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Electrochemical impedance spectroscopy (EIS) is commonly used by electrochemists to analyze multi-step reaction 

paths occurring at electrode/electrolyte interfaces. Since the kinetics of individual reaction steps is usually a function of 

electrode potential, the impedance of the interface is measured for different but constant potential values. In most cases, 

impedance diagrams are obtained from harmonic analysis: a surimposed low amplitude (typically 5-10 mV) ac potential 

modulations or alternatively, a low amplitude (typically a few mA) ac galvanostatic modulation, is used as perturbation. 

However, according to the theory of linear and time invariant systems, harmonic analysis should be restricted to the 

analysis of linear and reversible processes. To a certain extend, the problem of linearity can be circumvented by 

reducing the amplitude of the modulation. But that does not help to solve the problem of irreversibility. For example, a 

significantly large hysteresis is observed during the electro-insertion of hydrogen into palladium or palladium alloy 

electrodes. This is a clear indication that non-linear phenomena are taking place and therefore, the use of harmonic 

analysis should be prohibited because the system does not fulfill the requirements of linearity and time invariance 

imposed by the theory of systems. There is therefore a need to use non-alternating perturbations. The purpose of this 

paper is to report on the measurement of impedance spectra from exponentially-rising voltage-step excitations. This is a 

methodology-oriented communication. In the first part of the paper, an electrical circuit containing only electrical 

resistances and capacitances is used as a model system to explain how impedance diagrams can be obtained from such 

non-harmonic perturbations. In the second part of the paper, the methodology is extended to the electro-insertion of 

hydrogen in palladium foils. 
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INTRODUCTION 

In chemical science, the term “kinetics” is 

usually making reference to the rate (expressed in 

mol.s
-1

 or in mol.s
-1

.cm
-2

 when the active surface is 

known) at which a given process is occurring. But 

raw kinetic data, when properly analyzed, carry 

detailed information on chemical or 

electrochemical multistep reaction mechanisms. 

From a practical viewpoint time domain analysis 

and modeling of raw data is not always trivial 

because kinetic features of individual steps are 

usually convoluted. Alternatively, frequency-

domain (Fourier) analysis offers the possibility of 

measuring transfer functions which unambiguously 

characterize reaction mechanisms and gives access 

to the rate parameter associated with each reaction 

step. Electrochemical transfer functions measured 

at electrode/electrolyte interfaces relate potential 

perturbations to associated current responses. Such 

(complex) transfer functions are thus electrical 

impedances (or conversely, admittances). Harmonic 

analysis (using sine-wave perturbations) is certainly 

the most popular way of measuring electrochemical 

impedances [1] but miscellaneous signals (such as 

white noise [2], square-waves [3] or multiple sine 

waves [4]) have also been used as input potential or 

current perturbations. Other techniques such as 

current interrupt [5] and alternating current (ac) 

voltammetry, which was invented in the 1950s [6-

9], can also be used for quantitative evaluation of 

the mechanisms of electrode processes. 

Conventionally, with the ac technique, a small 

amplitude sinusoidal potential with a frequency of 

10 Hz-100 kHz is superimposed onto the triangular 

waveform used in dc cyclic voltammetry, and either 

the total ac response or the dc, fundamental, and 

higher harmonic are then measured as a function of 

dc potential and frequency. Garland et al. used the 

technique to study the UPD adsorption of Bi
3+

 at 

gold electrodes [10]. The technique has also been 

extended to the combination of cyclic voltametry 

and surimposed square waves, triangles, sawtooth 

waveforms or non-harmonically related sine 

components [11]. However, according to the theory 

of linear and time invariant systems, the use of 

wave (alternating) perturbations is restricted to the 
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characterization of linear systems and reversible 

transformations. To a certain extend, the problem of 

linearity can be circumvented by reducing the 

amplitude of the surimposed modulation. But that 

does not help to solve the problem of irreversibility. 

