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Due to great impacts to air pollution caused by residual coal oxidation in underground mine gob, monitoring and

forecasting of hazardous gases emissions have become important topics in mining engineering and environmental

research today. This paper presents a robot monitoring system for carbon monoxide emission from coal oxidation in

spontaneous combustion condition. According to the terahertz-wave absorption spectrum, the CO concentrations are

measured by using terahertz time-domain spectroscopy (THz-TDS) technique. Based on the measured values, an

innovative method of CO concentration prediction has been developed by using least square support vector machine

(LSSVM) with a novel hyper-parameter selection. The hourly CO concentrations have been predicted using the SVM
and the hybrid LSSVM models respectively. Results show that the hybrid LSSVM has better accuracy. Statistic
estimators have been employed to compare performances of the models. It has been concluded that the errors decrease

and coefficients of determination increase for hybrid LSSVM model, hence it has definite practice significance and

application value.
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INTRODUCTION

Coal is the prime energy resource in most
countries, 60% of them located in three countries:
the United States, Russia, and China. Uncontrolled
coal fires are a serious problem in many coal-
producing countries and become an environmental
and economic problem of international magnitude
[1].

Although written accounts of coal fires date back
to at least the time of Alexander the Great, the
worldwide spread of coal fires has increased
dramatically since the industrial revolution.
Currently, thousands of coal fires are burning—
some for centuries and many uncontrollably, with
flames up to 20 m and temperatures exceeding
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1000°C—from eastern Asia and northern China into
the coal basins of Russia, Europe, Africa, north and
south America, and Australia [2,3].

Coal fire is a global catastrophe, some of its
prime impacts are [4,5]: (a) Emission of many
toxic gases, such as carbon monoxide (CO), carbon
dioxide (CO2), sulfur oxides (SOx), methane
(CH4), and nitrogen oxides (NOx). Among these
noxious gases, CO2 and CH4 contribute to global
warming. (b) Geomorphic effects include land
subsidence, surface cracks, faults, and other
geologic structures. This paper also presents an
innovative method of CO concentration prediction
using a novel hyper parameter selection for Least
Square Support Vector Machine (LSSVM) [19]
regression combined with particle swarm optimal
algorithm (PSO) [20]. The CO concentrations of
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hazardous gas monitoring station in coal mine gob
have been used to test the effectiveness of this
method. Statistic estimators including mean
absolute percentage error (MAPE), mean absolute
error (MAE) and root mean square error (RMSE)
and coefficient of determination (R2) have been
employed to compare performances of the models.

EXPERIMENTAL

Hazardous gas samples were collected from the
gob in an actual coal mine and analyzed by terahertz
measurement to obtain the carbon monoxide
concentration.

The monitoring system for CO concentration
detection is shown in Fig. 1. To collect these
samples, multiple sample collection tubes were
placed in the gob behind the scraper conveyor. The
gas from the gob was collected through these tubes
using a pump, and pumped into a ball sample vessel.
This full sample vessel was transferred to the
laboratory for analysis. The pump system to remove
gas from the gob using suction was an electric rotary
vane vacuum pump with an explosion-proof motor.

THz-TDS analysisinstrument

Ground

Underground

Ball gall Pump

Goaf

Fig. 1. Monitoring system for CO concentration
detection.

Gas samples were collected at different points in
the mine. Collection tubes were placed in the gob
near the air return roadway. Boundaries for the
model were based on a workface in a coalmine in
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northern China, which has a U-type ventilation
mode. The intake airflow and return airflow are on
the top and bottom, respectively, of the front of this
model.

The gas samples were analyzed using a THz-
TDS system which is used to measure THz
absorption of carbon monoxide following the
pioneering works [21].

According to the principle of radiation transfer
[22-24], the radiation emitted from the source and
traveling through the gas cell can be absorbed by the
CO gas. The spectra of absorption coefficient for
CO gas are presented in Fig. 2 at three different
concentration levels, i.e., 0.5%, 1%, and 2%. CO
gas is known to have a number of equispaced
signature spectral lines that are at very precise
frequency locations.

