
 

 343

Application of Bessel’s functions in the modelling of chemical engineering processes  
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It is shown, that under given conditions the differential equations, describing some kind of transfer processes, allow 
an exact solution, expressed by Bessel’s functions. For that purpose a wide range literature survey, covering the 
modelling of transfer processes in chemical engineering as well as in the related fields, is done. The typical examples 
from hydrodynamics, heat transfer, diffusion, bioprocesses and so on, are considered and discussed.  
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INTRODUCTION 

Modelling of transfer processes is based on the 
construction of some hypothesis for the process 
state and its growth in the space and time. The next 
step is to express that hypothesis by specific 
mathematical structure, e.g., to work out equations – 
ordinary (ODE) or partial differential (PDE), in 
which the unknown process function and variables 
are taking part. The sound reasoning to compose 
these equations follows from balance of transfer 
towards certain volume or boundaries. Finally, to 
"shut up" the resulting system of equations it is 
necessary to lay down the initial or/and boundary 
conditions for unknown functions and variables over 
the boundary domain and time interval, where the 
process occurred. When the initial time conditions 
are given and the domain for other independent 
variables (coordinates) is not fixed preliminary, the 
so called Cauchy’s problem is obtained. If the 
unknown function(s) are determined on the domain 
boundaries, the boundary value problem exists. The 
most often used type of boundary conditions are 
those of Dirichlet (value of unknown function at the 
boundary) and Neumann’s (the value of normal 
derivative of this function at the boundary) condi-
tions. 

The number of cases, where the so composed 
system of equations and initial and boundary 
conditions (model of process) admits solution (exact 
or numerical), is limited. The more complete 
account of all alterations of the unknown functions 
and values leads to a more complex and unsolvable 

 
 model, especially when introducing physical or 
geometrical non-linearity. There are several 
approaches to obtain the exact solution, the common 
between them is to decrease the number of 
independent variables and reduce the above system 
to a simpler and solvable system, for example: 

- introducing of additional assumptions to 
simplify the system (symmetry, isotropy, indepen-
dence from temperature, time, etc.) 

- applying of different integral transformations 
(Laplace, Fourier), method of separation of vari-
ables, method of eigenfunctions and eigenvalues;  

- expansion of the unknown function in series 
(Taylor, Fourier), using special functions (Green, 
harmonic, etc.). 

The above mentioned approaches to obtaining 
the solution are related mainly to systems containing 
linear PDE of second order and corresponding 
initial and boundary conditions. The various kinds 
of linear PDE, domain boundaries and boundary 
conditions, as well as methods for solving some 
linear PDE are well-known and these can be seen in 
a lot of mathematical textbooks like [1, Ch. 8].  

In this work, the focus is centred only on those 
cases, where the linear PDE’s describing various 
chemical transfer processes, allow the exact solution 
expressed in terms of one special kind of functions – 
Bessel’s functions (BF). Modelling of different 
process cases from hydrodynamics, diffusion, heat 
transfer and other interdisciplinary topics, which 
illustrated the wide application of the BF, are 
considered. The theoretical conditions needed to 
obtain a solution in BF are briefly represented in 
next section. 
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TYPES OF LINEAR PDES IN TRANSFER 
PROCESS MODELLING AND CONDITIONS 
FOR THEIR REDUCING TO BESSEL’S ODE. 

BESSEL’S ODE SOLUTIONS AND THEIR 
PROPERTIES 

Some of the most used in transfer processes 
modelling linear PDE of second order are repre-
sented in Figure 1. For simplicity, the considered 
equations are written towards a function f = f(x, t) of 
only two linearly independent variables, with con-
stant coefficients. Generally speaking, the elliptical 
PDE describe stationary processes (distribution of 
temperature and electrostatic fields, elastic defor-
mation). Parabolic and hyperbolic PDE describe 
time-dependent, transient processes (free fluctua-
tions after a given initial disturbance), or processes 
of distribution of the disturbances (forced fluctua-
tions, emitting waves) [2].  
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Fig. 1. Connection between linear PDE and Bessel’s 

ODE.  