For example, a significantly large hysteresis is 

observed during the electro-insertion of hydrogen 

in palladium or palladium alloys. This is a clear 

indication that non-linear phenomena are taking 

place and therefore, the use of harmonic analysis 

should be prohibited because the system does not 

fulfill the requirements of linearity and time 

invariance imposed by the theory of systems. To 

investigate the dynamic features of such systems, 

there is therefore a need to use non-alternating 

perturbations. Potential steps are appropriate 

signals for the measurement of impedances at 

electrode/electrolyte interfaces where irreversible 

processes are taking place because their first time-

derivative is strictly positive (rising up step) or 

negative (rising down step). Application of 

potential steps to such systems offers the possibility 

to study separately back and forth transformations. 

The concept has already been proposed to analyze 

the electrochemical hydriding reactions of 

palladium in two-phase domains [12] but few 

details were given concerning the methodology 

used for the measurements. A similar concept based 

on the application of “pressure steps” has also been 

used to analyze gas-phase reactions [13]. The 

purpose of this paper is to describe the 

measurement of impedance diagrams from potential 

steps. This is a methodology-oriented 

communication and we focus primarily on the 

constraints and criteria of measurements in the 

context of new data acquisition electronics that 

became available during the last few years. In the 

first part of the paper, an electrical circuit 

containing only electrical resistances and 

capacitances is used as a model system. This is a 

simple case because experiments are very brief (a 

few milliseconds long). As a result, sampling 

conditions and data treatment procedures are easy 

to manage and impedance diagrams easy to obtain. 

In the second part of the paper, the methodology is 

extended to the study of a more complicated case, 

the electro-insertion of hydrogen in palladium foils. 

EXPERIMENTAL 

Experimental setup 

A computer-controlled Radiometer Analytical 

PGZ 402 potentiostat-galvanostat has been used to 

apply voltage excitations. In addition, an Agilent 

DSO 6032 A (2 channels, 300 MHz) oscilloscope 

has been used to sample the potential and current 

transients. Short (10 cm long) electric cables were 

used to minimize parasite impedance losses. 

Electrical circuit 

The model electrical circuit used for the 

experiments is pictured in Fig 1. Two parallel RC 

circuits (R1, C1 and R2, C2) are connected in series. 

The time constants of each sub-circuit (1 = R1.C1 = 

2.35x10
-5

 s and 2 = R2.C2 = 10
-2

 s) differ by a 

factor of 2/(1 = 425, and each sub-circuit has quite 

different dynamic features. A third resistance R0 is 

connected in series. 

 
Fig. 1. Model electrical circuit. R0 = 12100 ; R1 = 

4990 ; C1 = 4.7x10
-9

 F;R2 = 10000 ; C2 = 1x10
-6

 F. 

E(t) = voltage excitation. I0, I1, I2, I3 and I: current 

responses. 

 
Fig. 2. Impedance diagram of the electrical circuit of 

Fig 1.(o) experimental (sine wave perturbation); (―) 

calculated from Eq. (1). 

The analytical impedance of the electrical circuit 

of Fig. 1 is given by equation (1) where  = 2f is 

the pulsation in rad.s
-1

 and f is the frequency in Hz: 
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The experimental impedance diagram measured 

with the Radiometer potentiostat using sine wave 

potential perturbations is plotted in Nyquist 

coordinates in Fig. 2. The measure was made at a 

constant voltage of 0 V with a 5 mV sur-imposed 

ac perturbation. The model impedance diagram 
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obtained from Eq. (1) is also plotted for 

comparison. There is a good overall agreement over 

the entire frequency range, indicating that the 

values of R0, R1, R2, C1 and C2 given in the caption 

of figure 1 are known with a sufficiently good 

accuracy and that the signal-to-noise ratio is 

appropriately high. The time constant of the two 

RC circuits are significantly different and the 

impedance of each sub-circuit (a semi circle along 

the real axis) are well separated in frequency. The 

impedance of the first sub-circuit (R1, C1) with the 

lowest time constant appears in the high frequency 

range and the impedance of the second sub-circuit 

(R2, C2) appears in the low frequency range. The 

characteristic pulsations c (in rad.s
-1

) at the top of 

each semi-circle is related to each time constant:  

ci = 2fci = 1/i. where fci is the corresponding 

characteristic frequency (in Hz or s
-1

). Practical 

conditions required for obtaining impedance 

diagrams from potential step excitations are 

discussed in the following sections. 

