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Experimental impedance spectrum (IS), or, more generally, a transfer functions spectrum (TFS) of a system, and 

especially sets of spectra measured at various values of the system variables provides a wealth of information about the 

system and the processes taking place there. However, the knowledge of this information in concepts of physical 

chemistry requires the application of special procedures in the spectra analysis.  

In this paper, selected major issues associated with the reliability of TFSs and of their analysis procedures, mainly 

based on personal experience of the author of this article, are reminded. Mainly, these issues are: problems arising from 

the fact that actual systems imperfectly meet the requirements for the measurement of TFS (e.g. linearity), the initial 

visual analysis of TFS, the principles of modelling and the discussion of different types of models (the latter for ISs), 

and know-how of the fitting of a selected model to the given TFS and criteria of the fit goodness. 
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INTRODUCTION 

The transfer functions (TFs), H‟s, are ratios of a 

chosen response of a linear system being close to 

steady state to the perturbing signal (more 

generally, ratio of generalised force and resulting 

displacement) or vice versa, or else ratios of two 

chosen responses of such a system. H‟s are vector 

quantities, and they are dependent on the frequency 

of the signal [1–3]. In a frequency range, Hk is 

described by its spectrum (TFS), which can be 

presented as a 3-column matrix where in the first 

and next columns the successive frequencies and 

quantities describing the corresponding vector (e.g. 

in rectangular coordinates, its real and imaginary 

components) are given, respectively.  

Hk is immittance, X
k
, in a specific case when: 1/ 

the signal and response are electric potential, E, and 

current, I, and 2/ the system is one-port. Main 

forms of X are impedance, Z, and admittance, Y, 

defined as follows, respectively:  

Z = δE / δI                       (1) 

 Y =Z
–1

= δI/ δE                    (2) 

where δ denotes small-amplitude function; its 

presence in these definition is necessary for the 

general case of nonlinear systems, in order to allow 

their linearization. For simplicity, below it will be 

assumed that δ E is the signal. In such a case: 

δE =ΔEsin(ωt)                        (3) 

 δI =ΔIsin(ωt+ υ)             (4) 

where Δ, ω, t and υ denote amplitude functions, 

angular frequency (ω = 2πf, f being frequency in 

Hz), time and phase shift (angular delay of the 

response), respectively. In the above equations, Δ‟s 

are real functions.  

The last two equations can be presented in a 

more convenient notation: 

                               δE = ΔE exp(st)                (5) 

δI =ΔI exp(st)                     (6) 

where ΔE and ΔI are complex quantities, and s 

denotes imaginary angular frequency (s = iω, i 

being the imaginary unit: i = √–1). For instance, 

from Eqs. 1, 5 and 6 it follows that: 

I

E
Z






                              (7) 

Formally, it is unimportant whether IS is 

measured under control of E or I. However, from 

the physico-chemical point of view it can be of real 

importance. For instance, for passivating metal 

electrodes the dependence of I on E is univocal, but 

the opposite dependence is multi-valued (in fact, 

the passive state is not a steady state in the 

thermodynamic sense). However, the most 

important argument for using the E signals is that, 

in general, E directly controls the chemical 

potentials of main reactants.  
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An experimental immittance spectrum (IS), and 

especially a set of ISs measured at various values of 

system variables (e.g. composition of specimen or 

surroundings, E, temperature etc.), can provide a 

wealth of information on the system under study 

and the processes taking place there [4, 5]. 

However, the knowledge of this information in 

physico-chemical concepts requires the application 

in spectra analysis of special procedures [6]. The 

above applies to TFSs, too.  

Recently, several monographs on immittance 

spectroscopy (traditionally called “impedance 

spectroscopy”), including to some extend also the 

transfer function spectroscopy, have been published 

[7–9]. However, the practical problems of applying 

this method and the know-know of the spectra 

analysis are treated there a little cursorily.  

The aim of the present paper is to remind some 

important issues related with the reliability of 

experimental TFSs and procedures of their analysis, 

mainly basing on the personal experience of the 

author of the paper. That will be performed for the 

most part on the example of ISs, as being best 

recognised.  

