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The fullerene era was started in 1985 with the discovery of a stable C60 cluster and its interpretation as a cage 

structure with the familiar shape of a soccer ball by Kroto and co-authors. The eccentric connectivity polynomial of a 

molecular graph G is defined as ECP(G, x) = Σaε V(G)degG(a)x
ecc(a)

, where ecc(a) is defined as the length of the 

maximum path connecting to another vertex of G. In this paper this polynomial is computed for C18n+10 fullerenes. 
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INTRODUCTION 

We first recall some algebraic definitions that 

will be kept throughout. A pair G = (V, E) such that 

V is a non-empty set and E is a subset of 2-element 

subsets of V is called a simple graph (graph for 

short). G is said to be connected if for arbitrary 

vertices x and y of G, there exists a sequence x = x0, 

x1, x2, …, xn = y such that xi and xi+1 are adjacent in 

G. The vertex and edge sets of a graph G are 

denoted by V(G) and E(G), respectively. If x, y ε 

V(G) then the distance d(x, y) between x and y is 

defined as the length of the minimum path 

connecting x and y. The eccentric connectivity 

index of G, ξ
c
(G), was proposed by Sharma, 

Goswami and Madan [1]. It is defined as ξ
c 

(G) = 

ΣuV(G)degG(u)ecc(u), where degG(x) denotes the 

degree of the vertex x in G and ecc(u) = Max{d(x, 

u) | x ε V(G)} [26]. The radius and diameter of G 

are defined as the minimum and maximum 

eccentricity among vertices of G, respectively. 
A fullerene is a molecule composed entirely of 

carbon atoms. The fullerene era was started in 1985 

with the discovery of a stable C60 cluster [7, 8]. Let 

F be a fullerene graph with exactly p, h, n and m 

pentagons, hexagons, vertices and edges between 

them, respectively. Since each vertex lies in exactly 

3 faces and each edge lies in 2 faces, the number of 

vertices is n = (5p+6h)/3, the number of edges is m 

= (5p+6h)/2 = 3/2n and the number of faces is f = p 

+ h. By Euler’s formula n − m + f = 2, one can 

deduce that (5p + 6h)/3 – (5p + 6h)/2 + p + h = 2, 

and therefore p = 12, v = 2h + 20 and e = 3h + 30. 

Therefore, such molecules are made up entirely of n 

carbon atoms having 12 pentagonal and (n/2  10) 

hexagonal faces, where n ≠ 22 is a natural number 

equal or greater than 20. 

We now define the eccentric connectivity 

polynomial of a graph G, as 

Ξ(G,x)=Σaε V(G)degG(a)x
ecc(a)

. 

Then the eccentric connectivity index is the first 

derivative of Ξ(G,x) evaluated at x = 1. Herein, our 

notation is standard and taken from the standard 

book of graph theory [9–14]. 

RESULTS AND DISCUSSION 

This paper describes significant updates to the 

fullerene chemistry. In other words, this is a 

synthesis of knowledge. The research is based on 

our earlier works [9, 11–14] on constructing new 

classes of fullerenes and providing good computer 

programs for discovering their topological 

properties. Our research in this field started with the 

classification of fullerenes by their molecular 

graphs [9]. In the field, it is generally observed that 

there are more than 20 infinite families of fullerene 

graphs. This problem has been known to partly 

arise from the stability of fullerenes. The aim of 

this section was to compute eccentric connectivity 

index of an infinite family of these series of 
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fullerenes, namely, C18n+10. To do this, we first drew 

these compounds by HeperChem [15] and then 

computed their adjacency and distance matrices by 

TopoCluj [16]. Next, we applied some GAP [17] 

programs to compute the ecc(u) for a given vertex u 

of these nano-materials. The final step of this 

process is the analysis of the data obtained by our 

GAP programs. These programs are accessible 

from the authors upon request.  

An automorphism of the graph G = (V, E) is a 

bijection  σ on V which preserves the edge set E, 

i.e., if e = uv is an edge, then σ(e)=σ(u) σ(v) is an 

edge of E, where σ(u) is the image of the vertex u. 

Thus Aut(G), the set of all automorphisms of G, 

under composition of mappings, forms a group. 

Aut(G) acts transitively on V if for any vertices u 

and v in V there is α ε Aut(G) such that.α(u) = v. 

To explain our method, we computed the 

eccentric connectivity polynomial of an icosahedral 

fullerene C20 with 20 vertices and a cube H3 with 8 

vertices. Since for every, ν ε V (C20), ecc(ν)= 5, 

Ξ(C20, x) = 60x
5
. On the other hand, H3 is 3-regular 

and so for every v ε V (H3), ecc(ν)= 3. Hence 

Ξ(H3, x) = 24x
3
. 

u v

 
Fig. 1: The molecular graph of fullerene C20. 

We began by the following simple Lemma: 
 

Lemma 1. Let G = (V, E) be a graph. If Aut(G) 

acts transitively on V, then G is k-regular, where |E| 

= k|V|/2. Moreover, for every u in V(G), Ξ(G , x) = 

k|V|×x
ecc(u)

. 

