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The state of charge (SOC) of Li-ion battery on electric vehicle (EV) is highly nonlinear. The randomly selected 
initial parameters of BP neural network can cause significant inaccuracy and long training time. In the study presented 
in this paper, an optimized BP neural network, with its initial parameters optimized by adaptive particle swarm 
optimization (PSO) algorithm, was used to estimate the Li-ion battery’s state of charge (SOC). The performance on BP 
neural network estimation, as well as the optimized performance with adaptive mutation PSO was analyzed. A model 
for adaptive mutation PSO- BP neural network was established for battery SOC estimation. Experimental results show 
that: using BP neural network optimized by adaptive mutation PSO for SOC estimation of Li-ion battery of EV, can 
overcome the shortcomings of easily trapped to local optimum, long training time and so on. It also reduces the 
estimation deviation. 
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INTRODUCTION 

State of charge (SOC) estimation is a key 
technology of battery management system (BMS) 
of electric vehicles (EV). Accurate estimation of 
SOC not only avoids the danger of over-charging 
and over-discharging which may damage the 
battery, but also helps creating a better battery 
control strategy, which allows more effective 
control and more precise prediction of driving 
range. This will help approaching the goal of 
energy saving, environmental protection, and 
battery life extension for EV [1, 2]. 

SOC of battery cannot be measured directly. 
Instead, it can be estimated from some physical 
properties of the battery, such as terminal voltage, 
current, temperature, etc. The accuracy of 
estimation is affected by many factors, i.e. voltage, 
charge-discharge rate, power, temperature, life 
cycle, internal resistance, internal pressure, self-
discharge rate, etc. These factors have strong 
nonlinear relationship with SOC. Therefore it is 
difficult to establish an accurate mathematical 
model [3, 4]. 

The commonly used methods for SOC 
estimation include Ah counting method, open 
circuit voltage (OCV) method, the linear model 
method; neural network method and Kalman filter 
(KF) method [2]. Ah counting method can get the 
battery charge and discharge electricity by the 
integral of current times the time. If the initial SOC 

is known, this method can be approached on-line 
SOC testing. But the algorithm also has some 
drawbacks such as, the Coulomb efficiency is 
difficult to be measured accurately and the 
accumulated sampling error is large, and so forth. It 
is not suitable for the occasions where the voltage 
and current change dramatically. Therefore, Ah 
counting method does not meet the requirement of 
EV for long-term use [5]. Some studies proposed 
improved Ah counting method that an equivalent 
Coulomb efficiency was defined to alleviate these 
problem with an SOC estimation method combined 
with the open circuit voltage method, Kalman filter, 
and Ah counting method. The SOC estimate error 
using this method relative to a discharge test was 
only 2.3%, satisfies the 8% SOC estimate precision 
requirement of EV. However, this method also 
comprises the problem of high requirement of 
model accuracy, large amount of calculation, high 
requirement of hardware, and couldn’t meet the 
requirements for commercialization [6]. The most 
obvious drawback of OCV method is that battery 
must be relaxed for a long time before each 
measurement to eliminate the battery polarization 
effects which affects accuracy of voltage value. So 
this method is not suitable for online estimation of 
battery’ SOC. The most effective use of OCV 
method is in initial SOC estimation after EV’s long 
time standing so it is often used in combination 
with the Ah counting method. A recent study [7] 
proposed an equivalent circuit network to describe 
the polarization effect of the battery in OCV 
method. The recursive least square algorithm with * To whom all correspondence should be sent: 
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forgetting was applied to implement the on-line 
parameter calibration. The maximum and mean 
relative errors are 1.666% and 0.01% respectively, 
in a hybrid pulse test. The linear model method 
which is based on linear equation established by the 
relationship between current, voltage, SOC 
variation and the former SOC value, is suitable for 
the low-current situation, which makes it only 
applicable to the lead-acid battery. The KF method 
is a useful tool for optimal state estimation of 
systems. Using the temporal transfer relationship of 
a system, this approach estimates the state of 
system with a set of recursive formula. It is suitable 
for noise filter in the harsh environment like EV 
driving process. However, the KF needs a proper 
equivalent circuit model of the battery to describe 
the characteristics of charging and/or discharging, 
of which the internal parameters are often difficult 
to determine. Meanwhile, for large amount of 
calculation, the system requires a higher speed 
processor which means higher cost [8]. 

