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Unsteady non-Darcian flow between two stationery parallel plates in a porous
medium with heat transfer subject to uniform suction or injection
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The unsteady non-Darcian flow in a porous medium of a viscous incompressible fluid bound by two stationery
parallel porous plates is studied with heat transfer. A non-Darcy model that obeys the Forchheimer extension is
assumed for the characteristics of the porous medium. A uniform and constant pressure gradient is applied in the axial
direction whereas uniform suction and injection are applied in the direction normal to the plates. The two plates are
kept at constant and different temperatures and the viscous dissipation is not ignored in the energy equation. The
effects of porosity of the medium, inertial effects and uniform suction and injection velocity on both the velocity and

temperature distributions are investigated.
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NOMENCLATURE:

X,y Coordinates in horizontal and vertical directions, respectively
Ty, T2 Temperature of lower and upper plates, respectively
dp/dx Fluid pressure gradient

H Coefficient of viscosity

p Density of the fluid

K Darcy permeability of porous medium

s Porosity parameter

A Inertial coefficient

$ Suction parameter

y Dimensionless non-Darcian parameter

c Specific heat capacity of the fluid

k Thermal conductivity of the fluid

T Fluid temperature

u Velocity component in the x-direction

Vo Constant velocity component in the y-direction

Ec Eckert number

Pr Prandtl number

Re Reynolds number

t Time

INTRODUCTION

The flow of a viscous electrically conducting
fluid between two parallel plates has important
applications, e.g., in magnetohydrodynamic (MHD)
power generators, MHD pumps, accelerators,
aerodynamics heating, electrostatic precipitation,
polymer  technology, petroleum industry,
purification of molten metals from non-metallic
inclusions and fluid droplets-sprays [1]. The flow
between parallel plates of a Newtonian fluid with
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heat transfer has been examined by many
researchers in the hydrodynamic case [2, 3]
considering constant physical properties.  The
extension of the problem to the MHD case has
attracted the attention of many authors [4-8].

Fluid flow in porous media is now one of the
most important topics due to its wide applications
in both science and engineering [9, 10]. In most of
the previous work, the Darcy model was adopted
when studying porous flows. The Darcy law is
sufficient in studying small rate flows where the
Reynolds number is very small. For larger
Reynolds numbers the Darcy law is insufficient and
a variety of models have been implemented in
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studying flows in porous media. The Darcy—
Forchheimer (DF) model is probably the most
popular modification to Darcian flows utilized in
simulating inertial effects [11-14]. It has been used
extensively in chemical engineering analysis and in
materials processing simulations. On the other
hand, we may indicate the existence of non-Darcian
flows (of different kinds) for very low velocity in
low-permeability media [15-17].

In this paper, the transient unsteady non-Darcian
flow with heat transfer through a porous medium of
an incompressible viscous fluid between two
infinite horizontal stationery porous plates is
investigated and the DF model is used for the
characteristics of the porous medium. A constant
pressure gradient is applied in the axial direction
and uniform suction from above and injection from
below is imposed in the direction normal to the
plates. The two plates are maintained at two
different but constant temperatures. The non-
Darcian flow in the porous medium deals with the
analysis in which the partial differential equations
governing the fluid motion are based on the non-
Darcy law (Darcy-Forchheimer flow model) that
accounts for the drag exerted by the porous medium
[18-20] in addition to the inertial effect [14, 21-26].
The viscous dissipation is taken into consideration
in the energy equation. This configuration is a good
approximation of some practical situations such as
heat exchangers, flow meters, and pipes that
connect system components. The cooling of these
devices can be achieved by utilizing a porous
surface through which a coolant, either a liquid or
gas, is forced. Therefore, the results obtained here
are important for the design of the wall and the
cooling arrangements of these devices. The
governing momentum and energy equations are
solved numerically using finite difference
approximations. The inclusion of the porosity
effect, inertial effects as well as the velocity of
suction or injection leads to some interesting effects
on both the velocity and temperature distribution.