PROBLEMS RELATED WITH THE LINEARITY 

AND NUMBER OF PORTS OF AN ACTUAL 

SYSTEM 

As X is a quantity characterising a linear system, 

the ratio of the two  functions in Eqs. 3 and 4 

cannot depend on  of the signal. Otherwise, the 

measured IS will be distorted by systematic errors 

[6]. Obviously, for TFS a similar requirement is in 

force.  

In electrodics, typically the 3-electrode 

measurement cell is used. In such a case, the system 

under study consists of the working electrode (WE) 

plus the counter and reference electrodes, and 

electrolytic solution in between; hence, actually it is 

not a one-port system. In order to fulfil the 

respective requirement, the cell must be designed in 

a way allowing for ascribing the measured X only 

to WE itself. Otherwise, the measured IS will be 

distorted by systematic errors [6].  

INITIAL INSPECTION OF INDIVIDUAL 

EXPERIMENTAL IMMITTANCE SPECTRA 

Prior to beginning the first step of analysis of an 

experimental IS, i.e. a trial of modelling of the 

system characterized by this IS, the so-called „wild 

points”, where at individual f‟s IS is contaminated 

by exceptionally large noise, should be eliminated. 

These points can be noticed when IS in question is  

 

 
Fig. 1. Example of plots of a set of immittance spectra 

measured for the same system at several values of some 

system variable, in various coordinates: (a) and (b) in Z 

and ωZ complex plane, respectively. Values close to 

solid points indicate the respective frequencies in Hz, 

and lf and hf denote low and high frequency regions, 

respectively [4] 

inspected simultaneously in plots of several 

different coordinates, e.g. Z and ωZ (so-called 

elastance) complex planes (–Im(Xk) vs. Re(Xk)), 

Bode coordinates (log |Z| and υ vs. log f) etc., 

because particular coordinates are characterised by 

differentiated sensitivity or zooming in various 

frequency ranges. For instance, Z and ωZ complex 

planes are especially sensitive in the low (lf) and 

high frequency (hf) regions, respectively (see Fig. 

1). In some coordinates, the wild points will be 

visible as points breaking the smoothness of the 

experimental IS curve [4, 6]. By the way, any plot 

of IS should not be confused with IS itself. For TFS 

an analogous approach is advisable. 

The visual inspection of IS in various plots can 

help also in the elimination of the frequency range 

where the given IS seems to be obviously 

unreliable [4].  
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MODELS AND THEIR FEATURES 

The simplest goal of modelling of an 

experimental IS is its synthetic description in the 

whole range of frequencies where it is supposed to 

be reliable. In other words, the model should 

provide a computed (theoretical) IS as close to the 

modelled experimental one as possible, both 

qualitatively and quantitatively. The model should 

be possibly simple and of minimal number of 

parameters, these being independent of frequency. 

Finally, it should be of a form suitable for 

estimation of kinetics of processes taking place in 

the system under study, in further steps of analysis, 

e.g. a simultaneous analysis of a set of ISs 

measured at several values of a system variable.  

The starting information for formulating a 

hypothetical model of a selected experimental IS 

should be drown out from the inspection of its plots 

in various coordinates. For instance, the plots 

presented in Fig. 1a (probably two overlapped 

semicircles in the 1
st
 quadrant a conventional 

complex plane, i.e. –ImHk vs. ReHk) suggest that in 

the system in question two RC time constants (τ‟s) 

are involved, whilst, in turn, these in Fig. 1b 

suggest a larger number of time constants, the hf  
resulting from a presence of a constant phase 

element (CPE) (at hf‟s apparently straight-line 

section of a none-zero slope) [4]. It is noteworthy 

that in ωZ or Y/ω complex planes the curve shapes 

are richer than in the Z or Y planes, as in the former 

cases an apparently straight-line section 

supplements the semicircles or shorter arc sections 

characteristic for RC electrical circuits (please 

notice the hf section in Fig. 1b).   

R1A 

R0A C1A 

 

 (a) 

 

R1B 

R0B C1B 

 

 (b) 

Fig. 2. One time constant RC electrical equivalent circuits 

used in modelling of an IS characterised in Z conventional 

complex plane by a one semicircle in the first quadrant. 