The neural network method presumes a highly 
non-linear system, applicable to SOC estimation of 
all kinds of battery. But, it needs a large number of 
experiment data for training [9, 10]. Since the 
initial weights and thresholds of neural network are 
selected randomly, each training result of the 
network is different and the range of deficiency is 
large. Finding the proper network parameters takes 
a great amount of time. However, using power 
battery testing equipment, training samples all-
inclusive for covering the entire work range can be 
collected and use to train the neural network. On 
this basis, the forecast accuracy of neural network 
can be improved as long as the proper network can 
be constructed and the initial weights and 
thresholds could be optimized [11]. 

In this paper, the BP neural network optimized 
with adaptive mutation PSO would be proposed for 
estimation of battery SOC. First, the characteristics 
of BP (Back Propagation) neural network and the 
modeling process will be introduced. Then, the 
initial weights and thresholds of BP neural network 
optimized by adaptive mutation PSO will be taken 
into the BP neural network to establish the SOC 
estimator. Finally, the proposed method will be 
tested in UDDS cycles and the simulation results 
are compared with the actual values. 

ESTABLISHMENT OF BP NEURAL 
NETWORK 

BP Neural Network 
BP network is a multi-layer forward network 

with hidden layer and error feedback. It has good 
learning and adaptive capacity as to solve the 

learning problem of the connection weights of 
implied unit in a multi-layer network. As of today it 
is the most widely used neural network [12]. The 
basic principle of BP neural network algorithm is 
the gradient steepest descent method, which can 
minimize the total errors by adjusting the network 
weights. That is, the gradient search technology 
minimizes the error of the mean square value of 
actual output. In fact, multi-layer network using BP 
learning algorithm contains the forward and reverse 
spread of two stages. The input information from 
the input layer is propagated through the hidden 
layer to output layer and processed layer-by-layer 
during the forward propagation process [11,13]. 
The structure of BP neural network is showed as 
Fig.1.  

The input of the i-th neuron in hidden layer is 
showed as below under the sample p: 
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Fig.1. The structure of BP neural network. 

Where oi is the output value of the i-th neuron in 
the hidden layer, wij is the connection weight 
between the j-th neuron in input layer and the i-th 
neuron in the hidden layer, xi is the input value of 
the j-th neuron in input layer, θi is the threshold of 
the j-th neuron of input layer, f is the activation 
function of the hidden layer. 

The output of the k-th neuron in the output layer 
is: 

1
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y g w o θ
=

= −∑
                                   (2) 

Where, yk is the output value of the k-th neuron 
in output layer, wki is the connection weight 
between the k-th neuron in output layer and the i-th 
neuron in hidden layer, θk is the threshold of the k-
th neuron of output layer, g is the activation 
function of the output layer. 
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If the output value is not the expected, back 
propagation then begins. The error signal is 
returned along the original connection channel, 
then, the value of connection weights of each layers 
are modified to make the error signal less at the 
same time. 

The error function J can be expressed as: 
2

1

1= ( )
2

L

k k
k

J t o
=

−∑
                                       (3) 

Where, L is the number of output layer, tk is the 
target value. 

