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Electrochemical impedance spectroscopy using exponentially-rising voltage steps.
() Analysis of a model electrical circuit
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Electrochemical impedance spectroscopy (EIS) is commonly used by electrochemists to analyze multi-step reaction
paths occurring at electrode/electrolyte interfaces. Since the kinetics of individual reaction steps is usually a function of
electrode potential, the impedance of the interface is measured for different but constant potential values. In most cases,
impedance diagrams are obtained from harmonic analysis: a surimposed low amplitude (typically 5-10 mV) ac potential
modulations or alternatively, a low amplitude (typically a few mA) ac galvanostatic modulation, is used as perturbation.
However, according to the theory of linear and time invariant systems, harmonic analysis should be restricted to the
analysis of linear and reversible processes. To a certain extend, the problem of linearity can be circumvented by
reducing the amplitude of the modulation. But that does not help to solve the problem of irreversibility. For example, a
significantly large hysteresis is observed during the electro-insertion of hydrogen into palladium or palladium alloy
electrodes. This is a clear indication that non-linear phenomena are taking place and therefore, the use of harmonic
analysis should be prohibited because the system does not fulfill the requirements of linearity and time invariance
imposed by the theory of systems. There is therefore a need to use non-alternating perturbations. The purpose of this
paper is to report on the measurement of impedance spectra from exponentially-rising voltage-step excitations. This is a
methodology-oriented communication. In the first part of the paper, an electrical circuit containing only electrical
resistances and capacitances is used as a model system to explain how impedance diagrams can be obtained from such
non-harmonic perturbations. In the second part of the paper, the methodology is extended to the electro-insertion of
hydrogen in palladium foils.
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INTRODUCTION

In chemical science, the term “kinetics” is
usually making reference to the rate (expressed in
mol.s™ or in mol.s™.cm™ when the active surface is
known) at which a given process is occurring. But
raw kinetic data, when properly analyzed, carry
detailed information on chemical or

analysis (using sine-wave perturbations) is certainly
the most popular way of measuring electrochemical
impedances [1] but miscellaneous signals (such as
white noise [2], square-waves [3] or multiple sine
waves [4]) have also been used as input potential or
current perturbations. Other techniques such as
current interrupt [5] and alternating current (ac)

electrochemical multistep reaction mechanisms.
From a practical viewpoint time domain analysis
and modeling of raw data is not always trivial
because kinetic features of individual steps are
usually convoluted. Alternatively, frequency-
domain (Fourier) analysis offers the possibility of
measuring transfer functions which unambiguously
characterize reaction mechanisms and gives access
to the rate parameter associated with each reaction
step. Electrochemical transfer functions measured
at electrode/electrolyte interfaces relate potential
perturbations to associated current responses. Such
(complex) transfer functions are thus electrical
impedances (or conversely, admittances). Harmonic
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voltammetry, which was invented in the 1950s [6-
9], can also be used for quantitative evaluation of
the  mechanisms of electrode  processes.
Conventionally, with the ac technique, a small
amplitude sinusoidal potential with a frequency of
10 Hz-100 kHz is superimposed onto the triangular
waveform used in dc cyclic voltammetry, and either
the total ac response or the dc, fundamental, and
higher harmonic are then measured as a function of
dc potential and frequency. Garland et al. used the
technique to study the UPD adsorption of Bi** at
gold electrodes [10]. The technique has also been
extended to the combination of cyclic voltametry
and surimposed square waves, triangles, sawtooth
waveforms or non-harmonically related sine
components [11]. However, according to the theory
of linear and time invariant systems, the use of
wave (alternating) perturbations is restricted to the
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characterization of linear systems and reversible
transformations. To a certain extend, the problem of
linearity can be circumvented by reducing the
amplitude of the surimposed modulation. But that
does not help to solve the problem of irreversibility.
For example, a significantly large hysteresis is
observed during the electro-insertion of hydrogen
in palladium or palladium alloys. This is a clear
indication that non-linear phenomena are taking
place and therefore, the use of harmonic analysis
should be prohibited because the system does not
fulfill the requirements of linearity and time
invariance imposed by the theory of systems. To
investigate the dynamic features of such systems,
there is therefore a need to use non-alternating
perturbations. Potential steps are appropriate
signals for the measurement of impedances at
electrode/electrolyte interfaces where irreversible
processes are taking place because their first time-
derivative is strictly positive (rising up step) or
negative (rising down step). Application of
potential steps to such systems offers the possibility
to study separately back and forth transformations.
The concept has already been proposed to analyze
the electrochemical hydriding reactions of
palladium in two-phase domains [12] but few
details were given concerning the methodology
used for the measurements. A similar concept based
on the application of “pressure steps” has also been
used to analyze gas-phase reactions [13]. The
purpose of this paper is to describe the
measurement of impedance diagrams from potential
steps. This is a  methodology-oriented
communication and we focus primarily on the
constraints and criteria of measurements in the
context of new data acquisition electronics that
became available during the last few years. In the
first part of the paper, an electrical circuit
containing only electrical resistances and
capacitances is used as a model system. This is a
simple case because experiments are very brief (a
few milliseconds long). As a result, sampling
conditions and data treatment procedures are easy
to manage and impedance diagrams easy to obtain.
In the second part of the paper, the methodology is
extended to the study of a more complicated case,
the electro-insertion of hydrogen in palladium foils.