The representatives of linear elliptical PDE are 
Laplace, Poisson and Helmholtz equations. The 
Laplace equation describes a potential field 
distribution. If the right hand side of this equation is 
not equal to zero, we have inhomogeneity and the so 
called Poisson equation. Here the inhomogeneity is 
a result of internal impact (force, heat, current and 
other sources) on the considered domain.  

The parabolic PDE widespread representatives 
are heat transfer and diffusion equations. They can 
be reduced and solved by the method of separation 
of variables (MSV) and their solutions contain 
exponential functions of negative arguments, partial 
solutions of Helmholtz equation and arbitrary 
constants; the latter ones are determined from the 
problem boundary conditions. 

The typical example of hyperbolic PDE is the 
wave equation. It can be solved with the D`Alambert 

formulae when two initial conditions for the 
unknown function and its derivative are given. The 
Laplace и Fourier transforms are used to convert a 
hyperbolic into the elliptic type PDE towards one of 
the spatial coordinates. Another way to reduce it is 
to apply the MSV both to hyperbolic and parabolic 
PDE in the cases of mixed problems. The Helmholtz 
equation represents time-independent form of wave 
equation, obtained by him after applying the MSV. 
This equation is used in problems of transmission 
and distribution of electro-magnetic, seismologic 
and other waves in space.  

Commonly speaking when we try to solve some 
of the most familiar linear PDE we become aware of 
the fact that to apply one of several methods 
decreasing the number of independent variables, the 
Bessel ODE may appear as a result in certain cases. 
It is occurring most frequently when we search 
solutions of linear boundary problems consisting in 
Laplace or Helmholtz equation in cylindrical or 
spherical coordinates. One of the most popular ways 
to find it is to apply MSV, which turns the basic 
equation into a set of ODEs, each one of them is 
towards one independent variable only. Then non-
trivial solutions of ODE must be detected such ones 
that satisfy the given boundary conditions only for 
the eigenvalues and respectively the searched 
solution is expressed by the corresponding set-up of 
orthogonal eigenfunctions and unknown coeffi-
cients. In problems with cylindrical or spherical 
symmetry, these orthogonal eigenfunctions are solu-
tions of Laplace operator; in case of Cartesian coor-
dinates the trigonometric functions appear [3]. The 
unknown coefficients are determined from the 
boundary conditions with the requirement that the 
solution must be physically reliable.  

The MSV is a very simple and powerful instru-
ment but its application is possible only if the 
following conditions are fulfilled [4]: “(i) the vari-
ables are separable out in the given coordinate 
system, (ii) the existence of an infinite set of eigen-
functions for the reduced, self-adjoint ordinary 
differential equation, (iii) the orthogonality of the 
eigenfunctions permitting the direct evaluation of 
the coefficients in the series expansion that repre-
sents the solution, and (iv) the boundary data are 
given on constant coordinate lines”. The last 
restriction can be overcome successfully with newly 
discovered way [4], proposed recently for a heat 
conduction linear problems in domains with 
complex geometry. When the MSV is applicable 
and we have Bessel’s type of ODE, the following 
solutions are well-known – these are the so called 
Bessel’s functions (BF). They can be classified 
(Figs. 2−5) according to the coordinate system 
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considered and type of space – real or complex. 
Since Bessel’s ODE is of second order, it has two 
linearly independent solutions. Each linear combina-
tion of these solutions is also a solution. 

As it is seen from Fig. 3, 4 and 5 different types 
of BF have different behaviour. The cylindrical BF 
of 1-st kind is limited at point x = 0, but those of  
2-nd kind here turned to infinity. The BF of 3-th 
kind are also limited at the same point, but for the 
case of too large complex argument. It can be seen 
from Figure 4 that the values of modified BF are 
real numbers at complex value of its argument. 
Unlike BF of 1-st and 2-nd kind, which are oscil-

lating functions of real argument, the modified BF Iα 
and Kα are exponentially increasing/decreasing func-
tions of complex arguments. In Figure 5 the sphe-
rical BF are represented.  