As models, the so-called electrical equivalent 

circuits are most frequently used. If in the Z 

complex plane a given IS is represented by a simple 

semicircle in the first quadrant, one of the circuits 

presented in Fig. 2, differing by their topology, can 

by alternatively applied, as both of them result in an 

identical IS under condition of proper 

recalculations of their elements [6,10]. If the system 

under study is an electrode||electrolytic solution 

interface, in the case of choice of circuit of Fig. 2a 

its elements R0A, C1A, and R1A will model the ohmic 

resistance (mainly of the solution), the interfacial 

double layer capacitance and the resistance of a 

simple redox reaction (e.g. Fe
+2

 ↔ Fe
+3

 + e). 

However, if one will tray to apply this circuit as 

subcircuit modelling only a Faradaic process with 

ad-/desorption (e.g. H2 ↔ 2Had ↔ 2H
+
 +2e) taking 

place at this interface, the physical meaning of its 

elements will be not so simple [5, 10, 11].  

Hence, if the system under study is considered 

as a “black box” and one know solely its IS, there is 

no criterion for making the choice of the circuit 

topology. Accordingly, the topological ambiguity is 

one of the features of the equivalent circuit models. 

It results from the fact that the X functions of both 

above circuits can be transformed to an identical 

mathematical formula (for further details see 

below).  

Similarly, if in the Z complex plane a given IS is 

represented by two simple semicircles in the first 

quadrant, for instance any of the circuits presented 

in Fig. 3, all of them involving two RC τ„s, can be 

applied, as all of them result in an identical IS 

under condition of proper recalculations of their 

elements [4, 6, 10]. 

The topological ambiguity results from the fact 

that all equations in Fig. 3 can be transformed to a 

common formula (for Y it would be quite similar) 

[4, 6, 8]: 

01

2

012

2

bsbs

asaas
Z






   (11) 

where only the definitions of coefficients in 

particular terms depend on the circuit topology. 

However, in spite of the topological ambiguity, 

in the case of two (or n, n ≥ 2) RC τ „s circuits 

another ambiguity appears. It is the solution 

ambiguity. Namely, for the circuit of a given 

topology there are n sets of values of its elements 

resulting in an identical IS [4, 10, 11].  

The solution ambiguity results from the fact 

that, in contrast to the transformation of any 

formula of the type presented in Fig. 3 (simple 

reduction to a common denominator) to Eq. 11, the 

opposite transformation needs the solution of a set 

of five equations, one of them being a square one. It 

is similar as the case of solution of a typical square 

equation, x
2
a + xb + c = 0. The sole exception is for 

the circuit of LADDER structure (Fig. 3A), because 

it corresponds to the case of square equation when 

the two solutions are identical. In turn, in the case  
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(A) - LADDER structure (B) - Voigt structure (C) - two subcircuits in parallel 
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Fig. 3. Two time constant RC electrical equivalent circuits used in modelling of ISs characterised in Z complex 

plane by two semicircles in the first quadrant, and the respective equations for Z in forms closest related with these 

circuits topology (ZR = R, YC = sC) [4, 6, 11] 

of Voigt structure the two solutions differ only by 

the subscripts of the two RjCj couples in parallel. 

However, but the case of circuits of LADDER or 

Voigt structure, the two solutions can result in sets 

of drastically different values for particular circuit 

elements [4].  

Both above types of ambiguities are important 

disadvantages of equivalent circuit models. In the 

literature the topological ambiguity is seldom taken 

into consideration, whilst the solution ambiguity is 

quite neglected, in spite that its existence is crucial 

for the conclusions on the system under study in 

physico-chemical terms [4, 5, 10, 11].  

Free of the above disadvantage is “the 

generalised mathematical model”, formulated by 

extension of Eq. 11 for modelling the systems 

characterised by n τ‟s and generalised from Z to X 

[10]: 












0

1

0

nk k

kn

nk k

k

bss

as
X

   (12) 

where k‟s are integers. Obviously, ak and bk 

coefficients depend also on the detailed meaning of 

X (Z or Y) [7].  

