
887 

Bulgarian Chemical Communications, Volume 46, Number 4 (pp. 887 – 895) 2014 

Innovative prediction model of carbon monoxide emission from deep mined 

 coal oxidation 

Y. M. Wang1, W. Z. Wang1, Z. L. Shao2, D. M. Wang3, G. Q. Shi1* 

1
 School of Safety Engineering, China University of Mining and Technology, 

221116Xuzhou, China 

2
 Key Laboratory of Gas and Fire Control for Coal Mines, 221116Xuzhou, China 

3
 State Key Laboratory of Coal Resources and Safe Mining, 221116Xuzhou, China 

Submitted April 13, 2014 

Due to great impacts to air pollution caused by residual coal oxidation in underground mine gob, monitoring and 

forecasting of hazardous gases emissions  have become important topics in mining engineering and environmental 

research today. This paper presents a robot monitoring system for carbon monoxide emission from coal oxidation in 

spontaneous combustion condition. According to the terahertz-wave absorption spectrum, the CO concentrations are 

measured by using terahertz time-domain spectroscopy (THz-TDS) technique. Based on the measured values, an 

innovative method of CO concentration prediction has been developed by using least square support vector machine 

(LSSVM) with a novel hyper-parameter selection. The hourly CO concentrations have been predicted using the SVM 

and the hybrid LSSVM models respectively. Results show that the hybrid LSSVM has better accuracy. Statistic 

estimators have been employed to compare performances of the models. It has been concluded that the errors decrease 

and coefficients of determination increase for hybrid LSSVM model, hence it has definite practice significance and 

application value. 
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INTRODUCTION 

Coal is the prime energy resource in most 

countries, 60% of them located in three countries: 

the United States, Russia, and China. Uncontrolled 

coal fires are a serious problem in many coal-

producing countries and become an environmental 

and economic problem of international magnitude 

[1]. 

Although written accounts of coal fires date back 

to at least the time of Alexander the Great, the 

worldwide spread of coal fires has increased 

dramatically since the industrial revolution. 

Currently, thousands of coal fires are burning—

some for centuries and many uncontrollably, with 

flames up to 20 m and temperatures exceeding 

1000°C—from eastern Asia and northern China into 

the coal basins of Russia, Europe, Africa, north and 

south America, and Australia [2,3]. 

Coal fire is a global catastrophe, some of its 

prime impacts are [4,5]: (a) Emission of many 

toxic gases, such as carbon monoxide (CO), carbon 

dioxide (CO2), sulfur oxides (SOx), methane 

(CH4), and nitrogen oxides (NOx). Among these 

noxious gases, CO2 and CH4 contribute to global 

warming. (b) Geomorphic effects include land 

subsidence, surface cracks, faults, and other 

geologic structures. This paper also presents an 

innovative method of CO concentration prediction 

using a novel hyper parameter selection for Least 

Square Support Vector Machine (LSSVM) [19] 

regression combined with particle swarm optimal 

algorithm (PSO) [20]. The CO concentrations of * To whom all correspondence should be sent. 
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hazardous gas monitoring station in coal mine gob 

have been used to test the effectiveness of this 

method. Statistic estimators including mean 

absolute percentage error (MAPE), mean absolute 

error (MAE) and root mean square error (RMSE) 

and coefficient of determination (R2) have been 

employed to compare performances of the models. 

EXPERIMENTAL 

Hazardous gas samples were collected from the 

gob in an actual coal mine and analyzed by terahertz 

measurement to obtain the carbon monoxide 

concentration. 

 The monitoring system for CO concentration 

detection is shown in Fig. 1. To collect these 

samples, multiple sample collection tubes were 

placed in the gob behind the scraper conveyor. The 

gas from the gob was collected through these tubes 

using a pump, and pumped into a ball sample vessel. 

This full sample vessel was transferred to the 

laboratory for analysis. The pump system to remove 

gas from the gob using suction was an electric rotary 

vane vacuum pump with an explosion-proof motor.  