EXPERIMENTAL
Experimental setup

A computer-controlled Radiometer Analytical
PGZ 402 potentiostat-galvanostat has been used to
apply voltage excitations. In addition, an Agilent
DSO 6032 A (2 channels, 300 MHz) oscilloscope

has been used to sample the potential and current
transients. Short (10 cm long) electric cables were
used to minimize parasite impedance losses.

Electrical circuit

The model electrical circuit used for the
experiments is pictured in Fig 1. Two parallel RC
circuits (Ry, C; and R,, C,) are connected in series.
The time constants of each sub-circuit (t; = R;.C; =
2.35x10° s and 1, = R,.C, = 107 s) differ by a
factor of t,/(t; = 425, and each sub-circuit has quite
different dynamic features. A third resistance Ry is
connected in series.
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Fig. 1. Model electrical circuit. Ry = 12100 Q; R; =
4990 Q; C, = 4.7x10° F;R, = 10000 Q; C, = 1x10° F.
E(t) = voltage excitation. Iy, Iy, 15, I3 and I. current
responses.
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Fig. 2. Impedance diagram of the electrical circuit of

Fig 1.(0) experimental (sine wave perturbation); (—)
calculated from Eq. (1).

The analytical impedance of the electrical circuit
of Fig. 1 is given by equation (1) where ® = 2xf is
the pulsation in rad.s™ and f is the frequency in Hz:

1 1
+

- @

The experimental impedance diagram measured
with the Radiometer potentiostat using sine wave
potential perturbations is plotted in Nyquist
coordinates in Fig. 2. The measure was made at a
constant voltage of 0 V with a 5 mV sur-imposed
ac perturbation. The model impedance diagram
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obtained from Eq. (1) is also plotted for
comparison. There is a good overall agreement over
the entire frequency range, indicating that the
values of Ry, Ry, Ry, C; and C; given in the caption
of figure 1 are known with a sufficiently good
accuracy and that the signal-to-noise ratio is
appropriately high. The time constant of the two
RC circuits are significantly different and the
impedance of each sub-circuit (a semi circle along
the real axis) are well separated in frequency. The
impedance of the first sub-circuit (R, C;) with the
lowest time constant appears in the high frequency
range and the impedance of the second sub-circuit
(R2, C,) appears in the low frequency range. The
characteristic pulsations o, (in rad.s™) at the top of
each semi-circle is related to each time constant:

¢ = 2nf; = 1/t where f is the corresponding
characteristic frequency (in Hz or s™). Practical
conditions required for obtaining impedance
diagrams from potential step excitations are
discussed in the following sections.

THEORY

Linear and time invariant systems (LTIS)

In the followings, the implicit variable is time (t)
throughout.  System  theory analyzes the
relationships between any given input i(t) and the
corresponding output o(t). A system is said to be
linear and time invariant when the following
conditions are satisfied:

(i) causality:

i(t) o(t)=0 Vt<O )

(i) linearity:

a, i1 (t)+ a, iz (t) - ﬂl 0, (t)+ 182 0, (t) 3)
where o, o, 1 and f3, are scalars.

(i) time invariance:

i(t-7) > o(t—17) (4)
where 7 is the time shift.