THEORY 

Linear and time invariant systems (LTIS) 

In the followings, the implicit variable is time (t) 

throughout. System theory analyzes the 

relationships between any given input i(t) and the 

corresponding output o(t). A system is said to be 

linear and time invariant when the following 

conditions are satisfied: 

(i) causality: 

    00,  ttoti               (2) 

(ii) linearity: 

       tototiti
22112211

   (3) 

where 1, 2, 1 and 2 are scalars. 

(iii) time invariance: 

     toti  (4) 

where  is the time shift. 

Let h(t) be the output obtained when the unit 

h(t) is called the impulse response : 

   tht      

     (5) 

The theory of LTIS demonstrates that for 

systems satisfying conditions (2), (3) and (4), the 

output o(t) is related to the convolution product of 

the input i(t) by h(t) : 

         thtidthito * 





 
(6) 

Complex exponentials remain frequency 

unaltered when passing through LTIS. Only 

amplitude modulations and phase shifts occur. i(t) 

and o(t) can thus be adequately expressed on the 

basis of complex exponentials. This operation is 

called Fourier transformation: 

      




 dtetgtgFTfG tj   (7) 

where f is the frequency in Hz,  = 2f is the 

pulsation in rad.s
-1

, and FT[g(t)] is the Fourier 

transform of g(t). 

An interesting property of the Fourier 

transformation is that the convolution product (6) in 

the time (direct) domain is simply an algebraic 

product in the Fourier (frequency) domain: 

             toFTthFTtiFTthtiFT *  (8) 

The FT of the impulse response h(t) is called the 

transfer function of the system: 

      





 dtethfHthFT

tj 
(9) 

Thus, for a LTIS, the general relationship 

between input i(t) and output o(t) is a convolution 

product in the time-domain and an algebraic 

product in the Fourier domain. According to Eq. 

(8), the transfer function H(f) can be obtained in 

principle by taking the ratio of the FTs of any pair 

{i(t); o(t)}, ie : H(f) = FT{o(t)}/FT{i(t)}. This is 

possible as long as the denominator is non-zero at 

the frequencies of interest. It turns out that this is 

the case for electrical and electrochemical systems 

for which the input i(t) is the electric potential E(t) 

and the response o(t) is the current I(t). The 

associated transfer function is a complex 

impedance Z(): 

   
 



I

E
Z     (10) 

E() is the Fourier Transform (FT) of the 

voltage excitation E(t) in Volt and I( ) is the FT of 

the current response in Amp. 

 

Voltage excitations 

Electrical potential steps E(t) generated by 

commercial potentiostats are not true Heaviside 

steps. In order to avoid dumping effects, E(t) has 

usually a finite rising-time and is, instead of a true 

step, an exponential function rising to a maximum 

value (Fig. 3), the analytical expression of which is: 

E(t) = a. [1 – exp (- b.t)] (11) 

where a is the amplitude in V and b = 1/ in s
-1

 ( is 

a time constant in s). This is why in this paper, such 

signals are called “exponentially-rising voltage-step 

excitations”. Results were obtained using a PGZ402 

potentiostat from Radiometer, with a mean time 

constant  = 1/b = 6.424x10
-5

 s (when no filter is 

used). Experimental voltage excitations generated 

by the potentiostat were found to be reproducible 
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within ± 0.05 % from one experiment to the other. 