The BF properties are described at some length 
[3, 5−10], but even nowadays they still continue to 
be a subject of learning and intrigue many 
researchers from various scientific fields [11−15]. 
The general properties of BF are: 1) they can be 
developed in asymptotic series, 2) they are ortho-
gonal functions, 3) they satisfy various recurrent 
relations and 4) they permit various integral repre-
sentations. 

 
Fig. 2. Cylindrical Bessel’s functions of 1-st, 2-nd and 3-th kind (solutions of Bessel’s ODE in cylindrical coordinates) 

Jα(x), Yα(x), Hα
(1)(x) and Hα

(2)(x). 
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Fig. 3. Graphical representation of Jα(x), Yα(x), and Hα(x+iy).  
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Fig. 4. Modified Bessel’s functions Iα and Kα. 

 
Fig. 5. Spherical Bessel’s functions jn and yn. 

 
Zeros of BF played crucial role in their imple-

mentation in practice. Relton [16] shows that the 
number of that zeros turns to infinity. In principle, 
their calculation is often very complex but if it was 
done once, they can be used repeatedly. At present 
the Bessel’s ODE solutions and zero’s calculation 
and their graphical representation are laid at the core 
of many modern software packages [17−19]. 

After this brief introduction to the mathematical 
apparatus connected to BF, some examples of 
chemical engineering processes in hydrodynamics, 
heat and mass transfer, bioprocesses and etc. will be 
described, in which modelling the BF appeared.  

EXAMPLES OF BF APPLICATION TO 
MODELLING OF TRANSFER PROCESSES IN 

CHEMICAL ENGINEERING 

Heat transfer 

The classical example for illustration of MSV 
application in this area is the heat transfer in homo-
geneous infinite cylinder with surface area S and 
radius R0. The mathematical process description is 
given by:  
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Assuming that at each point in the cylinder the 
temperature U = U(r, φ, t) depends only on the radii 
r, the above equation will be simplified into next 
one:  
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Let the MSV be applied, i.e., we look for a non-
trivial solution of the type U(r, t) = R(r).T(t), which 
satisfies the boundary and initial conditions. After 
the substitution and rearrangement the next system 
of two ODEs follows:  
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The constant λ is called “separation constant” 
and it is determined from the boundary (or similar to 
them) conditions. The second equation in (4) is 
Bessel’s ODE towards coordinate r, λk are the eigen-
values with corresponding eigenfunctions J0(λkr). 
Finally, the exact solution of Eqn. (3) is given as:  
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The obtained in this (or similar) way exact solu-
tion in terms of BF can be used to calculate several 
important parameters needed in design and con-
struction of chemical engineering apparatuses and 
equipment like heat exchangers and their compo-
nents. Typical example for the efficiency calculation 
of finned elliptical-tube heat exchangers, part of the 
drying system in Brazilian powdered milk plant, is 
considered in [20]. The efficiency η(θ) of a rec-
tangular fin in an elliptical tube as a function of the 
polar coordinate θ is expressed by: 
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where I0, I1 and K0, K1 are modified BF of 1-st and 
2-nd kind respectively, kfin is the fin thermal 
conductivity, hsl is the shell exchanger heat-transfer 
coefficient, s – the fin thickness, r0, rc– geometrical 
parameters of finned elliptical-tube.  