It can be seen that the frequency positions of the
spectral lines did not change for the different
concentration conditions; however, there was a
significant change in the intensity of the lines from
one concentration level to another. As concentration
increases, so does the intensity of the rotational
transition lines. There is evidently a near linear
relationship between the pressure and the change in
intensity of the absorption peaks. This is also true
for all rotational lines in CO gas.
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Fig. 2. Absorption spectrum of CO at different

concentrations.

The measurements in this study demonstrate that
varying the concentration of the gas affects only the
amplitude of the absorption lines and not their exact
position. This is critical in air pollution studies when
trying to single out a specific gas (such as CO) from
a field sample with unknown constituents.
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PREDICTION MODEL

Support vector machine (SVM) has been used in
many applications, for example, the pattern
recognition problem and fault diagnose with high
dimension and nonlinearity [25, 26]. The hybrid
Least square support vector machine (LSSVM) [27]
as a novel approach for CO concentration prediction
has been applied to data from the hazardous gas
monitoring system. LSSVM is reformulations to the
standard support vector machines which result in a
set of linear equations instead of a quadratic
programming problem of SVM.

LSSVM is a learning algorithm. It uses a
hypothesis space of linear function in a high
dimensional feature space by using the kernel
theory. In this paper, this algorithm is trained by
optimization theory. Consider a given training set
(X, yi),i=1,2,...n, where x; andy; are the input and
the output of the ith example, n denotes the number
of samples. The support vector method approach
aims at constructing a regression function of the
following form:

ysz(p(xi)+b 1)

where @(xi) is a nonlinear function which maps the
feature space of input into a higher dimension
feature space and can be reached by the kernel
strategy, weR" is coefficient vector and b R is bias
term. These unknown coefficients » and b can be
obtained through solving the following optimization
problem:

min J (o e)—EmeZie?
! - 1
i 2 v

st. yi[mT(p(xi)+b}=1_ei i=1---,N

where J(w,e)
the first term, measures the inverse of the margin
distance. In order to obtain the minimum structural

is structure risk, In equation (2),

risk, the first term should be minimized. y [lis the
regularization parameter, determining the trade-off
between the fitting error
smoothness. e is a slack variable, which ensures
classification validity under linear non-separable

minimization and

case. This optimization problem including the
constraints can be solved by using the Lagrange
function as following:

L(o,&,b oz-)—lmTo)+Z%‘e-2
yYiy MU ) — 1
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where ¢; [lis the Lagrange multipliers. Considering
the optimization conditions by Karush-Kuhn-Tucker
(KKT), the optimal condition about (2) can be
obtained as following:

oL N

N
%:szaiyi =0
ob i=1
oL 4)
8—%:0: i [(:;»T(p(xi)+b]+ei -1=0
izo:]/ei =0

i
wherei=1,2,...N.
Eliminating the parameter  and e | /in equation

(4), these equality constraints can be transformed as
following:

0 Y' b7 To
o NEN ®
V4

where | is the identity matrix,
T
Q5 = Yiyje(x) o(x).

The solution of a and b can be obtained by
solving (5) and substitute to (1). (1) is presented as:

f(x)=Zo¢i(p(xi)T (p(xj)+b (6)

According to the Mercer rule, the kernel
function K(xi, x;) is introduced, thus the kernel
function is expressed as:

K(x.x)=0(x) o(x) (1)

In LSSVM, quadratic programming problem is
changed as the problem of solving linear equation
groups, which simplifies the calculation quantity.
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Combining equation (6) with equation (7), equation
(6) is expressed as:

f(x):ZaiK(xi,xj)er (8)

There are various kernels used in the LSSVM.
Different kernel function presents the different
mapping from the input space to the feature space.
As a result;, LSSVM model changes with the
different kernel function selections. The radial basis
function (RBF) is used as the kernel function of the
LSSVM because RBF kernel tends to give good
performances under general smoothness
assumptions. RBF-kernel function is presented as
following:

2
K(xYy)= exp[—%} 9)

where o is the kernel parameter and controls the
LSSVM's regression or classification ability. In
equation (2), vy is the regularization parameter
determining the fitting error minimization and
smoothness. They are important parameters in the
LSSVM algorithm.