When for the system under study also a CPE 

should be taken into account (in contrast to e.g. R 

and C elements, CPE has two parameters), a model 

similar to Eq. 12 can be used. However, in such a 

case both in the numerator and denominator 

additional terms of s at fractional powers (fractal 

values of k) appear, what results in constrains 

between some coefficients; hence, not all of them 

are independent [10].  

In the general case of H‟s, i.e. when signals and 

responses are not restricted to electrical quantities, 

and the system is not restricted to one-port, 

relatively simple models, similar to the discussed 

above for X, find no application. Instead, just from 

the beginning of modelling much more detailed 

models, taking into account also the system 

variables, must be used. For instance, one of the 

various possible TFs of transport of hydrogen (H) 

throughout a large thin single-phase elastic metal 

(M) membrane (one-dimensional transport, along 

the z coordinate, 0 < z < L) in response to a small 

amplitude H concentration, c, signal at the z = 0 

surface, δcz=0, close to equilibrium (c0≤z<L ≈ c
eq

) is 

the ratio of small-amplitude hydrogen flux, δJ, 

responses at the z = L and z = 0 surfaces of the 

specimen. Under assumptions that 1/ this transport 

takes place in a self-stressed (as, typically, H atoms 

expand the original M lattice) M, and 2/ hindrances 

of the surface processes can be neglected, the 

following model has been proposed [1]:  

0

0/
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where TR

YV
A

3

2 2



  (14) 

 
eq1 AcD

s
q


   (15) 

and V and Y  denote partial molar volume of H 

in M (its not-zero value causes self-stress in M 

lattice) and bulk elastic modulus of the M-H solid 

solution, respectively, R and T gas constant and 
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temperature, and D diffusion constant of H in the 

M-H solid.  

The main criterion of correctness, or rather 

usefulness of the chosen hypothetical model for a 

given TFS is the qualitative and quantitative 

similarity of its theoretical computed spectrum to 

the modelled, i.e. experimental TFS. The 

qualitative similarity is determined by the selected 

model, while the quantitative similarity is improved 

in the procedure of fitting of this model by a 

gradual change of its parameters, i.e. fitting of its 

theoretical spectrum to the modelled experimental 

one [6].  

ADVICES RELATED TO THE FITTING OF A 

SELECTED MODEL TO TFS 

Typically, the fitting of a selected model to a 

given experimental TFS is performed by Complex 

Non-linear Least Squares method (CNLS), by 

minimising in an iterative procedure the weighted 

χ
2
 function, defined as follows [6]: 

     


l

k kkkkkk HHwHHw
1

2''''''2'''2

thexthex


 (14) 

where k denotes sequence number of successive 

experimental points (usually from the highest to the 

lowest f) up to l (0 ≤ k ≤ l), H and H'' are real and 

imaginary components of Hk, respectively, and the 

subscripts th and ex denote the theoretical 

(computed from the model) and experimental 

quantities, while w' and w'' are respective statistical 

weights.  

As all least squares (NLS) methods, CNLS is 

based on the assumption that the experimental TFS 

is contaminated only by random errors, Gaussian in 

character. Hence, the presence of errors of any 

other character in the given modelled TFS reduces 

the reliability of the fitting results.  

At a proper convergence of the iterative 

procedure, χ
2
 should gradually decrease down to its 

so-called “global minimum” value, where the 

model parameters free (i.e. not fixed at an assumed 

value) in the given fitting computation attain their 

so-called “best-fit” estimates. The smaller the value 

of χ
 2

, the better is the (statistical) goodness of the 

fit.  

With respect to the choice of weighting system, 

the assumption that w = w'' = 1 (so-called “unit 

weights”) is worst. If there is no specific premises, 

the so-called “modulus weights” should be advised 

[6, 13]:  

2

'''

ex

1

k

kk

H
ww 

                    (15) 

The number of experimental points in the fitted 

spectrum should be possibly large. On the other 

hand, the model should be not over-flexible, i.e. the 

number of its parameters should be possibly small. 

Both above aspects are taken into account if as the 

measure of fit goodness, instead of 2
, the standard 

deviation of the given fit is considered [6]: 

      
nfpl 


2

fit




             (16) 

where nfp denotes the number of model parameters 

being free in the given fitting. Hence, fit can be 

considered as χ
2
 normalised on (l – nfp). Another 

advantage of σfit, in comparison with χ
2
, is that at 

the advised weighting system (Eq. 15) it is 

dimensionless.  