The frequency content of such voltage excitations 

can be determined by taking the Fourier transform 

(FT) of Eq. (11). A convenient way to do that is to 

calculate the Laplace transform (LT) and then 

explicit the transformation variable s = j: 

    
pbp

ba

bpp
adteeatELT tptb













 




20

11
1

   (12) 

     
bj

jba
jptELTtEFT









2

0
,  (13) 

Eq. (13) is the general solution except for  = 0 

for which ( (t) is the Dirac function): 

    
2

0,
a

ttEFT           (14) 

 In conventional harmonic analysis, sine 

wave functions of similar amplitudes are used to 

measure the impedance of the system over the 

entire frequency range of interest on a frequency-

to-frequency basis. As can be seen from Eqs. (13) 

and (14), the energy content of an exponentially-

rising voltage-step excitations is inversely 

proportional to the frequency. This is a limitation of 

the technique because the energy of the signal 

decreases as the frequency increases. Therefore, the 

amplitude of the excitation must be sufficiently 

large and the apparatus used to measure the current 

response must be sufficiently sensitive to accurately 

sample the signals. 

RESULTS AND DISCUSSION 

Experimentally, the problem to solve consists in 

the measurement of the impedance of a given 

system of interest by using such smooth voltage 

excitations as perturbation. In the first part of this 

paper, the system under consideration is the 

electrical circuit of Figure 1. This is a low noise 

system and equilibrium is reached within a few tens 

of milliseconds. In the second part of the paper, the 

system will be a noisier electrode/electrolyte 

interface for which equilibrium is reached within 

only a few seconds. The same methodology is used 

to characterize both systems. In a typical 

experiment, two transient signals are sampled : the 

rising voltage excitation E(t) and the associated 

current response I(t). To determine the unknown 

impedance of the electrical circuit there are two 

options: (i) frequency-domain analysis : the Fourier 

transform of both E(t) and I(t) are calculated and 

the ratio of the two FTs is taken as shown in Eq. 

(10), yielding the impedance Z() of the circuit; 

this is the most straightforward method; (ii) time-

domain analysis: a model circuit impedance Z() is 

postulated; then, I(), the FT of the current 

response to the voltage excitation is calculated from 

Eq. (10): I() = E() / Z(); then, model I(t) is 

calculated from I() by inverse Fourier 

transformation and used to fit transient 

experimental current I(t); parameters of the model 

impedance Z() are iteratively adjusted to 

minimize the difference between model and 

experimental I(t) in order to determine the exact 

characteristic of circuit components. This second 

approach is more difficult to implement than the 

first one but can sometimes be more efficient and 

even more accurate. It can also be automated. The 

two approaches are detailed in the followings. The 

circuit of  Fig. 1 of known impedance is used as a 

model system to describe the methodology and to 

evaluate the role of data sampling and data filtering 

on the quality of the resulting impedance. 

Frequency-domain analysis 

Solution to the convolution equation in the 

frequency domain. The impedance diagram of the 

circuit of Fig. 1 can be obtained directly from 

frequency-domain analysis of experimental data 

using Eq. (15): 

 
 



0I

E
)(Z    (15) 

where E is the voltage excitation in Volt, I0 is the 

current response of the cell in A, and  is the 

pulsation in rad.s
-1

. E() denotes the Fourier 

transform of the voltage excitation E(t), and I0() 

denotes the Fourier transform of the current 

response I(t). 

Sampling conditions and data treatment. In 

order to calculate the impedance diagram, there is a 

need to sample both transient signals : voltage 

excitation and current response. The Fourier 

transform of the discrete transients can then be 

calculated and the ratio yields the desired 

impedance diagram. The sampling rate must respect 

the Nyquist criterion which states that the signal 

must be sampled more than twice as fast as the 

highest waveform frequency (fc). If not, it turns out 

that all of the power spectral density (PSD) which 

lies outside of the frequency range -fc < f < fc is 

spuriously moved into that range and the spectrum 

is corrupted. This phenomenon is called aliasing 

[14]. According to Fig. 2, the impedance of the 

circuit reaches the real axis at a frequency value of 

≈ 500,000 Hz. Therefore, a sampling rate of one 

sample every 1 s (or less) is required. The 

sampling rate must be maintained until the end of 

the experiment (20 millisec in the present case). As  
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Fig. 3. (o) experimental voltage excitation and (+) 

best fit using Eq. (11). 