Let h(t) be the output obtained when the unit
impulse (Dirac) function [I(t) is applied as input.
h(t) is called the impulse response :

5(t) = h(t)

(%)

The theory of LTIS demonstrates that for
systems satisfying conditions (2), (3) and (4), the
output o(t) is related to the convolution product of
the input i(t) by h(t) :

o(t)= [ "i(e)h(t-r)dr =i(t)*h(t)(6)

Complex exponentials remain  frequency
unaltered when passing through LTIS. Only
amplitude modulations and phase shifts occur. i(t)
and o(t) can thus be adequately expressed on the
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basis of complex exponentials. This operation is
called Fourier transformation:

G(f)=FTlg@®]=["g(t)e i dt (7)

where f is the frequency in Hz, = 2xnf is the
pulsation in rad.s®, and FT[g(t)] is the Fourier
transform of g(t).

An interesting property of the Fourier
transformation is that the convolution product (6) in
the time (direct) domain is simply an algebraic
product in the Fourier (frequency) domain:

FTli(t)*h(t)] = FT[i(t)]e FT [h(t)] = FTo(t)] (®)

The FT of the impulse response h(t) is called the

transfer function of the system:

FTh(@)]=H(f)=] h(t)e " dt()

Thus, for a LTIS, the general relationship
between input i(t) and output o(t) is a convolution
product in the time-domain and an algebraic
product in the Fourier domain. According to Eq.
(8), the transfer function H(f) can be obtained in
principle by taking the ratio of the FTs of any pair
{i(t); o(t)}, ie : H(f) = FT{o()}/FT{i(t)}. This is
possible as long as the denominator is non-zero at
the frequencies of interest. It turns out that this is
the case for electrical and electrochemical systems
for which the input i(t) is the electric potential E(t)
and the response o(t) is the current I(t). The
associated transfer function is a complex
impedance Z(w):

Z (o) = (o) (10)

E(w) is the Fourier Transform (FT) of the

voltage excitation E(t) in Volt and I('!) is the FT of
the current response in Amp.

Voltage excitations
Electrical potential steps E(t) generated by
commercial potentiostats are not true Heaviside
steps. In order to avoid dumping effects, E(t) has
usually a finite rising-time and is, instead of a true
step, an exponential function rising to a maximum
value (Fig. 3), the analytical expression of which is:

E(t) =a. [1—exp (- b.t)] (1)

where a is the amplitude in V and b = 1/t ins™ (t is
a time constant in s). This is why in this paper, such
signals are called “exponentially-rising voltage-step
excitations”. Results were obtained using a PGZ402
potentiostat from Radiometer, with a mean time
constant t = 1/b = 6.424x10" s (when no filter is
used). Experimental voltage excitations generated
by the potentiostat were found to be reproducible
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within £ 0.05 % from one experiment to the other.
The frequency content of such voltage excitations
can be determined by taking the Fourier transform
(FT) of Eg. (11). A convenient way to do that is to
calculate the Laplace transform (LT) and then
explicit the transformation variable s = jo:

+ 1 1 ab
LTE[)=a| {L-e™)"dt=a =———|=
et=af) e vag -t
(12)
. ab+j0
FTiE(t);=LTiE(t) p= joj=———
EQ)-LTEQ - jol- 2
Eq. (13) is the general solution except for ® = 0
for which (0 (t) is the Dirac function):

(13)

FT{E(t)@=0!= 5(t)% (14)
In conventional harmonic analysis, sine
wave functions of similar amplitudes are used to
measure the impedance of the system over the
entire frequency range of interest on a frequency-
to-frequency basis. As can be seen from Egs. (13)
and (14), the energy content of an exponentially-
rising voltage-step excitations is inversely
proportional to the frequency. This is a limitation of
the technique because the energy of the signal
decreases as the frequency increases. Therefore, the
amplitude of the excitation must be sufficiently
large and the apparatus used to measure the current
response must be sufficiently sensitive to accurately
sample the signals.