Weight coefficient of output layer adjustment 

The weight coefficient is adjusted according to 
the opposite direction of function gradient, which 
make the network gradually converge. According to 
the gradient method, the correction formula of each 
neuron weight coefficient of output layer is as 
follows: 

(1 )( )ki k k k k i
ki

Jw o o t o o
w

η η∂
∆ = − = − −

∂          (4) 
Similarly, the correction formula of the each 

neuron weights coefficient of hidden layer is as 
follow: 

1
(1 )( (( ) (1 ) ))

L

ij i i k k k k ki j
kij

Jw o o t o o o w o
w

η η
=

∂
∆ = − = − − −

∂ ∑
(5) 

Collection of testing sample 

When using BP neural network algorithm for 
SOC estimation of Li-ion battery, the first thing is 
the collection of training samples and testing 
samples. The number of training samples should be 
large and all-inclusive for covering the entire work 
range. There are many impact factors in SOC 
estimation. Considering the purpose of this research 
is to verify the rationality of the algorithm, only 
current and voltage’s influence are taken into 
account [14]. 

Simulation software ADVISOR (Advanced 
Vehicle Simulator) is developed by National 
Renewable Energy Laboratory (NREL) of the 
United States for the management of the 
development of hybrid drive systems. Because the 
battery data in this software is from experiment 
done by NREL, its data is relatively accurate and 
comprehensive. In this paper, experiment samples 
would be acquired under different working 
conditions using a virtual EV which contains a 6Ah 
Li-ion battery manufactured by SAFT Company of 
the Unite State. The working conditions include 
constant speed of 8 km h-1, constant speed of 
72kmh-1, constant speed of 144 km h-1, FTP cycle 

and UDDS cycle. The relationship curve between 
speed and time is shown as Fig. 2 in the example of 
UDDS cycle.              

 
Fig. 2. EPA Urban Dynamometer Driving Schedule 

(UDDS) 

The above working condition simulates the 
situations of EV at low speed, medium speed, high 
speed and urban road, covering the entire typical 
driving pattern and has strong representation. In 
order to collect sufficient data for the neural 
network training and testing, each of simulation 
working condition was looped to execute from SOC 
being 1 until SOC being 0. Each parameter of EV 
battery including voltage value and current value 
was sampled at the frequency of 1 during the 
simulation process and there were total of 12925 
sets of data. The 2386 sets of data sampled during 
UDDS cycle were for testing, the other data were 
grouped as 160-set samples according to the 
principles of uniform distribution for training [15, 
16]. Fig. 3 to Fig.5 shows the sample value when 
virtual EV drives during one period of UDDS 
cycle. 

Sample preprocessing 

From above figure we can see that current and 
voltage samples have difference in the order of 
magnitude. In order to avoid this problem which 
would make the network error larger, samples 
should be normalized first. Meanwhile, samples 
normalization can also help the convergence of 
network’s training speed accelerate. The common 
samples normalization methods includes maximum 
and minimum method and average variance 
method. For the reason to simplify the problem, 
maximum and minimum method was employed in 
this paper.  

*
min max min( ) / ( )k kx x x x x= − −                      (6) 

Where, xk is the k-th sample factor after 
normalization, xk* is the k-th sample factor before 
normalization, xmax is the maximum value of sample 
factor before normalization and xmin is the minimum 
value of sample factor before normalization. 
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Fig. 3. Current profile sampled during UDDS cycles. 

 
Fig. 4. Voltage profile sampled during UDDS cycles. 

 
Fig. 5. SOC profile sampled during UDDS cycles. 

The hidden layer of BP neural network 
The number of nodes in hidden layer of BP 

neural network has a great impact on network’s 
prediction accuracy. If the nodes number is too 
small, the network does not have sufficient 
learning and needs to increase the frequency of 
training, so the training accuracy may be less than 
desired. However, if the number of nodes is too 
much, it will make the training time too long and 
the network easy to over-fitting. The number of 
nodes has a direct relationship with the 
requirements, input and output nodes of the 
problem. The following two equations can be used 
as reference formula to select the optimum node 
number of hidden layer [17]. 

( )L m n a= + +
                                            (7) 

Where L is the number of nodes of hidden 

layer, m is the number of node of output layer, n is 
the number of nodes of input layer, a is a constant 
between 0 and 10. 

2logL n=                                                        (8) 

Where n is number of nodes of input layer. 

Base on the above conditions, the number of 
nodes of hidden layer should be determined through 
thorough testing. In this study, number of nodes of 
the hidden layer are 5. The established BP neural 
network is shown as Fig. 6. 