 
Fig. 1. Monitoring system for CO concentration 

detection. 

Gas samples were collected at different points in 

the mine. Collection tubes were placed in the gob 

near the air return roadway. Boundaries for the 

model were based on a workface in a coalmine in 

northern China, which has a U-type ventilation 

mode. The intake airflow and return airflow are on 

the top and bottom, respectively, of the front of this 

model.  

The gas samples were analyzed using a THz-

TDS system which is used to measure THz 

absorption of carbon monoxide following the 

pioneering works [21]. 

According to the principle of radiation transfer 

[22-24], the radiation emitted from the source and 

traveling through the gas cell can be absorbed by the 

CO gas. The spectra of absorption coefficient for 

CO gas are presented in Fig. 2 at three different 

concentration levels, i.e., 0.5%, 1%, and 2%. CO 

gas is known to have a number of equispaced 

signature spectral lines that are at very precise 

frequency locations. 

It can be seen that the frequency positions of the 

spectral lines did not change for the different 

concentration conditions; however, there was a 

significant change in the intensity of the lines from 

one concentration level to another. As concentration 

increases, so does the intensity of the rotational 

transition lines. There is evidently a near linear 

relationship between the pressure and the change in 

intensity of the absorption peaks. This is also true 

for all rotational lines in CO gas.  

 
Fig. 2. Absorption spectrum of CO at different 

concentrations. 

The measurements in this study demonstrate that 

varying the concentration of the gas affects only the 

amplitude of the absorption lines and not their exact 

position. This is critical in air pollution studies when 

trying to single out a specific gas (such as CO) from 

a field sample with unknown constituents. 
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PREDICTION MODEL 

Support vector machine (SVM) has been used in 

many applications, for example, the pattern 

recognition problem and fault diagnose with high 

dimension and nonlinearity [25, 26]. The hybrid 

Least square support vector machine (LSSVM) [27] 

as a novel approach for CO concentration prediction 

has been applied to data from the hazardous gas 

monitoring system.  LSSVM is reformulations to the 

standard support vector machines which result in a 

set of linear equations instead of a quadratic 

programming problem of SVM.  

LSSVM is a learning algorithm. It uses a 

hypothesis space of linear function in a high 

dimensional feature space by using the kernel 

theory. In this paper, this algorithm is trained by 

optimization theory. Consider a given training set 

(xi, yi), i = 1,2,…n, where xi  and yi  are the input and 

the output of the ith example, n denotes the number 

of samples. The support vector method approach 

aims at constructing a regression function of the 

following form: 

 T
iy x b                                                     (1) 

where (xi) is a nonlinear function which maps the 

feature space of input into a higher dimension 

feature space and can be reached by the kernel 

strategy, Rn is coefficient vector and bR is bias 

term. These unknown coefficients  and b can be 

obtained through solving the following optimization 

problem: 
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where J(,e) 

the first term, measures the inverse of the margin 

distance. In order to obtain the minimum structural 

risk, the first term should be minimized.  

regularization parameter, determining the trade-off 

between the fitting error minimization and 

smoothness. e is a slack variable, which ensures 

classification validity under linear non-separable 

case. This optimization problem including the 

constraints can be solved by using the Lagrange 

function as following: 
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where i 

the optimization conditions by Karush-Kuhn-Tucker 

(KKT), the optimal condition about (2) can be 

obtained as following: 

              4) 

where i = 1,2,…N. 

Eliminating the parameter  and e 

(4), these equality constraints can be transformed as 

following: 
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where I is the identity matrix, 

   T

ij i j i jy y x x   . 

The solution of  and b can be obtained by 

solving (5) and substitute to (1). (1) is presented as: 

     T

i i j

n

f x x x b                                  (6) 

According to the Mercer rule, the kernel 

function K(xi, xj) is introduced, thus the kernel 

function is expressed as: 

     ,
T

i j i jK x x x x                                           (7) 

In LSSVM, quadratic programming problem is 

changed as the problem of solving linear equation 

groups, which simplifies the calculation quantity. 
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Combining equation (6) with equation (7), equation 

(6) is expressed as: 

   ,i i j

n

f x K x x b                                      (8) 

There are various kernels used in the LSSVM. 