The hypercube Hn is a graph consisting of all n-

tuples b1b2bn, bi ε{0,1}, as vertices. Two vertices 

are adjacent if the corresponding tuples differ in 

precisely one place, so for every vertex a in V(G), 

ecc(a) = n and Hn is n - 1 regular. Darafsheh [14] 

proved that Hn is transitive. We now applied 

Lemma 1 to compute the eccentric connectivity 

polynomial of a hypercube Hn. We have Ξ(Hn,x) = 

(n–1)2
n
.x

n–1
. On the other hand, by considering the 

fullerene graph C20 shown in Figure 1, one can see 

that C20 is vertex transitive. But ecc(u) = 5, for 

every u in V(C20). This implies that Ξ(C20,x) = 60x
5
. 

The fullerenes C20 and C60 are the only vertex 

transitive fullerenes. So it is important how to 

compute Ξ(G, x) polynomial for other fullerenes.  

Lemma 2. Let G = (V, E) be a graph. If orbits of 

Aut(G) under its action on V are V1, V2, Vs and ui is 

a vertex of Vi, then: 

( )
( , ) | |

s
ecc u

i i
i

iG x k V x
1
  . 

Proof. Suppose Vi
,
s (1 ≤ i ≤ s) are orbits of 

Aut(G) on the set V. Clearly, for every ui in Vi 

degGui = ki and Aut(G) acts transitively on Vi (1 ≤ i 

≤ s). By using Lemma 1 the proof is completed.  

Now we used Lemma 2 to compute the 

polynomial Ξ(G,x) for the fullerene graph C18n+10. In 

Table 1, the Ξ(G,x) polynomials of C18n+10 

fullerenes (Figures 2 and 3) are computed, 4 ≤ n ≤ 

13. For n ≥ 14 we have the following general 

formula for the Ξ(G,x) polynomial of this class of 

fullerenes: 

 
Fig. 2. The molecular graph of the fullerene C18n+10. 

 
Fig. 3. The value of ecc(x) for vertices of central and 

outer polygons. 

Theorem 1. The Ξ(G,x) polynomial of the 

fullerene C18n+10 (n ≥ 14), is computed as follows: 

Ξ(C18n+10, x) =54x
n+2

2 1

1

nx

x

 



+ 

+45(x
2n

 + x
2n+1

) + 27x
2n+2

 + 21x
2n+3

. 

Proof. From Figure 2, one can see that Aut(G) 

has exactly four orbits on the vertices of C18n+10. We 

named the representatives of these orbits as type 1, 

type 2, type 3 and type 4. In Table 1, we recorded 

our calculations: 
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Table 1: The type of vertices and their eccentricities 

Vertices ecc(x) No. 

Type 1 Vertices 2n+3 7 

Type 2 Vertices 2n+2 9 

Type 3 Vertices 2n, 2n+1 15 

Type 4 Vertices n+i (2 ≤ i ≤ n-1) 18 
 

By the calculations given in Table 1, and Figure 2, 

the theorem is proved. 

Some exceptional cases are given in Table 2. 

Corollary 1. The diameter of C18n+10 fullerene, n 

≥ 4, is 2n + 3. 

Table 2. Some exceptional cases of C18n+10 fullerenes. 

Fullerenes EC Polynomials 

C82 67x10+15x11 

C100 18x10+50x11+22x12+10x13 

C118 36x11+39x12+21x13+13x14+9x15 

C136 18x11+36x12+27x13+21x14+15x15+12x16+7x17 

C154 36x12+27x13+21x14+18x15+21x16+15x17+9x18+7x19 

C172 18x12+27x13+21x14+18x15+21x16+18x17+15x18+15x1

9+ 9x20+7x21 

C190 27x13+21x14+18x15+24x16+18x17+18x18+18x19+15x2

0+15x21+9x22+7x23 

C208 9x13+21x14+18x15+24x16+18x17+18x18+18x19+ 

18x20+ 18x21+ 15x22+ 15x23 +9x24+7x25 

C226 21x14+18x15+24x16+18x17+18x18+18x19+18x20+18x2

1+18x22+18x23+15x24+15x25+9x26+7x27 

C244 12x15+24x16+18x17+18x18+18x19+18x20+18x21+18x2

2+18x23+18x24+18x25+15x26+ 15x27+9x28+7x29 

CONCLUSION 

This paper contains information about the 

topological property of an infinite class of 

fullerenes. The area of fullerene chemistry is 

relatively young and received a strong boost after 

the discovery of the C60 fullerene molecule by 

Kroto and his team. Our results are related to the 

mathematical properties of this new allotrope of 

carbon. 
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 (Резюме) 

Епохата на фулерените започва през 1985г. с откриването на стабилен C60 клъстер и неговата 

интерпретация като клетъчна структура с познатата форма на футболна топка от Крото и съавтори. Полиномът 

на ексцентрична свързаност на молекулен граф G, определен като ECP(G, x) = Σaε V(G)degG(a)x
ecc(a)

, където ecc(a) 

е дължината на максималния път до друг възел от G. В настоящата статия този полиномът е изчислен за C18n+10 

фулерени. 