In LSSVM model, the parameter y and parameter
o of the RBF function are chosen according to
experience. In this way, for different sample sets,
the optimal parameter values are difficult to be
found, which affects the fault diagnosis efficiency
and accuracy. However, it needs an exhaustive
search over the space of hyper-parameters, which
must be time consuming. This procedure needs to
locate the interval of feasible solution and a suitable
sampling step. In order to acquire the better
classification accuracy, the particle swarm
optimization algorithm (PSO) is used to find the
optimal solution of these parameters in LSSVM.

The basic idea of particle swarm optimization
can be described in an explicit way: each individual
in particle swarm, referred to as a ‘particle’,
represents a potential solution; each particle moves
its position in search domain and updates its
velocity according to its own flying experience and
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neighbors’ flying experience, aiming at a better
position for itself.
According to the simple PSO model, the
velocity Vi for each dimension of the ith particle
can be updated as follow:

Vi =WV; +G1 (B - X;)+Cohy (Py - X;) (10)

where w is the inertia weight coefficient; c; and
c. are two positive constants called acceleration

coefficients; P. and P, P, and Py are the local

individual best location and the global best location;
r. and r, are random numbers in the range of [0,1].
The new position X; for ith particle can be expressed
as:

Xiz = Xi +Viu (11)

In the standard PSO, if O<w<1 and Vi.1<V;, there
exists a certain number that when the generation
number is more than it, the current global best
position Py of the swarm does not vary, and
consequently, all components of Vi, will be smaller
than a given error, and the particle will stop
evolution. Even if a better solution exists in this
direction, the particle swarm may stop evolution
before finding this position and fall into premature
convergence. This is the reason why the standard
PSO may fall into local optimum solution.

To solve the problem of premature convergence,
we use the stochastic particle swarm optimization
(SPSO) algorithm [28, 29]. Here set the inertia
weight w = 0, substituting equation (10) into
equation (11), the following equation can be
obtained:

Xi+1:Xi+C1r1(Pi'Xi)+C2r2(Pg'Xi) (12)

In order to improve the global searching ability,
Py is maintained to be the historic best position, and
an extra particle j with the position X; is generated
randomly in the searching domain. In this way, the
following updating procedure is obtained:

{ = (13)
P, =argmin(R,P;)
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This means that if Py = P;, the random particle j
locates at the best position and the new random
particle will be searched repeatedly, therefore at
least one particle is generated in the searching
domain randomly to improve the global searching
ability.

In the SPSO-LSSVM model, the appropriate
parameters are selected by the SPSO algorithm,
which can find the optimal parameter value quickly.
As what has been mentioned above, y and &°
become the swarms, then the dimension of the
swarms is two. These swarms can be expressed as
following:

7i :[7/i117/i1""7id]
O'2i :[O-Zilvaziz"'o-zid}
The key factor to determine the optimized hyper-
parameters using SPSO is how to define the fitness
function which evaluates the goodness of individual.
The fitness function can evaluate the objective
values of all particles. The choice of the fitness
function is very important because it is on this basis
that the SPSO evaluates the goodness of each
particle solution for the LSSVM regression system.
In function regression, the fitness function is the
sum square error between the real output data of the
system and the output data of the LSSVM model in
the same input. In this study, the fitness function
used is expressed as follows:
N
F(r.0%)= ;{[yi — (15)
i
where y; is real output data and Yieg is the
output data of the LSSVM model in the same
input.

(14)

RESULTS AND DISCUSSION

Having constructed both the SVM and hybrid
LSSVM models, the parameters would have had to
be calibrated and evaluated. CO levels have been
predicted by both SVM and LSSVM models for the
field measurements.

The data taking part in the learning and testing
steps of the models have been those collected from a
period of 40 days in 2010 and 2011 respectively. In

those days, the CO concentration was measured
every 1 h so the CO level was predicted on hourly
basis for each day. In both SVM and LSSVM
models, 80 percent of the data were used for training
the models and the rest were used for testing the
models.

Optimization of these parameters has been done
by a systematic grid search of the parameters using
leave-one-out cross validation on the training set.
First, a broad range of parameters settings are
investigated with large steps. Second, after
identifying a promising region, this region is
searched in more details. The test set is used as an
independent set to calculate the final prediction
error. Furthermore, the test error is not used to select
the optimal model but its size is compared to test set
errors with other settings to identify possible
overtraining.