DESCRIPTION OF THE PROBLEM

The two parallel insulating horizontal plates are
located at the y = +h planes and extend from x = -0
to o and z = - to o embedded in a DF porous
medium where a high Reynolds number is assumed
[11-14]. The lower and upper plates are kept at the
two constant temperatures T1 and T2, respectively,
where T2 > T1 and a heat source is included, as
shown in Fig (1). The fluid flows between the two
plates in a porous medium where the non-Darcy
law (Darcy-Forchheimer flow model) is assumed

[14, 21-26]. The motion is driven by a constant
pressure gradient dp/dx in the Xx-direction, with
uniform suction from above and injection from

below applied at t = 0 with velocity Vo in the
positive y-direction. Due to the infinite dimensions
in the x and z-directions, all quantities apart from
the pressure gradient dp/dx which is assumed
constant, are independent of the x and z-
coordinates, thus the velocity vector of the fluid is
given as

V(y.t) =u(y,t)i + v, j

with the initial and boundary conditions u = 0 at
t<0,and u= 0 at y =+h for t > 0. The temperature
T(y,t) at any point in the fluid satisfies both the
initial and boundary conditions T=T1 at t <0, T=T2
aty = +h,and T=Tlaty = -h fort > 0. The fluid
flow is governed by the momentum equation [27]
ou ou dpP o’u  u pPA
- - = = - ——u
pat+pv°ay o|x+“ay2 K K
1)
where # and# are the density of the fluid and

the coefficient of viscosity, respectively, K is the
Darcy permeability of the porous medium [18-20]
and A is the inertial coefficient (i.e. the non-Darcian
Forchheimer geometrical constant which is related
to the geometry of the porous medium [14]). The
last two terms in the right side of Eq. (1) represent
the non-Darcy porosity forces. To find the
temperature distribution inside the fluid we use the
energy equation [28]

pcg + peyv, a . kﬂ + y[aUJ2+”u2
ot ° oy ay* oy K

)

where ¢ and k are the specific heat capacity and
the thermal conductivity of the fluid, respectively.
The last two terms on the right side of Eq.(2)
represent the viscous dissipation effect; the first
term is the classical expression of the viscous
dissipation for a clear fluid (K — ), while the
second term is the viscous dissipation in the Darcy
limit (K — 0) [29]. For a full discussion of
modeling this form of viscous dissipation, see [30,

31].
Introducing the following non-dimensional
guantities
2
)A(zi' ?:X, 225’ Gzphu’ FA):Pp:l = t,u2 ’ _I::TfT1
h h h u Y7 ph T,-T,

$=pV,h/ u (the suction parameter), Pr=uc/k
(the Prandtl number), Ec=u?/p®ch?(T, -T,)
(the Eckert number), B=h?/K (the porosity
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parameter), y = Ah/K (the dimensionless non-
Darcy parameter).
Equations (1), (2) are written as: (the "hats" will
be dropped for convenience)
2
LN _® 6_21 — pu—yu?
ot oy dx oy
oT oT
— +$—=——=+
ot oy Pr oy
(4)
The initial and boundary conditions for the
velocity become
u=0,t<0 & u=0, y=41, t>0 ©)
and the initial and boundary conditions for the
temperature are given by

t<0:T=0&t>0:T=1, y=+1 &t>0:

(6)
Uniform suction
yv=nh ::({ :T T T T 1 Upper plate
{ v dP/dx
/ i

- T=T;
v=amu=ol 1 1 1 1
Uniform injection

Fig. 1 The geometry of the problem

Lower plate

NUMERICAL SOLUTION OF THE
GOVERNING EQUATIONS

Equations (3) and (4) are solved numerically
using finite differences [32] under the initial and
boundary conditions (5) and (6) to determine the
velocity and temperature distributions for different
values of the parameters g, y and $. The Crank-
Nicolson implicit method [33] is applied. The
finite difference equations are written at the mid-
point of the computational cell and the different
terms are replaced by their second-order central
difference approximations in the y-direction. The
diffusion term is replaced by the average of the
central differences at two successive time levels.
Finally, the block tri-diagonal system is solved
using Thomas algorithm. All calculations are
carried out for dP/dx = -5, Re =1, Pr=1 and Ec =
0.2, while the results are obtained in a covering
range  for the  non-Darcian  parameter,
00< <20 as [34]. It is found that the

unsteady results reduce to those reported by Attia
et. al. [35] for the cases of Newtonian fluid and
Darcian  model. These  comparisons  lend
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confidence in the accuracy and correctness of the
solutions and, in turn, in the convergence of the two
series defining the exact solution.

RESULTS AND DISCUSSION

Figures (2 — 4) show the time progression of the
velocity profiles till the steady state for ($ = 1) and
various values of the porosity and non-Darcian
parameters £ and y.

1 67T ouY par _ _
= Ec E + B EC U1t is clear that the velocity charts are asymmetric

about the y = 0 plane because of the suction. It is
observed that the velocity component u increases
monotonously with time. The porosity parameter S
and the non-Darcian parameter y have a marked
effect on the time development of u. It is obvious
that increasing S decreases u and its steady state
time as a result of increasing the resistive porosity
'T'OLCB on y,zwj'ile increasing y for each value of g
decreases’ more the velocity u and its steady state
time which reflects the expected resistance because
of the inertial effects. For y = 0 in figures (3-a) and
(4-a) we mean a flow without additional inertial
effects and the Darcian case is obtained to provide
an easier quick path for the fluid flow. Fig (2-a)
represents the simpler linear Newtonian case where
the medium is non-porous with g = y = 0 obtaining
the highest velocity values.

Figures (5 — 7) show the time development of
the temperature profiles for ($ = 1) and various
values of g and y. It is observed that the temperature
T increases monotonously with t. The parameters f
and y affect the time progression of the temperature
T; increasing y decreases T and its steady state time,
as increasing y decreases u, which, in turn,
decreases the viscous dissipation which decreases
T. Increasing S in the non-Darcian case (y # 0)
increases the temperature and decreases its steady
state time because of the viscous dissipation in the
Darcy limit. In figures (6 —a) and (7 — a) where (y =
0) we obtain the linear Darcian case with higher
temperature values for each g, while fig (5-a) shows
the linear Newtonian case where the medium is
non-porous (5 = y =0) in which the highest
temperature values are reached. It is observed that
the velocity component u and the temperature T
reach the steady state monotonously and that u
reaches the steady state faster than T. This is
expected, since u acts as the source of temperature.

Figures (8) and (9) indicate the effect of suction
and injection on the time progression of both the
velocity u and the temperature T at the center of the
channel, respectively, for various values of g and .
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Fig. 5. Time development of the
temperature T for # =0, $ =1 and
various values of y

Fig. 3. Time development of the
velocity u for # =1, $ = 1 and
various values of
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Fig. 6.Time development of the
temperature T for =1, $ =1 and
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Fig. 4. Time development of the
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Fig. 7. Time development of the
temperature T for =2, $ =1 and

various values of y
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(2) p-0 & y-0

(bl p=1 & 1=0

(€) p-0& y-1

@) p=1& y=1

Fig. 8. Effect of the suction parameter $ on the time
development of the velocity u at the center of the
channel (y = 0) for various values of the parameters S
and y