 
Fig. 4. Experimental voltage excitation (bottom) and 

current response (top) of the electrical circuit of  Fig. 1. 

a result, 20,000 datapoints will be collected for 

each signal, corresponding to a file of only ca. 4 

Mbytes of floats. The signals displayed on the 

screen of the oscilloscope at the onset of the step 

during a typical experiment are shown in Fig. 4 

(time scale 0-500 sec). 

Raw data cannot always be used directly. 

Electronic or numerical filtering using low-pass 

filters is required prior to Fourier transformation in 

order to get rid of the polluted high frequency 

content of raw data [14]. Different filters (available 

on most potentiostats) can be used for that purpose 

although they also change the time constant of the 

step functions. In order to improve the signal-to-

noise ratio, a first approach is to use the analytical 

expression of E() (taken from Eq. (13)) in Eq. 

(15) instead of sampling the true experimental 

voltage step. This is justified by the fact that 

exponentially-rising voltage steps delivered by 

potentiostat are highly reproducible. Thus, the 

sampled current response is the only source of 

noise for the impedance diagram. It should also be 

noted that, according to Eq. (13), the PSD =  

 

 
Fig. 5. Impedance diagrams of the circuit of Fig. 1; (o) 

calculated from Eq. (1); (+) experimental from 

exponentially-rising voltage-step excitations: (a) t = 50 

s; (b) t = 20 s; (c) t = 10 s; (d) t = 5 s. 

 

      EE 22 ImRe   of the exponentially- 

rising voltage steps decreases exponentially with 

frequency. Therefore, a highly sensitive 

amperemeter and low-pass filtering should be used 

to obtain well-defined impedance diagrams in the 

potentially noisiest high-frequency region where 

widely scattered data-points are obtained otherwise 

[5]. 

Comparison of model and experimental 

impedance values.Impedance diagrams obtained 

from exponentially-rising voltage-step excitations 

are plotted in Fig. 5. The theoretical impedance 

diagram obtained from Eq. (1) is also plotted for 

comparison. There is a good agreement between 

both techniques, both in terms of impedance values 

and frequency content. However, the sampling rate 

of current responses plays a critical role. A 

sampling rate of at least one data-point every 5 s 

is required to obtain a satisfactory fit (curve d). At 5 

s, a data file of 400 kbytes is obtained and the 

impedance is calculated within only a few seconds. 

Therefore, this is achievable using conventional 

personal computers. If lower sampling rates are 

used (curves a, b, c), then significant distortions 

appear in the high frequency range. 

Time-domain analysis 

Solution to the convolution equation in the time 

domain. Circuit impedance parameters can also be 

determined from a time-domain analysis of 

experimental data. In a typical experiment, the 

electrical circuit of Fig. 1 is excited by a voltage 

transient E(t) of any shape. ER0(t) (the voltage of 

the resistance R0), ER1(t) (the voltage of the 

resistance R1), EC1(t) (the voltage of the capacitance 

C1), ER2(t) (the voltage of the resistance R2), and 

EC2(t) (the voltage of the capacitance C2) are the 

five unknown transient voltages. I0(t) (the main 

transient current across the circuit), I1(t) (the current 

across capacitance C1), I3(t) (the current across 
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resistance R1), I2(t) (the current across capacitance 

C2) and I4(t) (the current across resistance R2) are 

the five unknown transient currents. By applying 

Kirchhoff’s laws (conservation of charge and) to 

the circuit of Fig. 1, the following set of five 

equations is obtained: 

      tItIRdttI
C

t

101
0

1

1

1
  (16) 

      tItIRdttI
C

t

102
0

2

2

1
  (17) 

        
tt

dttI
C

dttI
C

tIRtE
0

2

2
0

1

1

00

11

 

