

- The theory proposed is verified by an example 
problem solved by using software package ECAM. 
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УПРАВЛЕНИЕ НА ПРОИЗВОДСТВЕНИ КАМПАНИИ, ОСИГУРЯВАЩО ОПТИМАЛНО 
НАТОВАРВАНЕ НА ЕНЕРГОСИСТЕМИТЕ ПРИ РАБОТАТА НА МНОГОЦЕЛЕВИ ЗАВОДИ 
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(Резюме) 

Работата е посветена на проблема за оптималното натоварване на общите системи за енергозахранване на 
многоцелеви заводи, работещи в режим на производствени кампании. Предложен е математичен метод за 
определяне на управляващите независими променливи, осигуряващи минимално отклонение на кривите на 
натоварването на съответните енергосистеми от идеалните такива. За описание на моделите на потребление на 
енергия на отделните производства и производственната кампания са използувани редове на Фурие. Задачата за 
оптимално управление е формулирана като задача на нелинейното математичното програмиране. За 
потвърждение на предлагания метод е предложен тестов пример. 
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