RESULTS AND DISCUSSION

Experimentally, the problem to solve consists in
the measurement of the impedance of a given
system of interest by using such smooth voltage
excitations as perturbation. In the first part of this
paper, the system under consideration is the
electrical circuit of Figure 1. This is a low noise
system and equilibrium is reached within a few tens
of milliseconds. In the second part of the paper, the
system will be a noisier electrode/electrolyte
interface for which equilibrium is reached within
only a few seconds. The same methodology is used
to characterize both systems. In a typical
experiment, two transient signals are sampled : the
rising voltage excitation E(t) and the associated
current response I(t). To determine the unknown
impedance of the electrical circuit there are two
options: (i) frequency-domain analysis : the Fourier
transform of both E(t) and I(t) are calculated and
the ratio of the two FTs is taken as shown in Eg.
(10), yielding the impedance Z(w) of the circuit;
this is the most straightforward method; (ii) time-

domain analysis: a model circuit impedance Z() is
postulated; then, I(w), the FT of the current
response to the voltage excitation is calculated from
Eqg. (10): I(®) = E(w) / Z(w); then, model I(t) is
calculated from I(w) by inverse Fourier
transformation and wused to fit transient
experimental current I(t); parameters of the model
impedance Z(w) are iteratively adjusted to
minimize the difference between model and
experimental I(t) in order to determine the exact
characteristic of circuit components. This second
approach is more difficult to implement than the
first one but can sometimes be more efficient and
even more accurate. It can also be automated. The
two approaches are detailed in the followings. The
circuit of Fig. 1 of known impedance is used as a
model system to describe the methodology and to
evaluate the role of data sampling and data filtering
on the quality of the resulting impedance.

Frequency-domain analysis

Solution to the convolution equation in the
frequency domain. The impedance diagram of the
circuit of Fig. 1 can be obtained directly from
frequency-domain analysis of experimental data
using Eq. (15):

E(o)

Io(a’)
where E is the voltage excitation in Volt, I, is the
current response of the cell in A, and o is the
pulsation in rad.s’. E(w) denotes the Fourier
transform of the voltage excitation E(t), and lo(w)
denotes the Fourier transform of the current
response I(t).

Sampling conditions and data treatment. In
order to calculate the impedance diagram, there is a
need to sample both transient signals : voltage
excitation and current response. The Fourier
transform of the discrete transients can then be
calculated and the ratio vyields the desired
impedance diagram. The sampling rate must respect
the Nyquist criterion which states that the signal
must be sampled more than twice as fast as the
highest waveform frequency (f.). If not, it turns out
that all of the power spectral density (PSD) which
lies outside of the frequency range -f, < f < f; is
spuriously moved into that range and the spectrum
is corrupted. This phenomenon is called aliasing
[14]. According to Fig. 2, the impedance of the
circuit reaches the real axis at a frequency value of
=~ 500,000 Hz. Therefore, a sampling rate of one
sample every 1 us (or less) is required. The
sampling rate must be maintained until the end of
the experiment (20 millisec in the present case). As

341

Z(w) = (15)



P. Millet: Electrochemical tmpedance spectroscopy using exponentially-rising voltage steps. (1). Analytical model...

012

measure

—— fit

E /volt

-0.4 0.2 070 OI2 0‘4 06
time / millisec

Fig. 3. (0) experimental voltage excitation and (+)
best fit using Eq. (11).
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Fig. 4. Experimental voltage excitation (bottom) and
current response (top) of the electrical circuit of Fig. 1.

a result, 20,000 datapoints will be collected for
each signal, corresponding to a file of only ca. 4
Mbytes of floats. The signals displayed on the
screen of the oscilloscope at the onset of the step
during a typical experiment are shown in Fig. 4
(time scale 0-500 psec).

Raw data cannot always be used directly.
Electronic or numerical filtering using low-pass
filters is required prior to Fourier transformation in
order to get rid of the polluted high frequency
content of raw data [14]. Different filters (available
on most potentiostats) can be used for that purpose
although they also change the time constant of the
step functions. In order to improve the signal-to-
noise ratio, a first approach is to use the analytical
expression of E(w) (taken from Eqg. (13)) in Eq.
(15) instead of sampling the true experimental
voltage step. This is justified by the fact that
exponentially-rising voltage steps delivered by
potentiostat are highly reproducible. Thus, the
sampled current response is the only source of
noise for the impedance diagram. It should also be
noted that, according to Eq. (13), the PSD =
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Fig. 5. Impedance diagrams of the circuit of Fig. 1; (0)
calculated from Eg. (1); (+) experimental from
exponentially-rising voltage-step excitations: (a) At = 50
us; (b) At =20 ps; (c) At =10 us; (d) At =5 ps.