It is seen that increasing the suction parameter $
decreases the velocity and its steady state time at
the center of the channel due to the convection of
the fluid from regions in the lower half to the center
which has higher fluid speed. On the other hand,
increasing the suction parameter $ decreases the
temperature T at the center of the channel which is
influenced more by the convection term, which
pushes the fluid from the cold lower half towards
the center. Figures (8-a) and (9-a) indicate the
linear Newtonian case where the plates are non-
porous (f# = 0) and there are no inertial effects (y =
0) to obtain the highest velocity and temperature
distributions. Figures (8-b) and (9-b) show the
Darcian case in which the velocity decreases more
because of the porosity of the medium (4 = 1) and
the temperature profile shows an increase due to the
viscous dissipation caused by the porosity drag.
Figures (8-c) and (9-c) show that the inertial effects
(y = 1) decrease more the velocity and temperature
considering non-porous medium (8 = 0). Also,
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Fig. 9. Effect of the suction parameter $ on the time
development of the temperature T at the center of the
channel (y = 0) for various values of the parameters S
and y

figures (8-d) and (9-d) represent the non-Darcian
flow in a porous medium (8 = y = 1) which shows
an obvious resistive effect in decreasing u and T
where a noticeable similarity in the velocity profiles
for the different values of the suction parameter $ is
achieved. Also, it can be seen from Figure (9) that
T may exceed the value 1 which is the temperature
of the hot plate and this is due to the viscous
dissipation.

Tables (1), (2) and (3) summarize the variation
of the steady state values of both the velocity u and
the temperature T at the center of the channel (y =
0), respectively, for various values of g and y and
different values of the suction parameter ($ = 0, 1,
2). The results confirm the inverse proportionality
between the parameters £ and y and the velocity u
and the temperature T (considering the viscous
dissipation for a clear fluid, K — o0) reaching the
steady state of both because the increase in the
porosity resistance and the inertial effects reduce u
and hence T.
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Table 1. Variation of the steady state velocity u at the center of the channel (y = 0) for various values of B, y and $.

@ $=0 vy=0 y=1 y=2
B=0 2.499986 1.570278 1.266707
p=1 1.761786 1.301599 1.09713
=2 1.354654 1.097677 0.957878

(b) $=1 y=0 y=1 y=2
B=0 2.312212 1.518816 1.238231
=1 1.671946 1.264911 1.07488
=2 1.304083 1.071377 0.9405971

(c) $=2 y=0 y=1 y=2
B=0 1.907495 1.384467 1.16059
=1 1.460687 1.168418 1.014149
=2 1.178782 1.001486 0.893262

Table 2. Variation of the steady state temperature T at the center of the channel (y = 0) for various values of B, y and $

(considering the viscous dissipation for a clear fluid, K — o0).

(@ $=0 y=0 y=1 y=2
=0 3.84995 1.75015 1.2918
=1 2.115184 1.345975 1.087395
=2 1.430434 1.092352 0.9425454

(b) $=1 y=0 y=1 y=2
B=0 3.04365 1.386067 0.9881772
=1 1.665431 1.029702 0.8039784
=2 1.091862 0.8048577 0.673273

(c) $=2 y=0 y=1 y=2
B=0 1.844335 0.9489002 0.6783103
=1 1.078147 0.6951373 0.5387978
=2 0.7174322 0.5321741 0.4392434

Table 2. Variation of the steady state temperature T at the center of the channel (y = 0) for various values of B, y and $
(Considering the viscous dissipation in the Darcy limit, K — 0).

(d) $=0 y=0 y=1 y=2
=0 3.84995 1.75015 1.2918
=1 3.951613 2.376075 1.831821
=2 3.632962 2.570357 2.084983

(e $=1 y=0 y=1 y=2
=0 3.04365 1.386067 0.9881772
=1 3.178412 1917231 1.455387
=2 2.957291 2.08949 1.677764

fH $=2 y=0 y=1 y=2
B=0 1.844335 0.9489002 0.6783103
B=1 1.99993 1.296159 0.9982081
B=2 1.931794 1.423236 1.15748

Furthermore, a direct proportionality between
the porosity parameter £ and the temperature T is
obtained for y # 0 (considering the viscous
dissipation in the Darcy limit, K — 0); which gives
an obvious proof that the viscous dissipation in the
Darcy limit considering the quadratic drag
formulation depends on the porosity of the medium.
The results also showed that increasing the suction
parameter $ decreases the velocity and the
temperature and that higher wvelocity and
temperature values for various £ and y are obtained
at$=0.