Different kernel function presents the different 

mapping from the input space to the feature space. 

As a result, LSSVM model changes with the 

different kernel function selections. The radial basis 

function (RBF) is used as the kernel function of the 

LSSVM because RBF kernel tends to give good 

performances under general smoothness 

assumptions. RBF-kernel function is presented as 

following: 
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where  is the kernel parameter and controls the 

LSSVM's regression or classification ability. In 

equation (2),   is the regularization parameter 

determining the fitting error minimization and 

smoothness. They are important parameters in the 

LSSVM algorithm.  

In LSSVM model, the parameter  and parameter 

 of the RBF function are chosen according to 

experience. In this way, for different sample sets, 

the optimal parameter values are difficult to be 

found, which affects the fault diagnosis efficiency 

and accuracy. However, it needs an exhaustive 

search over the space of hyper-parameters, which 

must be time consuming. This procedure needs to 

locate the interval of feasible solution and a suitable 

sampling step. In order to acquire the better 

classification accuracy, the particle swarm 

optimization algorithm (PSO) is used to find the 

optimal solution of these parameters in LSSVM. 

The basic idea of particle swarm optimization 

can be described in an explicit way: each individual 

in particle swarm, referred to as a ‘particle’, 

represents a potential solution; each particle moves 

its position in search domain and updates its 

velocity according to its own flying experience and 

neighbors’ flying experience, aiming at a better 

position for itself. 

According to the simple PSO model, the 

velocity Vi for each dimension of the ith particle 

can be updated as follow: 

   1 1 1 2 2- -i i i i g iV wV c r P X c r P X              (10) 

where w is the inertia weight coefficient; c1 and 

c2 are two positive constants called acceleration 

coefficients; P1 and P2 iP  and Pg are the local 

individual best location and the global best location; 

r1 and r2 are random numbers in the range of [0,1]. 

The new position Xi for ith particle can be expressed 

as: 

1 1i i iX X V                                                    (11) 

In the standard PSO, if 0<w<1 and Vi+1<Vi, there 

exists a certain number that when the generation 

number is more than it, the current global best 

position Pg of the swarm does not vary, and 

consequently, all components of Vi, will be smaller 

than a given error, and the particle will stop 

evolution. Even if a better solution exists in this 

direction, the particle swarm may stop evolution 

before finding this position and fall into premature 

convergence. This is the reason why the standard 

PSO may fall into local optimum solution. 

To solve the problem of premature convergence, 

we use the stochastic particle swarm optimization 

(SPSO) algorithm [28, 29]. Here set the inertia 

weight w = 0, substituting equation (10) into 

equation (11), the following equation can be 

obtained: 

   1 1 1 2 2- -i i i i g iX X c r P X c r P X                    (12) 

In order to improve the global searching ability, 

Pg is maintained to be the historic best position, and 

an extra particle j with the position Xj is generated 

randomly in the searching domain. In this way, the 

following updating procedure is obtained: 

 arg min ,

j j

g i j

P X

P P P





                                       (13) 
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This means that if Pg = Pj, the random particle j 

locates at the best position and the new random 

particle will be searched repeatedly, therefore at 

least one particle is generated in the searching 

domain randomly to improve the global searching 

ability. 

In the SPSO-LSSVM model, the appropriate 

parameters are selected by the SPSO algorithm, 

which can find the optimal parameter value quickly. 

As what has been mentioned above,  and 2 

become the swarms, then the dimension of the 

swarms is two. These swarms can be expressed as 

following: 
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2 2 2 2
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The key factor to determine the optimized hyper-

parameters using SPSO is how to define the fitness 

function which evaluates the goodness of individual. 

The fitness function can evaluate the objective 

values of all particles. The choice of the fitness 

function is very important because it is on this basis 

that the SPSO evaluates the goodness of each 

particle solution for the LSSVM regression system. 