The results are further analyzed using statistical
indices. The statistical indices used in the analysis
are mean absolute percentage error (MAPE), mean
absolute error (MAE) and root mean square error
(RMSE) and coefficient of determination (R?).
These parameters have been defined as below:

MAPE =%i|[y;— v 1/¥i|x100% (16)
1 Nl:l
MAE == [y, -y (17)
i=1

N

RMSE = > [y’ -, ]2/N (18)

i=1
N

Re=1-Y [y -y, T i[vi yf (19)

i=1
Where y; vy, is the observation value, y, is the

average value and y is the predicted value. The
MAR and the MAPE correct the ’canceling out’
effects; moreover, MAPE takes into account the
different scales at which this measure can be
computed. RMSE gives a relatively high weight to
large errors. This means the RMSE is most useful
when large errors are particularly undesirable. The
MAR and the RMSE can be used together to
diagnose the variation in the errors in a set of

891



Y. M. Wang et al.: Innovative prediction model of carbon monoxide emission from deep mined coal oxidation

forecasts. The RMSE will always be larger or equal
to the MAE; the greater difference between them,
the greater the variance in the individual errors in
the sample. All errors are negatively oriented scores,
so lower values are better. The computations were
made with the Windows XP operating system and
MATLAB.

Hourly CO concentrations predicted by SVM
model have been shown in Fig. 3.
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Fig. 3. Hourly CO concentrations predicted by SVM
model in (a) 2010 and (b) 2011.

Correlations between prediction and measured
values in the test stage have been determined using
R? as shown in Fig. 4. Coefficients of determination
for each period were 0.767 and 0.683 respectively.
This means that the SVM model can predict CO
concentration fluctuations within an acceptable
limit. However, grid search and modeling was found
to be very much time consuming. Also, there as
been a significant amount of multicollinearity
among the CO concentration predictors.
Multicollinearity can make it difficult to correctly
identify the most important contributors to a
physical process. Also the large number of the
predictors, reduce the earning rate of the prediction
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process, hence, size reduction methods like LSSVM,
can be useful solution for this predicament.
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Fig. 4. Correlation between measured CO

concentrations and SVM predictions predicted by SVM
model during testing stages in (a) 2010 and (b) 2011.

The LSSVM method has been used in this
research to reduce the size of the input data.
Hourly prediction results of hybrid LSSVM model
are shown in Fig. 5. Similar to the SVM model,
correlations between prediction and measured
values in the test stage have been determined for
LSSVM model as shown in Fig. 6. Coefficients of
determination for each period were found to be
0.838 and 0.78 respectively.

Results of the two SVM and hybrid LSSVM
models have been compared and discussed
statistically and their respective computation times
are illustrated in Table 1. It can be seen that the
hybrid LSSVM model has higher coefficient of
determination and fewer errors than the SVM
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model. Thus, the hybrid LSSVM model produced
more accurate results and size reduction had positive
effect on the model performance. Moreover, the
hybrid LSSVM model achieves faster training speed
and grid search. As it was observed, the total
calculation time obviously is saved. The reduction
of the input vector dimensions is resulted in the
reduction of the SVM calculations and shortening
the SVM training periods. Due to the effects of
many factors on air pollution concentrations, a small
error has remained. However in this case, the hybrid
LSSVM has been found a better and faster
predictive model.
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Fig. 5. Hourly CO concentrations predicted by
LSSVM model in (a) 2010 and (b) 2011.

As seen in Table 1, the RMSE and MAR have
decreased by using LSSVM method. This means
that LSSVM is able to remove unqualified variables
and noises, hence, the positive effect of the LSSVM
is more sensible. Also, the MAPE has decreased in
both the tasting and training processes by using
hybrid LSSVM. In other words, LSSVM method
can increase model prediction efficiency.
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Fig. 6. Hourly CO concentrations predicted by
LSSVM model in (a) 2010 and (b) 2011.

Table 1. Comparison of SVM and LSSVM models by
statistics estimators.