CONCLUSIONS

The unsteady non-Darcian flow through a
porous medium between two stationery parallel
plates of a viscous incompressible fluid was studied
with heat transfer in the presence of uniform
suction and injection considering different modes
of viscous dissipation. The effects of porosity of
the medium, inertial effects, suction and injection
velocity on the wvelocity and temperature
distributions are investigated. It is found that
porosity, inertial effects and suction or injection
velocity have a marked effect on decreasing the
velocity distribution in an inverse proportionality
manner. Furthermore, increasing the porosity
parameter increases the temperature, while
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increasing the non-Darcian parameter decreases the
temperature for each value of the porosity. Various
cases were monitored passing through the
Newtonian fluid flow in a non-porous medium, the
Darcian flow model and the non-Darcian flow in a
porous medium which showed the greatest flow

resistance resulting in lower velocity and
temperature values.
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HECTAIWOHEPEH HE-DARCIAN-OB I[TIOTOK MEXY JIBE CTALIMOHAPHU
YCIIOPEJJHMU 11JIOYHM B IIOPLO3HA CPEJA C ITPEHOC HA TOIUIMHA, ITPEAMET HA
[TOCTOAHHO BCMVYKBAHE MJIN UHXXEKTHUPAHE

X.A. Arunal, M.AU. Ecasu®", A.X. XaTep3, A.A. Pamaman®

Y Henapmamenm no gpusuuno u mamemamuuno unsicenepcmeo, Mmoicenepen paxyrmem, Yuueepcumem ¢ En-®@arom,
En-®arwom 63514, Ecunem
2Bucw mexnonozuuen uncmumym (HTI), Tuza, E2unem
3 lenapmamenm no mamemamuxa, Hayuen gpaxynmem, Yuueepcumem ,, benu-Cyegp “, Ecunemt

Mocrenuna Ha 29 roiu, 2013 r; kopurupana Ha 9 nekemspu, 2013 r
(Pestome)

W3yden Oerre HectannoHapeH He-Darcian-oB moTok B Mopbho3Ha cpela Ha €IUH BIHCKO3EH HECBUBAEM (GIIyHI MEXIY
JIBE CTAI[MOHAPHU YCIOPEIHM IUIOYM C TNpPeHOC Ha TomiuHa. EnuH He-/lapcm Moxen, KOWTO ce MOAYMHSBA HA
pasmpenneto Ha Forchheimer ce mpuema 3a xapakTepHUCTHKUTE Ha IOpecTaTa cpena. ExHakbB MOCTOSIHEH IpaJueHT
Ha HaJATaHETO Ce NpHJjara B aKCHallHa ITOCOKA, JOKATO €AHAKBO BCMYKBAaHE M MH)KEKTHpaHE CE IpHiaraT B ITOCOKa
MEpIEeHANKYIISIpPHA Ha MI04nTe. J[BeTe IUIoun ce ChXpaHsIBaT IPH ITOCTOSHHN M Pa3INdHH TEMIIEpaTypH U AUCHIIAIHAATA
Ha BUCKO3WTETA HE ce IPeHeOpersa B eHepIruiHOTO ypaBHeHHETo. M3cnenBann ca eekTuTe Ha HOPHO3HOCT Ha CpeJiara,
WHEPLUUOHHHUTE e(EeKTH M IMOCTOSHHM CKOPOCTH Ha BCMYKBaHE M Ha HMH)KXEKTHpaHE BBPXY CKOPOCTHHS MPOGHI U
pas3npeeseHueTo Ha TeMIlepaTypaTa ca U3CJIeIBaHM.
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