(18) 

     tItItI 310                 (19) 

     tItItI 420    (20) 

The system can be solved by use of Laplace 

transformation. Solutions for the five voltage transients 

are: 

   sIRsER 000   (21) 

      sIsIRsER 1011   (22) 

 
 

1

1
1

Cs

sI
sEC    (23) 

      sIsIRsER 2022   (24) 

 
 

2

2
2

Cs

sI
sEC   (25) 

Solutions for the five current transients are: 
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2

2

2
02 1

Cs
R

R
sIsI     (28) 

     sIsIsI 103   (29) 

     sIsIsI 204   (30) 

Time domain solutions to Eqs. (20-29) can be 

obtained analytically (this is not always possible, 

especially as the complexity of the circuit 

increases) by choosing the shape of the perturbation 

E(t). Alternatively, solutions can also be 

conveniently obtained numerically by computing 

the inverse discrete Fourier transform (IDFT) of 

Eq. (20-29) for s = j. The IDFT h(t) of a signal 

with a frequency content H(f) is given by: 

   



 dfefHth tfj2

         (31) 

The discrete expression of Eq. (31) is : 

         ftfjtffHth 




 2sin2cos    (32) 

Transient voltage values.  Numerical voltage 

responses of circuit components (Fig. 1) to E(t) = 

exponentially-rising voltage-step excitation are 

plotted in Fig. 6. Data have been obtained 

numerically by solving Eqs. (21-25) using the 

circuit impedance of Eq. (1).  

The time axis is in logarithmic scale to facilitate 

the differentiation of the different voltages. The 

rising voltage excitation E(t) has an amplitude of 

0.1 V and reaches its plateau value in less than 0.5 

milliseconds. Stationary signals are obtained after 

ca. 2x10
-2

 seconds. At that time, capacitances C1 

and C2 are charged and their impedance is infinite. 

A stationary current flows across the series-

connected resistances: 210 RRRR
i

i   = 

16200 . Therefore, the stationary current for t > 

10
-2

 s is 




i

iR

A
I0

=0.1/16200 = 6.17 A. 

Individual stationary voltages are: 

  mVaeatE

t

t

1001lim 



















  

000
IRER  =7.5mV; 0111

IREE CR  = 30.8 mV; 

0222
IREE CR  = 61.7 mV. 

According to Kirchhoff’s law: E(t) = ER0(t) + 

ER1(t) + ER2(t).  

Therefore, experimental transient voltages of 

individual circuit components can be fitted with 

model values. The difference between experimental 

and model values can be minimized by iteration 

and the impedance of each circuit component can 

be adjusted until a complete agreement is obtained 

between both sets of data. 

Transient current values. Numerical current 

responses of the electrical circuit of Fig. 1 to a 

exponentially-rising voltage-step excitation E(t) are 

plotted in Fig. 7. Data have been obtained by 

solving Eqs. (26-30). Again, the time axis is in 

logarithmic scale to facilitate the differentiation of 

the different signals. 

For t > 10
-2

 s, the stationary currents are: 

      tItItI 430  = 6.17 A 

and     021  tItI . 
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Fig. 6. Transient voltages responses of the electrical 

circuit of figure 1 when E(t) = a [1 – exp (-t/)]. a= 100 

mV.  = 1/b = 6.424x10
-5

 s. 

 
Fig. 8. Experimental (o) and model (―) current 

responses I0(t) of the circuit of Fig. 1 when a smooth 

voltage excitation is applied 

Model current responses can be used to fit 

experimental current values, as discussed in the 

next section. 

Comparison of experimental and model values. 

The experimental current response I0(t) has been 

fitted as follows. First, I() has been calculated 

from Eq. (10): I() = Z() / E(). Z() was taken 

from Eq. (1) and E() was taken from Eq. (13). 