An analogous situation exists in the calculation 
of cooling towers efficiency. The towers consist of 
the plate-finned tubes with external radius R [21]. 
These plate-finned tubes are approximately simu-
lated through round tubes with an equivalent radius 
rf, when a criterion for equal performance is 
adopted. The simplification based on the asymptotic 
properties of BF was considered likewise and finally 
the efficiency takes the form: 
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In the case of more complex fin geometry – 
cylindrical fins with hyperbolic profile [22], two 
simple numerical procedures for solving general 
Bessel’s ODE are proposed to estimate the tempe-
rature changes in such fins. The aim of these 
procedures is to evade the assessment of elegant, but 
sophisticated exact solution for temperature distri-
bution and to correspond with fin’s efficiencies 
expressed by modified BF of fractional order. In the 
later work [23] a new way to facilitate the calcu-
lations, manifesting modified BF with exponential 
functions, is suggested. The comparison made 
between the exact and approximated formulas in 
regard to efficiency shows that efficiency value can 
be calculated sufficiently precise with approximated 
formulae, which require using of electronic 
calculator only.  

Another case when the BF arises is heat transfer 
modelling as considered in [24]. Here the problem 
of cross-flow streaming of heated object with large 
value of length to diameter ratio (like thermo-
anemometer) is solved for small Pe numbers using 
the theory of analytic functions. After applying the 
right and reverse Fourier transform action and 
taking into account the integral form of modified BF 
[9] in the obtained solution, the following exact 
expression for the Nusselt number is worked out: 

Nu = 2/K0(Pe/4),   (8) 

where Nu is the ratio of convective to conductive 
heat transfer across (normally to) the boundary, K0 
is a modified BF of 2-nd kind. The comparison done 
between Eqn. (8) and other theoretical relations is 
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very good, as well as a qualitative similarity to the 
experimental data was observed.  

Mass transfer  

Owing to the analogy between mathematical 
descriptions of heat and mass transfer processes, the 
BF arises again as solutions of various diffusion 
type of processes. In [25] a model is proposed 
describing changes in tracer (solid phosphorus) 
concentration profiles in the apparatus with circula-
tion fluidized bed. Mixing of flow of dispersed 
particles in ascending line is characterized by the 
coefficients of axial and radial dispersion Da and Dr. 
If the tracer injection like delta-function at the 
beginning is provided and the tracer concentration  
c = c(t,x,r) profiles are evaluated by a dispersion 
model with ideal displacement, the diffusion and 
convection under conditions of steady flow is 
described by: 
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The analytical solution of the upper system has a 
dimensionless form: 
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Perhaps except only sections near the wall of air 
duct, the match between model and experiment is 
very good [25, Fig. 4−6]. The dimensionless equa-
tions, in which Peclet numbers are determined as a 
functions of Reynolds number and bed porosity, are 
derived too (mean error 10%).  

In two consecutive works [26, 27] the problem of 
transfer modelling of one or more pollutants in an-
isotropic underground media into the horizontal and 
vertical direction has been studied. The respective 
system of advection-dispersion equation and initial 
and boundary conditions is solved analytically 
where values of axial and radial Pe numbers are 
unknown. They are determined later on by solving 
the inverse problem with Monte-Carlo method and 

experimental data for pollutants distribution.  

2

2

2

2 11η
x
C

Per
C

rr
C

Pex
Cu

t
C

LR ∂

∂
+











∂
∂

+
∂

∂
=

∂
∂

+
∂
∂  (12) 

( ) ( )

( ) ( ) ( ) ;,,,,,

,

,,,,,,

000

0

00

0

1

==

=
∂
∂

==
∂

∂

+∞→

+∞→=

xrCtHCtrC
x
C

im

txrCimr
txrC

x

xr

l

l

 

Here L is the column length, R is the column 
radius, C0 is the pollutant inlet concentration, H(t) – 
Hevyside function, η = L/R. Because of its compli-
cated mathematical expression the analytic solution 
is not presented in details here; it is a linear combi-
nation from BF of 1-st kind and two exponential 
functions whose arguments are Pe numbers. A very 
good coincidence is observed between the model 
and experimental values of pollutant concentrations 
[26 Fig. 2]. 