JRe? {E(w)}+1m? {E(w)} of the exponentially-
rising voltage steps decreases exponentially with
frequency.  Therefore, a highly  sensitive
amperemeter and low-pass filtering should be used
to obtain well-defined impedance diagrams in the
potentially noisiest high-frequency region where
widely scattered data-points are obtained otherwise
[5].

Comparison of model and experimental
impedance values.Impedance diagrams obtained
from exponentially-rising voltage-step excitations
are plotted in Fig. 5. The theoretical impedance
diagram obtained from Eq. (1) is also plotted for
comparison. There is a good agreement between
both techniques, both in terms of impedance values
and frequency content. However, the sampling rate
of current responses plays a critical role. A
sampling rate of at least one data-point every 5 us
is required to obtain a satisfactory fit (curve d). At5
us, a data file of 400 kbytes is obtained and the
impedance is calculated within only a few seconds.
Therefore, this is achievable using conventional
personal computers. If lower sampling rates are
used (curves a, b, c), then significant distortions
appear in the high frequency range.

Time-domain analysis

Solution to the convolution equation in the time
domain. Circuit impedance parameters can also be
determined from a time-domain analysis of
experimental data. In a typical experiment, the
electrical circuit of Fig. 1 is excited by a voltage
transient E(t) of any shape. Egro(t) (the voltage of
the resistance Rp), Eri(t) (the voltage of the
resistance R;), Ec4(t) (the voltage of the capacitance
C1), Ero(t) (the voltage of the resistance R;), and
Eco(t) (the voltage of the capacitance C,) are the
five unknown transient voltages. lo(t) (the main
transient current across the circuit), 14(t) (the current
across capacitance Cj), Is(t) (the current across
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resistance R;), I,(t) (the current across capacitance
C,) and I4(t) (the current across resistance R,) are
the five unknown transient currents. By applying
Kirchhoff’s laws (conservation of charge and) to
the circuit of Fig. 1, the following set of five
equations is obtained:

Cilj; L (t)dt=R, [1,(t)-1,@)] )
Cizj; L) dt=R, [1,t)-1,0)] @)

1 ¢t 1 ¢t
ajo |1(t)dt+c—zj0 1, (t)dt (8)

Io(t): |1(t)+ |3(t) (19)
lo(t)=1,(t)+1,(t) (20)

The system can be solved by use of Laplace
transformation. Solutions for the five voltage transients

E(t)=R, I,(t)+

" ERO( )=Rylo(s) ()
Eny(s)=Ry[l,(s)-1,(s)]  (22)
Ec,(s)= ';él) (23)

Ero (S): Rz[lo(s)_ |2(S)] (24)
Ec, (S):? (25)

Solutions for the five current transients are:

_ AR LR (26)
l,(s)=E(s) R0+SC1 R1+i +5C2 T
sC, 2 sC,
|1(5): Io(S) R1_1 (27)
R +—
sC,
R
Iz(s)lo(s{zl (29
R, +———
sC,

15(s)=15(5) -1, (s) (29)
IA(S)ZIO(S)_Iz(S) (30)

Time domain solutions to Eqgs. (20-29) can be
obtained analytically (this is not always possible,
especially as the complexity of the circuit
increases) by choosing the shape of the perturbation
E(t). Alternatively, solutions can also be
conveniently obtained numerically by computing

the inverse discrete Fourier transform (IDFT) of
Eq. (20-29) for s = jo. The IDFT h(t) of a signal
with a frequency content H(f) is given by:

h(t)= [ "H(f)e* " df (31)
The discrete expression of Eq. (31) is :
ZH Jcos(2z £ t)—jsin(2z f )] af (32)

Transient voltage values. Numerical voltage
responses of circuit components (Fig. 1) to E(t) =
exponentially-rising voltage-step excitation are
plotted in Fig. 6. Data have been obtained
numerically by solving Egs. (21-25) using the
circuit impedance of Eq. (1).

The time axis is in logarithmic scale to facilitate
the differentiation of the different voltages. The
rising voltage excitation E(t) has an amplitude of
0.1 V and reaches its plateau value in less than 0.5
milliseconds. Stationary signals are obtained after
ca. 2x107 seconds. At that time, capacitances C,
and C, are charged and their impedance is infinite.
A stationary current flows across the series-

connected  resistances: Z R,.=R,+R +R, =
i

16200 Q. Therefore, the stationary current for t >

10%sis | _ ZA =0.1/16200 = 6.17 pA.
R.