Second, I(t) was calculated from I() by discrete 

inverse Fourier transformation. Results obtained for 

the first millisecond of the experiment are plotted in 

Fig. 8. There is a good agreement between 

experimental and calculated transients. Therefore, 

time-domain analysis of the current response of the 

interface to a smooth voltage excitation can also be 

used to determine the impedance of an unknown 

circuit. 

CONCLUSIONS 

The work reported here describes a 

methodology used to determine the impedance of  

 
Fig. 7. Transient current responses of the electrical 

circuit of figure 1 when E(t) = a [1 – exp (-t/)]. a= 100 

mV.  = 1/b = 6.424x10
-5

 s. 

electrical circuits from exponentially-rising 

voltage-step excitations. When such experiment is 

carried out, two transient signals are synchronously 

sampled: the potential excitation E(t) and the 

current response I(t). To determine the unknown 

impedance of the electrical circuit there are two 

options: (i) frequency-domain analysis : the Fourier 

transform of both E(t) and I(t) are calculated and 

the ratio of the two FTs is taken using Eq.  (10), 

yielding the impedance Z() of the circuit; this is 

the most straightforward method; (ii) time-domain 

analysis: a model circuit impedance Z() is 

postulated; then, the FT I(w) of the current response 

to a exponentially-rising voltage-step excitation is  

calculated from Eq. (10) : I() = E() / Z(); then, 

model I(t) is calculated from I() by inverse 

Fourier transformation and used to fit transient 

experimental current I(t); parameters of the model 

impedance Z() are iteratively adjusted to 

minimize the difference between model and 

experimental I(t) in order to determine the exact 

characteristic of circuit components. There are two 

critical problems. First, an appropriate sampling 

rate must be used. Second, data filtering is required. 

When these problems are appropriately handled, 

then correct impedance diagrams are obtained. 

Therefore, it can be concluded that exponentially-

rising voltage-step excitations can be used to 

measure impedance diagrams of electrical circuits. 
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(Резюме) 

Електрохимичната импедансна спектроскопия (IES) обикновено се използва от електрохимиците за 

анализиране на многостепенни реакции, протичащи на фазовата граница електрод/електролит. Понеже 

кинетиката на отделните стъпки на реакцията обикновено е функция на електродния потенциал, импедансът на 

фазовата граница се измерва при различни, но постоянни стойности на потенциала. В повечето случаи 

импедансните диаграми се получават чрез хармоничен анализ: за възбуждане се използва наложена 

променливотокова модулация на потенциала с ниска амплитуда (типично 5-10 мВ) или галваностатична 

променливотокова модулация с ниска амплитуда (типично няколко мА). Според теорията на линейните и 

непроменливи във времето системи обаче, хармоничният анализ следва да бъде ограничен до анализа на 

линейни и обратими процеси. Проблемът с линейността може да бъде преодолян до известна степен чрез 

намаляване амплитудата на модулацията. Но това не помага да се разреши проблема с необратимостта. 

Например, при електро-интеркалацията на водород в електроди от паладий или паладиеви сплави, се наблюдава 

значителен хистерезис. Това е ясно указание, че протичат нелинейни процеси и следователно хармоничният 

анализ не може да се използва, защото системата не изпълнява изискванията за линейност и неизменност във 

времето, наложени от системната теория. Значи трябва да се използва непроменливо възбуждане. Целта на 

настоящата работа е да се докладва за измерването на импедансни спектри при възбуждане с експоненциално 

нарастващи стъпки по напрежение. Това съобщение е ориентирано към методологията. В първата част на 

работата, електрическа схема съдържаща само електрическо съпротивление и капацитет се използва като 

моделна система, за да се обясни как от такова нехармонично възбуждане може да се получи импедансна 

диаграма. Във втората част на работата, методологията се разширява до електро-интеркалацията на водород в 

паладиево фолио. 
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