Another approach to modelling transfer process 
like osmotic transfer of water molecules in nano-
pores of the hexagonally packed carbon nanotube 
membranes is presented in ref. [28]. It was found 
through random walk model that the flow through 
any of the cylindrical membrane pores is stochastic. 
Then the final number of water molecules passing 
through each of the cylindrical pores for time t, is a 
function with the following distribution: 
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where p,q = 1 – p are probabilities for water mole-
cule to “hop” by one molecular diameter toward the 
salt-solution and pure-water compartments respect-
ively, k ′  – “hopping” rate. 

In the modelling of water diffusion in polymer 
particles (amorphous macromolecular systems and 
foods) with spherical or cylindrical shape, one is 
seeking a solution of the diffusion equation of the 
second law of Fick [29]. The solution obtained in 
[29, Eqn. (18)] for the normalized water uptake Mt 
is:  
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where aαn are the roots of J0(aαn) = 0, D is a 
diffusion coefficient. That solution is compared with 
the solutions of other simpler models. It is well seen 
[29, Fig. 2] that there is a qualitative difference in 
the behaviour of these solutions for Mt with respect 
to the time t, because without accounting for zeros 
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of the BF, the linearity of the other solutions is valid 
only for the first 15−20% of the entire process.  

The consistent application of the fractal diffusion 
model, the MSV, and the construction of analytical 
continuation in eigenfunctions BF allow obtaining 
exact solution for the distribution of concentration 
in a limited volume of the vessel (reactor) in the 
case of CO2 and N2 diffusion in mesoporous mate-
rials (γ-alumina) [30]. This allows simulating and 
analyzing in detail the diffusion kinetics only 
through the use of BF of fractional order and their 
positive zeros. 

In [31] it has been shown that the effectiveness 
factor for a catalyst pellet can be expressed for an 
irreversible first-order reaction by a single function, 
namely the modified Bessel function, independent 
of the shape of the pellet. Such a relation has been 
derived by transforming the Laplacian into a three-
dimensional coordinate system, appearing in the 
differential mass balance equation of diffusion and 
reaction in a catalyst pellet, to the one-dimen-sional 
system. The order of the Bessel’s function is strictly 
connected with the shape of the pellet, which is 
characterized by the geometrical shape parameter. 
The derived relationship thus enables the effect-
iveness factor to be calculated quickly for any simple 
shape of the catalyst pellet. It can therefore replace 
tedious and not always feasible rigorous calculations 
in the modelling and sizing of heterogeneous cata-
lytic reactors. 

Later, Argentinean scientists’ team [32] deve-
loped models of Burghardt and found out that their 
one-dimensional model for the effectiveness factor 
of granules, already defined by the form factor, is 
applied with great precision in 3-D cases. Simplified 
procedures for calculating the efficiency of cylin-
drical pellets with arbitrary cross-section have been 
developed in [32], as an alternative for the same 
problem, if the form factor cannot be thus calcu-
lated, by a method of boundary elements. The study 
of the convergence of different equations for the 
degree of effectiveness of one cylindrical bead and 
disk expressed by modified BF has been worked out 
also by Asif [33]. It was found that the degree of 
effectiveness is increased if the factor of the form of 
granules differs from the spherical one. 

Bioprocesses 

Two-step reduction of benzene concentration in 
the bioreactor was studied: absorption in cylindrical 
polymer particles, and subsequent biodegradation of 
the rest in the liquid phase of benzene through the 
bioreactor after inoculation with Alcaligenes xylo-
soxidans [34]. The idea is to remediate partially the 
initial solution to a concentration of benzene, non-

toxic to the environment. Benzene is first absorbed 
by the polymer to a concentration suitable for the 
microorganisms already present in the bioreactor, 
which are extracting it finally. Crank equations 
involving the BF are used [35] for calculation of the 
average effective diffusivity of benzene De within 
the solid cylindrical polymer particles, in [34, Eqn. 
(4)]: 
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Here tM̂  is the mass of phenol absorbed from 
the medium by a single bead at time t, ∞M̂  is the 
total mass of phenol absorbed by a bead, r  is the 
average radius of the beads, and qn’s are the roots of 
the following characteristic equation, including BF 
of 1-st kind: 

( ) ( ) 02α 10 =+ nnn qJqJq . (16) 

The coincidence between measured and calcu-
lated values in the above equation for the ratio 

∞MMt
ˆˆ  is very good [34, Fig. 3]. 