 
Fig. 6. The BP neural network. 
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Weight and threshold of bp neural network 
optimized by PSO 

Since the initial weights and thresholds of BP 
neural network are selected randomly, each training 
result of the network is different and range of 
deficient is large. Finding the proper network 
parameters takes a great amount of time. If the 
initial weights and thresholds of BP neural network 
are optimized by particle swarm optimization 
algorithm, the forecast accuracy of network can be 
improved. 

Particle swarm optimization (PSO) is a new 
evolutionary algorithm developed in recent years. 
Similar to genetic algorithm (GA), PSO find the 
optimal solution by iteration, starting at a random 
solution. However it does this in a simpler way. 
PSO find the global optimum by following the 
current optimal value without “crossover” or 
“mutation” like GA. Compared with generic 
algorithm, PSO is easier to implement, has 
enhanced global searching capability, higher 
precision and faster convergence. Using PSO to 
optimize the initial weights and thresholds of BP 
network can shorten the network training time, 
improve the convergence, enhance network 
generalization ability and reduce error [18, 19]. 

The algorithm assumes that there are a number 
of particles in a population, and each particle has a 
position vector and velocity vector. The position 
vector and velocity vector of the i-th particle can be 
expressed as: 

1 2[ , , , ]i i i idX x x x=                               (9) 

1 2[ , , , ]i i i idV v v v=                                  (10) 
Where d represents the dimension of the 

solution space and its value is also the possible 
solutions. Particles can find the optimal solution by 
iteration through constantly moving in search 
space. The basic formula is: 

1
1 1 2 2( ) ( )

id

k k k k k k
ij ij ij gj ijv v c r p x c r p xω+ = + − + −

(11) 
1 1k k k

ij ij ijx x v+ += +
                                       (12) 

Where i = 1,2,…,N and j=1,2,…,d, νij are flight 
speed of the i-th particle, xij is position of the i-th 
particle, ω is the inertia factor, c1 and c2 are 
acceleration factor which is positive constant, r1, r2 
are the random number on the interval [0,1], pij is 
the best position of the i-th particle currently find. 
pgj is the best position of global population 
currently find. 

The initial positions and velocities of the particle 
swarm are generated randomly, and then they 

iterate according to the formula 11 and formula 12. 
Particles continue to modify their velocities and 
positions according to pij and pgj in each of the 
iterations, so that particles approach to the global 
optimal solution. There are 21 (2*5+5+5*1+1) 
parameters that need to be optimized for a BP 
neural network with topology structure of [2,5,1].  

Adaptive mutation algorithm establishment 
PSO algorithm iteratively update by tracking the 

most optimal particle. Once a particle finds the 
optimal value, the other particles will quickly move 
close to it. However, the traditional algorithms have 
the problems of early convergence when the 
optimal value is trapped to local optima. It is 
necessary to enhance the basic PSO algorithm to 
avoid the premature convergence problem. The 
reason of premature convergence is large lost in 
population diversity. When algorithm escapes from 
local optima before convergence, it can continue 
searching in other area in solution space and finally 
find the global optima [20]. 

In this study, a random number in the iterative 
formula serves as mutation condition. Once the 
particles are greater than iteration threshold value, 
it mutates to be a random number. In this way, 
some of the particles can maintain the diversity for 
optimization from the current optimal conditions. 
The optimized algorithm with adaptive mutation 
can be established as: 

1
11

1

k k
k ij ij
ij

r mx v
x

r mrand

+
+ ≤ +
=  >                            (13) 

Where, m is the mutation threshold. 
The basic parameters of adaptive mutation PSO 

algorithm are set as the following: The population 
size is 20, the maximum number of iterations is 
200, learning factor c1 = c2 = 1.49, Speed range is 
on interval [-1,1], the position range is on interval [-
1,1], the adaptive mutation threshold m = 0.8. First, 
fitness value is compared between PSO with 
adaptive mutation and the basic PSO. Fig.7 shows 
the fitness curve without adaptive mutation and 
Fig.8 shows the fitness curve with adaptive 
mutation. 