In function regression, the fitness function is the 

sum square error between the real output data of the 

system and the output data of the LSSVM model in 

the same input. In this study, the fitness function 

used is expressed as follows: 

   
2

2
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,
N

reg ii
i

F y y y 
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where yi is real output data and yireg  is the 

output data of the LSSVM model in the same 

input. 

RESULTS AND DISCUSSION 

Having constructed both the SVM and hybrid 

LSSVM models, the parameters would have had to 

be calibrated and evaluated. CO levels have been 

predicted by both SVM and LSSVM models for the 

field measurements. 

The data taking part in the learning and testing 

steps of the models have been those collected from a 

period of 40 days in 2010 and 2011 respectively. In 

those days, the CO concentration was measured 

every 1 h so the CO level was predicted on hourly 

basis for each day. In both SVM and LSSVM 

models, 80 percent of the data were used for training 

the models and the rest were used for testing the 

models. 

Optimization of these parameters has been done 

by a systematic grid search of the parameters using 

leave-one-out cross validation on the training set. 

First, a broad range of parameters settings are 

investigated with large steps. Second, after 

identifying a promising region, this region is 

searched in more details. The test set is used as an 

independent set to calculate the final prediction 

error. Furthermore, the test error is not used to select 

the optimal model but its size is compared to test set 

errors with other settings to identify possible 

overtraining. 

The results are further analyzed using statistical 

indices. The statistical indices used in the analysis 

are mean absolute percentage error (MAPE), mean 

absolute error (MAE) and root mean square error 

(RMSE) and coefficient of determination (R2). 

These parameters have been defined as below: 
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Where yi iy  is the observation value, iy  is the 

average value and y’ is the predicted value. The 

MAR and the MAPE correct the ’canceling out’ 

effects; moreover, MAPE takes into account the 

different scales at which this measure can be 

computed. RMSE gives a relatively high weight to 

large errors. This means the RMSE is most useful 

when large errors are particularly undesirable. The 

MAR and the RMSE can be used together to 

diagnose the variation in the errors in a set of 
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forecasts. The RMSE will always be larger or equal 

to the MAE; the greater difference between them, 

the greater the variance in the individual errors in 

the sample. All errors are negatively oriented scores, 

so lower values are better. The computations were 

made with the Windows XP operating system and 

MATLAB. 

Hourly CO concentrations predicted by SVM 

model have been shown in Fig. 3.  

 

 

Fig. 3. Hourly CO concentrations predicted by SVM 

model in (a) 2010 and (b) 2011. 

Correlations between prediction and measured 

values in the test stage have been determined using 

R2 as shown in Fig. 4. Coefficients of determination 

for each period were 0.767 and 0.683 respectively. 

This means that the SVM model can predict CO 

concentration fluctuations within an acceptable 

limit. However, grid search and modeling was found 

to be very much time consuming. Also, there as 

been a significant amount of multicollinearity 

among the CO concentration predictors. 

Multicollinearity can make it difficult to correctly 

identify the most important contributors to a 

physical process. Also the large number of the 

predictors, reduce the earning rate of the prediction 

process, hence, size reduction methods like LSSVM, 

can be useful solution for this predicament. 

 

 

Fig. 4. Correlation between measured CO 

concentrations and SVM predictions predicted by SVM 

model during testing stages in (a) 2010 and (b) 2011. 

The LSSVM method has been used in this 

research to reduce the size of the input data. 

Hourly prediction results of hybrid LSSVM model 

are shown in Fig. 5. Similar to the SVM model, 

correlations between prediction and measured 

values in the test stage have been determined for 

LSSVM model as shown in Fig. 6. Coefficients of 

determination for each period were found to be 

0.838 and 0.78 respectively. 