MAE RMSE MAPE R? Tg)‘e
LSSV Train 0683 0811 0039 0972
o M Test 1173 1358 0054 0.838
' Tgyy Train 0856 1028 0049 0956 o
Test 1.408 1.630 0.064 0.767
LSSV Train 0725 0832 0026 0877 .
b, _M_ Test 1143 1305 0040 0.780
Train 0.943 1.081 0.034 0.792
SVM ' Test 1371 1566 0048 0683 108

CONCLUSIONS

In this paper, a robot monitoring system for
carbon monoxide emission from underground coal
fires has been presented. The CO concentrations
were measured by using terahertz time-domain
spectroscopy (THz-TDS) technique according to the
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absorption characteristics of CO. This paper has also
presented the prediction method of hourly hazardous
gas emission from coal mine gob by applying the
Support Vector Machine (SVM) and Least Square
Support Vector Machine (LSSVM).

It can be concluded that such models provide a
more promising alternative to time series
forecasting. However, the important point of this
approach is the data size reduction by LSSVM. The
proposed hybrid LSSVM model provides a
considerable improvement in the forecasting of CO
concentrations over the SVM model based on the
same set of input variables. Besides, the LSSVM
implementation for size reduction obviously saved
time of the SVM training and grid search method.

Statistical error estimators have been used to
compare performance of the SVM and the hybrid
LSSVM models Errors estimated by the MRE,
MSRE and MAPE decreased as R2 decreased by
implementing the LSSVM. Generally, the hybrid
LSSVM models have good ability to predict air
pollution in different time intervals.

Acknowledgements: This research was supported
by the National Natural Science Foundation of
China (Grant no. 51134020, 51106175 and
51104154), and A Project Funded by the Priority
Academic Program Development of Jiangsu
Higher Education Institutions.

REFERENCES

1.G.B. Stracher, Int. J. Math. Geol., 27, 499 (2009).

2.A.E. Whitehouse, A.A.S. Mulyana, Int. J. Coal Geol.,
59, 91 (2004).

3.G.B. Stracher, T.P. Taylor, Int. J. Coal Geol., 59, 7
(2004).

4.M.A. Nolter, D.H. Vice, Int. J. Coal Geol., 59, 99
(2004).

5.E.L. Heffem, D.A. Coates, Int. J. Coal Geol., 59, 25
(2004).

894

6.S. Porada, Fuel, 83, 1191(2004).

7.X. Li, G. Matuschek, M. Herrera, H. Wang, A.
Kettrup, J. Anal. Appl. Pyrolysis, 67, 393 (2003).
8.M.V. Gil, D. Casal, C. Pevida, J.J. Pis, F. Rubiera,

Bioresour. Technol., 101, 5601(2010).

9.L. Liu, F.B. Zhou, Int. J. Coal Geol. 82, 27 (2010).

10. L.M. Yuan, A.C. Smith, Fuel, 87, 3409 (2008).

11.S. Wessling, C. Kuenzer, W. Kessels, M. W.
Wuttkea, Int. J. Coal Geol., 7, 175 (2008).

12.R.N. Singh, J. A. Shonhardt, N. Terezopoulos,
Miner. Resour. Eng., 11, 2, 147 (2002).

13. K.H. Wolf, H. Bruining, Fuel, 86, 2761 (2007).

14. A. Rosema, H.Y. Guan, H. Veld, Fuel, 80, 7(2001).

15. A.K. Singh, R.V.K. Singh, M.P. Singh, Int. J. Coal
Geol., 69, 192 (2007).

16.J.J. Huang, H. Bruining, K.H. Wolf, Fire Safety J.,
36, 477 (2001).

17.J.C. Hower, K.R. Henke, J.M.K. O'Keefe, M.A.
Engle, D.R. Blake, G.B. Stracher, Int. J. Coal Geol.,
80, 63 (2007).

18.F. Hindle, A. Cuisset, R. Bocquet, G. Mouret, C.R.
Physique, 9, 262 (2008).

19.J.A.K. Suykens, J. Vandewalle, Neural Process.
Lett., 9, 293 (1999).

20.R. Poli, J. Kennedy, T. Blackwell, Swarm Intell., 1,
33(2007).

21.N.N. Almoayed, M.N. Afsar, IEEE T. Instrum.
Meas., 55, 1033 (2006).