Also in 2003, Japanese scientists’ team studied 
the process of simultaneous nitrification and denitri-
fication of wastewater in membrane bioreactor with 
aeration and biofilm fixed on the hollow fiber mem-
brane surface [36]. The bacteria, oxidizing ammo-
nium compounds, are concentrated mainly inside 
the biofilm and the bacteria, carrying out denitrifi-
cation, are distributed outside. The constant speed of 
reaction of the 1-st order k1 for nitrification is deter-
mined by combining of experimentally measured 
concentration profiles of ammonia nitrogen/total 
nitrogen in biofilm, and the exact solution of the 
equation of mass balance within a biofilm: 
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r = rb, CA = Cb; r = rm, CA = Cm 

where CA is the concentration of ammonia nitrogen, 
CB – the concentration at the outside biofilm 
surface, Cm – the concentration at the outside mem-
brane surface, DA – the diffusion coefficient inside 
the biofilm. The exact solution of the above system 
includes modified BF I0 and K0 of 1-st and 2-nd kind: 
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where A and B are algebraic expressions, consisting 
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of the same functions and boundary value concen-
trations. Kinetic parameters are identified with its 
help – the rate of nitrification in three different axial 
positions in the reactor, diffusion coefficient, and 
experimental results show that nitrogen impurities 
are completely reduced at the exit of the apparatus. 

Hydrodynamic  

The influence of the superficially active 
substances (SAS) on the hydrodynamics was studied 
in [37]. The distribution of velocities in a thin 
laminar film, which was solved SAS, is determined. 
After a number of simplifying assumptions the non-
homogeneous Bessel’s differential equation about 
one velocity component is obtained, in which the 
influence of SAS appeared in its right side. 
Longitudinal velocity component is expressed by 
the BF of the first kind and argument, depending on 
the longitudinal coordinate, the initial thickness of 
the film, and the change of surface tension. It was 
found out that the surface concentration of SAS and 
the distribution on the surface of the film can be 
determined by the rate of adsorption.  

Another problem connected with SAS is solved 
in [38]. In the presence of SAS considering the 
impact of the phases, limiting the film, the rate of 
thinning of emulsion films in the cylindrical coor-
dinates and for semi-infinite area has been studied. 
The mechanism of SAS emerging is divided into 2 
stages - the diffusion from volume of the film to the 
layer in immediate vicinity of the film surface, and 
adsorption of SAS from that layer to the film sur-
face. Depending on the rate of these stages, slowed 
diffusion or delayed adsorption, respectively, were 
observed. Equations of the Navier-Stokes and 
boundary conditions are simplified and this leads to 
an analytical solution for determining the compo-
nents of velocity in r and z in the surrounding film 
phase. This solution contains BF of 1-st kind.  

The idea of modelling the process of spreading 
of a liquid flow in packed columns by the Gaussian 
normal distribution is started in [39], and subse-
quently is further developed in [40] and [41]. Based 
on this idea various mathematical models are 
developed subsequently, most of whose analytical 
solutions for the liquid density of irrigation in 
different cases of initial irrigation and other types of 
boundary conditions are derived [42−59]. The most 
common type of solution has been presented by 
converged infinite series and is a combination of 
exponents, BF and unknown coefficients, the latter 
being determined based on the boundary conditions. 
Table 1 shows some of the results obtained by 
different researchers on modelling the liquid density 
of irrigation in packed columns. 