The convergence of the CNLS procedure and 

aptitude for finding the global minimum depends 

on many factors. For instance, the procedure may 

stop at a so-called “local minimum”, characterised 

by a large χ
2
. In such a case, a change of the staring 

value of some model‟s parameter and/or an 

instantaneous change of its character from free to 

fixed can be helpful. Both the convergence of 

procedure and its sensitivity to the starting 

estimates of parameters is very sensitive to the 

applied detailed type of model. For instance, the 

application of the selected equivalent circuit model 

in its Y form to the given IS recalculated from its Z 

to Y form may allow for attaining the global 

minimum, what before those recalculations was not 

possible. However, the generalised mathematical 

models (Eq. 12) seem to be by very far the best 

[12]. Probably, the smaller the degree of 

nonlinearity of the model with respect to its 

parameters, the smaller the sensitivity on the 

aptness of starting estimates and the higher the 

convergence of the fitting procedure are [6, 12]. On 

the other hand, the generalised mathematical 

models are cumbersome to use because the starting 

estimates of their parameters cannot be proposed 

directly from the plots of ISs.  

Additional important criteria of the choice of 

optimal model for the given TFS and its fit 

goodness are the computed relative confidence 

limits of the best-fit parameter estimates (or 

individual standard deviations), and magnitude of 

correlation coefficients of pairs of the best-fit 

estimates. Very broad confidence limits of a 

parameter suggest that it is probably redundant in 

the model. In turn, the magnitude of correlation 

coefficients of two estimates approaching  1 

indicates that the respective couple is poorly 
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independent. However, one should bear in mind 

that, as in all NLSs, those quantities are computed 

under the assumption that close to the fitting 

minimum the model is linear [4, 6].  

CONCLUSIONS 

Experimental transfer function spectra (TFS) 

can be considered as reliable only if they were 

measured at steady state of the system and under 

experimental conditions assuring its linearity.  

An initial inspection of an experimental TFS in 

plots of various coordinates is necessary, mainly for 

elimination of “wild points”, elimination of the 

frequency range where the TFS in question seems 

to be unreliable, and the preliminary estimation of 

the character and complexity of the system under 

study.  

The character and complexity of the primary 

proposed hypothetical model for a given TFS 

should result from the initial inspection of the latter. 

Its poor fit goodness should result in modification 

of the previously applied model.  

In the case of looking for equivalent electrical 

circuit models for an immittance spectrum (IS) one 

should take into account their possible ambiguities: 

topological and solution.  

Free of ambiguities are the generalised 

mathematical models. Their additional advantages 

are 1/ high convergence ability in the fitting 

procedure, and 2/ exceptionally small sensitivity to 

the selection of staring estimates of the model 

parameters.  
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ИЗБРАНИ ПРОБЛЕМИ НА АНАЛИЗА НА СПЕКТРИТЕ НА ИМПЕДАНСА И 

ПРЕХОДНАТА ФУНКЦИЯ: ОБЗОР  
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Постъпила на 20 февруари 2012 г.р приета на 20 февруари 2012 г. 

(Резюме) 

Експерименталният импедансен спектър (IS), или по-общо, спектърът на преходната функция (TFS) на 

дадена система и особено множество спектри, снети при различни стойности на системните променливи, дават 

обилна информация за системата и протичащите в нея процеси. Изразяването на тази информация в термините 

на физикохимията, обаче, изисква прилагането на специални процедури при анализа на спектрите. 

В тази работа се припомнят избрани въпроси, свързани с надеждността на TFS и на процедурите за техния 

анализ, основани главно на личния опит на автора. Тези въпроси са преди всичко: проблеми, произтичащи от 

факта, че действителните системи не изпълняват напълно изискванията за измерването на TFS (напр. 

линейност), първоначалният визуален анализ на TFS, принципите на моделиране и дискусията на различни 

видове модели (последното за IS), както и ноу-хау за напасването на избрания модел към даден TFS и критерии 

за качеството на това напасване. 
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