22.Y. Yuan, F. Xie, H.L. Yi, S. K. Dong, H.P. Tan, J.
Infrared Millim. Wav., 30, 439 (2011).

23.Y. Shuai, S.K. Dong, H.P. Tan, J. Quant. Spectrosc.
Radiat. Transfer, 95, 231 (2005).

24.Y. Shuai, X.L. Xia, H.P. Tan, ASME J. Sol. Energy
Eng., 130, 021001 (2008)

25.Y. Guo, A.G. Song, J.T. Bao, H.R. Tang, J.W. Cui,
Int. J. Adv. Rob. Syst., 6, 207 (2009).

26.X.J. Zeng, X.H. Huang, M. Wang, Int. J. Adv. Rob.
Syst., 6, 59(2009).

27.J.AK. Suykens, J. De Brabanter, L. Lukas, J.
Vandewalle, Neurocomput., 48, 85 (2002).

28.Y. Yuan, H.L. Yi, Y. Shuai, B. Liu, H.P. Tan. Atmos.
Environ., 45, 4892 (2011).

29.Y. Yuan, H.L. Yi, Y. Shuai, F.Q. Wang, H.P. Tan, J.
Quant. Spectrosc. Radiat. Transfer, 111, 2106
(2010).



Y. M. Wang et al.: Innovative prediction model of carbon monoxide emission from deep mined coal oxidation

NMHOBATHUBEH MOJEJI 3A ITPEJICKA3BAHE HA EMUCHU OT BBIJIEPOAEH
MOHOKCH/I ITOJIYUEHU TTPU OKHUCJIEHUE HA BBIJIMIIA HA I'OJIEMU I bJIBOYMHHA

AM. Yaur!, ¥.3. Vanr?, 3.J1. lllao?, AM. Yaur®, T K. Il

1 . .
Koneorc no cueypnocmma, Kumaticku munno-mexnonozuiecku ynugepcumem, Keyoowcoy, Kumarti
2 .

Jlabopamopus na npomusonodicaper KOHMpO. b8 6beredobusHume munu, Kcyoxoy, Kumai
3 .
Jwpoicasna nabopamopus no sveruwnu pecypcu u bezonacen 0oous, Kcuoscoy, Kumaii

(Pesrome)

Iocthnmna Ha 13 ampwi, 2014 1.

MOHHTOPHHT'BT U IPOTHO3UPAHETO Ha EMUCHHTE Ha OTIACHU Ta30Be Bede € BakKHA TeMa B MUHHOTO WH)KEHEPCTBO U
M3CJIEeIBAHETO HA OKOJIHATa cpena. ToBa ce ABIDKM Ha 3aMBPCSIBAHETO Ha BB3AyXa MOPagN OCTATHYHOTO OKHCICHHE B
MOJI3¢eMHUTE MHHHU XOPH30HTH. B Hactosmmara pabora ce mpencraBs poOOTH3MpaHA MOHHTOPWHTOBA CHCTEMa 3a
EMHUCHHTE OT BBIVIEPOICH MOHOKCHI OT CIIOHTAaHHOTO TOpEHE Ha BBIVIMINA B MUHU. KOHIIEHTpanuuTe Ha BBIIICPOTHIS
MOHOKCHJI CE H3MepBar upe3 Tepaxepi-BriHoBa crektpockomnus (THz-TDS). Ha ocHoBaTta Ha H3MEpEHUTE CTOHHOCTH €
pa3paboTeH HHOBATHBEH METOJ, M3MON3Ball ,,least square support vector machine* (LSSVM) ¢ xumep-napamerpudcH
moaoop. YacoBUTE KOHICHTpalMU ca MpenackasBaHu dpe3 moaeaute SVM u xubpumaus LSSVM. Pesynrature
mokassar, 4e xuopunausaT LSSVM- Mmonen naBa mo-Brcoka To4HOCT. HampaBeH € M3BOIBT, Ue TPEIIKATE HAMASIBAT, a
KOpeJTallMOHHUTE KOeHUIIMEHTH HapacTBaT npu xubOpumaus LSSVM-monen, mopamu KoeTo TOW OIpeneieHo hMa

IIpaKTU4YECKa CTOMHOCT U TMIPUIIOKUMOCT.
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