BF can be used in modelling of gas flow maldis-
tribution in the packed columns too [60−62]. For the 
gas phase the analytical formula (from the disper-
sion model of [60]) for a gas flow maldistribution 
factor has been worked out. Later an additional term 
taking into account the effects of the discrete struc-
ture of the packing layer itself is added to this for-
mula [61−62], since in the solution for the velocity 
given by dispersion model, the structure of layers is 
assumed to be homogeneous and isotropic medium: 
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In the modelling of the blood flow movement in 
arterial vessels different boundary conditions have 
been tested in cases of deformable or non-deform-
able arterial walls [63]. For determining appropriate 
choice of boundary condition of pulsative blood 
flow in the model, the solution of Womersley [64] 
has been chosen: 
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where R is the inlet radius of the considered arterial 
vessel, αn are eigenvalues, i − imaginary unit. Pulsa-
tion of the flow is modelled by a Fourier series with 
coefficients B0, Bn. Since they were unknown [63] 
they were determined by experimental data for 
blood velocity profile taken by ultrasonic Doppler 
method. The argument of the BF of the first kind 
contains the frequency ω of the cardiac cycle ~ 1s. 
The appropriate choice of Eqn. (20) upon comparing 
calculated and experimental data on the rate of 
blood flow can be seen in [63, Fig. 3].  

The review of all selected examples of BF appli-
cations in all considered areas would be incomplete 
if the similarities between the diffusion boundary 
problem, dispersion model for spreading fluids and 
heat transfer problem are not mentioned [11]. The 
different cases of problems boundary conditions and 
the effects, which they are corresponding to, are dis-
cussed. In particular, the boundary condition, used in 
[47, 48] are considered. It is an assessment of the 
zeros of the BF of the first kind and 1-st order 
involved in that condition, using Newton-Rapson’s 
method. 
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Table 1. Analytical solutions for liquid density of irrigation, expressed in BF for different boundary conditions. 
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REASONS FOR USING BF IN THE MODELING 

OF CHEMICAL ENGINEERING TRANSFER 
PROCESSES  

- Heat transfer, diffusion and hydrodynamic 
processes of flow moving and flow state, can be 
modelled successfully by PDEs. There are methods 
for solving them by which they are restricted to the 
Bessel’s type of ODE for some of the variables. The 
exact solution of the ordinary or modified Bessel’s 
equation contains BF.  

- The solution in BF is obtained when the system 
of linear PDE, with boundary and initial conditions 
is located in the area with simple boundaries – 
rectangle, circle, etc., and the presence of symmetry 
(cylindrical or spherical).   

- In many cases it is possible to simplify the right 
exact solution, using the properties of BF (asymp-
totic at large or small value of the argument, ortho-
gonality, recurrent relations between BF, integral 
representations). This saves time and resources in its 
calculation.  

- Opportunity to compare the exact and other 
existing approximate solutions allows evaluating the 
details based on which it is determined as well as 
when to use which one, especially in the calculation 
of kinetic and other important indicators of the 
effectiveness of a transfer process. 

NOMENCLATURE 

A, B   constants, in the algebraic expressions,  
Eqn. (18); 

a    thermal diffusivity, (m2/s); 
B0, Bn  Fourier series coefficients; 
CA    concentration of ammonia nitrogen, (g/m3); 
Cb     concentration on the outside biofilm surface, 

(g/m3); 
Cm   concentration on the outside membrane 

surface, (g/m3); 
C0     scale of pollutant concentration, (g/m3); 
c, c0,   recent and initial relative concentrations of 

the phosphorus tracer, (−); 
D    diffusion coefficient, (cm2/s); 
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DA    diffusion coefficient inside the biofilm, 
(m2/day); 

Da, Dr  coefficients of axial and lateral solids 
dispersion, respectively, (m2/s); 