Individual stationary voltages are:

E@M)=lim a(le_szazloo mvV

Eqo =Ry 1,=7.5mV; E,, =E., =R 1;=30.8 mV;
Er, =E, =R, I,=617mV.

According to Kirchhoff’s law: E(t) = Ege(t) +
Eri(t) + Era(t).

Therefore, experimental transient voltages of
individual circuit components can be fitted with
model values. The difference between experimental
and model values can be minimized by iteration
and the impedance of each circuit component can
be adjusted until a complete agreement is obtained
between both sets of data.

Transient current values. Numerical current
responses of the electrical circuit of Fig. 1 to a
exponentially-rising voltage-step excitation E(t) are
plotted in Fig. 7. Data have been obtained by
solving Egs. (26-30). Again, the time axis is in
logarithmic scale to facilitate the differentiation of
the different signals.

For t > 1072 s, the stationary currents are:

l,(t—>0)=1,(t—0)=1,({t—>x) = 6.17 yA
and 1, (t—o0)=1,(t—o0)=0.
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Fig. 6. Transient voltages responses of the electrical
circuit of figure 1 when E(t) = a [1 — exp (-t/1)]. a= 100
mV. 1 = 1/b = 6.424x10° s,
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Fig. 8. Experimental (o) and model (—) current
responses ly(t) of the circuit of Fig. 1 when a smooth
voltage excitation is applied

Model current responses can be used to fit
experimental current values, as discussed in the
next section.

Comparison of experimental and model values.
The experimental current response lg(t) has been
fitted as follows. First, I(w) has been calculated
from Eq. (10): l(®) = Z(») / E(®). Z(w) was taken
from Eqg. (1) and E(w) was taken from Eq. (13).
Second, I(t) was calculated from I(®) by discrete
inverse Fourier transformation. Results obtained for
the first millisecond of the experiment are plotted in
Fig. 8. There is a good agreement between
experimental and calculated transients. Therefore,
time-domain analysis of the current response of the
interface to a smooth voltage excitation can also be
used to determine the impedance of an unknown
circuit.

CONCLUSIONS

The work reported here describes a
methodology used to determine the impedance of
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Fig. 7. Transient current responses of the electrical
circuit of figure 1 when E(t) = a [1 — exp (-t/t)]. a= 100
mV. t = 1/b = 6.424x10°s.

0.0

electrical ~ circuits from  exponentially-rising
voltage-step excitations. When such experiment is
carried out, two transient signals are synchronously
sampled: the potential excitation E(t) and the
current response I(t). To determine the unknown
impedance of the electrical circuit there are two
options: (i) frequency-domain analysis : the Fourier
transform of both E(t) and I(t) are calculated and
the ratio of the two FTs is taken using Eq. o (10),
yielding the impedance Z(w) of the circuit; this is
the most straightforward method; (ii) time-domain
analysis: a model circuit impedance Z(w) is
postulated; then, the FT I(w) of the current response
to a exponentially-rising voltage-step excitation is

calculated from Eq. (10) : (o) = E(®) / Z(®); then,
model I(t) is calculated from I(®w) by inverse
Fourier transformation and used to fit transient
experimental current I(t); parameters of the model
impedance Z(w) are iteratively adjusted to
minimize the difference between model and
experimental I(t) in order to determine the exact
characteristic of circuit components. There are two
critical problems. First, an appropriate sampling
rate must be used. Second, data filtering is required.
When these problems are appropriately handled,
then correct impedance diagrams are obtained.
Therefore, it can be concluded that exponentially-
rising voltage-step excitations can be used to
measure impedance diagrams of electrical circuits.
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EJIEKTPOXUMHUYHA UMIIEJAHCHA CIIEKTPOCKOIIMA C EKCITOHEHITMAJIHO
HAPACTBAIIIU CTBIIKM HA HAIIPEXKEHUETO
() AHAJIN3 HA MOJEJIHA EJIEKTPUYECKA CXEMA

1. Muiie

Hucmumym no monexynsapua xumus u mamepuanu 6 Opce, UMR CNRS n° 8182, Yuueepcumem Ilapuoic IOe, yn. XKopoic
Knemanco 11, 15, 91405 Opce cedexc, Ppanyus

[ocrermna Ha 20 despyapu, 2012 r.; mpuera Ha 20 dpeBpyapu, 2012 r.