Results of the two SVM and hybrid LSSVM 

models have been compared and discussed 

statistically and their respective computation times 

are illustrated in Table 1. It can be seen that the 

hybrid LSSVM model has higher coefficient of 

determination and fewer errors than the SVM 
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model. Thus, the hybrid LSSVM model produced 

more accurate results and size reduction had positive 

effect on the model performance. Moreover, the 

hybrid LSSVM model achieves faster training speed 

and grid search. As it was observed, the total 

calculation time obviously is saved. The reduction 

of the input vector dimensions is resulted in the 

reduction of the SVM calculations and shortening 

the SVM training periods. Due to the effects of 

many factors on air pollution concentrations, a small 

error has remained. However in this case, the hybrid 

LSSVM has been found a better and faster 

predictive model. 

 

 

Fig. 5. Hourly CO concentrations predicted by 

LSSVM model in (a) 2010 and (b) 2011. 

As seen in Table 1, the RMSE and MAR have 

decreased by using LSSVM method. This means 

that LSSVM is able to remove unqualified variables 

and noises, hence, the positive effect of the LSSVM 

is more sensible. Also, the MAPE has decreased in 

both the tasting and training processes by using 

hybrid LSSVM. In other words, LSSVM method 

can increase model prediction efficiency. 

 

 

Fig. 6. Hourly CO concentrations predicted by 

LSSVM model in (a) 2010 and (b) 2011. 

Table 1. Comparison of SVM and LSSVM models by 

statistics estimators. 

 MAE RMSE MAPE R2 
Time 

(s) 

P1 

LSSV

M 

Train 0.683 0.811 0.039 0.972 
68 

Test 1.173 1.358 0.054 0.838 

SVM 
Train 0.856 1.028 0.049 0.956 

95 
Test 1.408 1.630 0.064 0.767 

P2 

LSSV

M 

Train 0.725 0.832 0.026 0.877 
63 

Test 1.143 1.305 0.040 0.780 

SVM 
Train 0.943 1.081 0.034 0.792 

108 
Test 1.371 1.566 0.048 0.683 

 

CONCLUSIONS 

In this paper, a robot monitoring system for 

carbon monoxide emission from underground coal 

fires has been presented. The CO concentrations 

were measured by using terahertz time-domain 

spectroscopy (THz-TDS) technique according to the 
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absorption characteristics of CO. This paper has also 

presented the prediction method of hourly hazardous 

gas emission from coal mine gob by applying the 

Support Vector Machine (SVM) and Least Square 

Support Vector Machine (LSSVM).  

It can be concluded that such models provide a 

more promising alternative to time series 

forecasting. However, the important point of this 

approach is the data size reduction by LSSVM. The 

proposed hybrid LSSVM model provides a 

considerable improvement in the forecasting of CO 

concentrations over the SVM model based on the 

same set of input variables. Besides, the LSSVM 

implementation for size reduction obviously saved 

time of the SVM training and grid search method.  

Statistical error estimators have been used to 

compare performance of the SVM and the hybrid 

LSSVM models Errors estimated by the MRE, 

MSRE and MAPE decreased as R2 decreased by 

implementing the LSSVM. Generally, the hybrid 

LSSVM models have good ability to predict air 

pollution in different time intervals. 
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Постъпила на 13 април, 2014 г. 

Мониторингът и прогнозирането на емисиите на опасни газове вече е важна тема в минното инженерство и 

изследването на околната среда. Това се дължи на замърсяването на въздуха поради остатъчното окисление в 

подземните минни хоризонти. В настоящата работа се представя роботизирана мониторингова система за 

емисиите от въглероден моноксид от спонтанното горене на въглища в мини. Концентрациите на въглеродния 

моноксид се измерват чрез терахерц-вълнова спектроскопия (THz-TDS). На основата на измерените стойности е 

разработен иновативен метод, използващ „least square support vector machine“ (LSSVM) с хипер-параметричен 

подбор. Часовите концентрации са предсказвани чрез моделите SVM и хибридния LSSVM. Резултатите 

показват, че хибридният LSSVM- модел дава по-висока точност. Направен е изводът, че грешките намаляват, а 

корелационните коефициенти нарастват при хибридния LSSVM-модел, поради което той определено има 

практическа стойност и приложимост. 

 

 

 

 

 

 

  