De     average effective diffusivity of benzene 
inside the solid cylindrical polymer 
particles, (cm2/s); 

f    function; liquid density of irrigation in 
Table 1, (m2/m3·s); 

Ha(x+iy) BF of 3-th kind, complex argument;  
H(t)   Hevyside function; 
hsl    shell exchanger heat-transfer coefficient, 

(W/m2·K); 
i    imaginary unit; 
αI     modified BF of 1-st kind, order α = 0,1,2 .. ; 

αJ     cylindrical BF of 1-st kind, order  
α = 0,1,2 ...; 

( )xjn   spherical BF of 1-st kind; 

αK    modified BF of 2-nd kind, order α = 0,1,2 ..; 

fink     fin thermal conductivity, (W/m·K); 
nk ,    summation indexes; 

k ′     hopping rate, nm/s; 
lk     constant rate of reaction of the 1st order for 

nitrification, (l/day); 
L    column length, (m); 

fM  -  gas maldistribution factor,(−); 

tM    water uptake, in Eqn. (14), (mg); 

tM̂    mass of phenol absorbed from the medium 
by a single bead at time t, in Eqn. (15), 
(mg); 

∞M    mass of water uptake as time approaches 
infinity, in Eqn. (14), (mg); 

∞M̂    the total mass of phenol absorbed by a bead, 
in Eqn. (15), (mg); 

p    probability of water molecule to “hop” by 
one molecular diameter toward the salt-
solution;  

q = 1–p probability of water molecule to “hop” by 
one molecular diameter toward the pure-
water compartments; 

nq     roots of Eqn. (16); 
R     radius, (m); 

0R     cylinder radius, (m); 
r     radial coordinate, (m); 

crr ,0   geometrical parameters of finned elliptical-
tube, (m); 

fr     equivalent radius, (m); 

r     the average radius of a bead, (m); 
S     cylinder surface area, (m2); 
s    fin thickness, (m); 

t    time, (s); 
Us    superficial solids velocity, (m/s); 
U     temperature, (°C); 
u     dimensionless velocity in Eqn. (12);  

yx ,    spatial coordinates, (m); 
( )xYα   BF of 2-nd kind; 
( )xyn   spherical BF of 2-nd kind; 

naα    roots of ( ) 0α0 =naJ ; 

nα     modified Womersley number, after [64]; 

nβ     the n-th positive zero of J1; 
δ     Dirac’s function; 

R
L

=η  dimensionless parameter, (−); 

( )θη    efficiency, (−); 
θ     polar coordinate, (m); 
ϕ     angular coordinate, (grad); 
λ     separation constant; 

kλ     eigenvalues in Eqn. (5); 
φ    dimensionless parameter in Eqn. (7); 
ω    frequency of the cardiac cycle, (s). 

ABBREVIATIONS  

BF      Bessel’s functions; 
MSV   Method of separation of variables; 
ODE    ordinary differential equation; 
PDE    partial differential equation; 
SAS    surface active substances (surfactants). 
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ПРИЛОЖЕНИЕ НА БЕСЕЛЕВИТЕ ФУНКЦИИ В МОДЕЛИРАНЕТО  
НА ИНЖЕНЕРНО-ХИМИЧНИ ПРОЦЕСИ 

Т. Ст. Петрова 
Институт по инженерна химия, Българска академия на науките, ул. „Акад. Г. Бончев“, бл. 103, 1113 София 

Постъпила на 18 март 2009 г. 

(Резюме) 

Показано е, че при определени условия диференциалните уравнения, описващи съответния преносен процес, 
допускат решение, изразяващо се чрез Беселевите функции (БФ). За целта е направено проучване върху широк 
кръг работи, обхващащ моделирането на преносни процеси както в химичното инженерство, така и в сродни и 
близки до него области. Разгледани са различни типове случаи от хидродинамиката, топлопроводността и 
дифузията, биопроцесите и др. В заключение са обособени основанията за използването на БФ при 
моделирането на преносни процеси в инженерната химия. 