(Pesrome)

EnextpoxumuuyHara ummnenaHcHa crnekrpockonus (IES) oOMKHOBEHO ce M3MO0JI3Ba OT EJNEKTPOXUMHLUTE 3a
aHAJM3MpaHEe HAa MHOTOCTCIICHHM pEaKI|H, NPOTHYAN(M Ha (a3soBaTa TpaHUIA CIIEKTPOMI/CIeKTPOauT. [loHeke
KHHETHKAaTa Ha OTACITHHUTE CTHIIKA Ha PEaKIUATa OOMKHOBEHO € (DYHKIHUS Ha CNEKTPOIHUS TOTCHINAN, UMIICJAHCHT Ha
(da3oBara rpaHHWIa ce W3MEpBa NpPU PA3IUYHH, HO IMOCTOSHHM CTOWHOCTH Ha TOTCHIOHANA. B moBedeTo ciywan
MMICIAHCHATE JAHWarpaMH ce I[oNydaBaT uYpe3 XapMOHHYCH aHalW3: 3a BB30YKIaHE ce U3MOJ3Ba HAllOKEHA
MPOMCHIMBOTOKOBA MOJYJAllMs HA IMOTEHIMAjda C HHCKa aMIuMTyda (tunmyHo 5-10 MB) wim rajaBaHOoCTaTHYHA
MIPOMEHJIMBOTOKOBA MOJYyJAIMs C HHCKAa aMIUINTyAa (TUMWYHO HAKONKO MA). Cropen TeopusTa Ha JHHEHHHUTE U
HEMIPOMEHJIMBY BHB BPEMETO CHUCTeMH o0ade, XapMOHWYHHUAT aHAU3 CiiefBa Ja Oblle OrpaHWYeH JO aHalu3a Ha
JUHEHHN W oOpatumu mporecu. [IpobaeMbT ¢ IWHEHHOCTTA MOXKe Ja OBbJe MPEOJOJISTH 10 W3BECTHA CTENEH 4Ypes
HaMaJsIBaHE aMIUIMTyJaTa Ha Mojaynanusata. Ho ToBa He momara Jia ce paspemu mnpobiiemMa ¢ HeoOpaTHMOCTTA.
Hanpumep, npu enekTpo-uHTEepKAJIAMITa Ha BOJAOPO/ B SIICKTPOAX OT Hallaui ITH MAJIaieBH CIUIABH, ce HaOJIr01aBa
3HAYUTeNIeH XucTtepe3uc. ToBa € SICHO yKa3zaHUe, Y€ NPOTHYAT HEJIMHEHHM MpOLECH U CJIEeI0BATENHO XapMOHHYHUST
aHaJIM3 He MOXKE J]a C€ M3IO0JI3BA, 3alI0TO CUCTEMAaTa He M3IIBJIHABA W3UCKBAHUSATA 32 JIMHEHHOCT U HEM3MEHHOCT BbHB
BpPEMETO, HAJIOKCHH OT CHCTEMHATa TEOpHUs. 3HA4YM TPsOBa Jla ce W3IOJI3Ba HEMPOMCHIMBO BB30OyxmaHne. llenra Ha
HacTosmara padboTa € Ja ce AOKJIaJBa 32 U3MEPBAHETO HA UMIIEIAHCHU CTIEKTPU NPH BB30YKJaHE C €KCITIOHEHITMATHO
HapacTBallX CTBIIKH IO HAIPEKCHHUEC. ToBa CT)O6H1€HI/IC € OPUCHTUPAHO KBM MECTOJO0JIOTHUATA. B mppBaTa 4acT Ha
paboraTa, eleKTpHuYecKka CXeMa ChAbpIKAIlla CaMO EJIEKTPUYECKO CBHIPOTHUBJICHHE W KalallUTeT C€ HW3IMOJ3Ba KaTo
MOJIeNTHa CHCTeMa, 3a Ja ce OOsJCHU KaK OT TaKoBa HEXapMOHHYHO BH30YXKJTaHE MOXKE Ja ce IMOJNydd HUMIIEAaHCHA
nuarpaMa. BeB BTopara yacT Ha paboTaTta, METOAOJIOTHATA CE pa3UIUpsIBa 10 CICKTPO-MHTEPKAIAIMATA HA BOJOPO B
MaJIaJueBo Qojro.
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