As can be seen in Fig.8, although the 
optimization process of PSO algorithm without 
adaptive mutation is obvious, it converged quickly 
at first, but stopped at the 120 generation and 
trapped in local optima. In contrast, the PSO 
algorithm with adaptive mutation continues finding 
the optimal solution during the whole evolution 
process as shown in Fig.9. 
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Fig. 7. Fitness curve without adaptive mutation. 

 
Fig. 8. Fitness curve with adaptive mutation. 

EXPERIMENT 

Experiment process 

To verify the effect of BP neural network whose 
initial weights and threshold are optimized by 
adaptive mutation PSO, experiment and simulation 
were conducted. Experiments were conducted 
under UDDS conditions to illustrate the algorithm. 
Before starting the test, the Li-ion battery was fully 
charged (SOC=100%). Current and voltage value 
sampled from UDDS cycle in Advisor were 
imported into BP neural network for simulation. 
And then, the simulation result was compared with 
the experiment result done by NREL. 

UDDS stands for Urban Dynamometer Driving 
Schedule. It refers to a United States Environmental 
Protection Agency (EPA) mandated dynamometer 
test on fuel economy that represents city driving 
conditions, which is used for light duty vehicle 
testing. Each cycle time is 1369 seconds, 7.45 
miles, with average speed of 31.52 kmh-1. 

Conditions cycle was shown as Fig.2. In this paper, 
several cycles of UDDS were employed to verify 
the SOC estimation algorithm. The voltage and 
current profiles sampled during UDDS cycles were 
shown in Fig.3 and Fig.4.  

From above figure we can see, the battery was 
in a rapidly changing dynamic process under the 
UDDS cycle. The current and voltage change very 
quickly. Simulation under this working cycle can 
test the generalization ability of BP network well. 

Experimental result 

To verify the performance of SOC estimation by 
adaptive mutation PSO-BP neural network for Li-
ion battery of EV, we compared with standard BP 
neural network. Two kinds of model were trained 
with uniform training samples and set with uniform 
parameters, of which learning rate lr was 0.05, 
inertia factor mc was 0.9, number of iterations was 
5000, error target was 10E-5. Meanwhile, relative 
errors between estimation value and experiment 
value were compared to illustrate their magnitude 
of error. Relative error was defined as follows: 

s t

t

soc socError
soc
−

=
                                           (14) 

Where, Error is the relative error, socs is the 
estimation value of SOC and soct is experiment 
value of SOC. 

Experimental and simulation results were shown 
in Fig.9-12. Fig.9 and Fig.10 showed the actual and 
the estimated SOC during the entire charging 
process. Fig.11 and Fig.12 showed the relative error 
between the actual SOC and the estimated SOC. 

From the estimation curve and error curve, 
estimated SOC by adaptive mutation PSO-BP 
algorithm matched the actual SOC well. It could 
follow the actual value trend. The relative error was 
small (about 8%) in the range of SOC from 1 to 
0.15. However, the relative error became larger as 
the SOC decreases below 0.15. Considering the fact 
that SOC of EV’s power battery is in the range 
from 0.2 to 0.8, the error was acceptable. Estimated 
SOC by standard BP algorithm can also follow the 
trend of experiment value. However, the relative 
error was large, more than 10% in the range of SOC 
from 1 to 0.15. Its estimation precision was lower 
than adaptive mutation PSO-BP algorithm. In 
summary, using adaptive mutation PSO-BP neural 
network has better precision in SOC estimation of 
EV’s power battery than standard BP algorithm. 
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Fig. 9. SOC curves with adaptive mutation PSO-BP and experiment. 

 
Fig. 10. SOC curves with BP network and experiment. 

 
Fig. 11. Relative error between adaptive mutation PSO-BP and experiment. 
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Fig. 12. Relative error between BP network and experiment. 

CONCLUSION 

Battery SOC estimation is one of the most 
important tasks in the EV’s BMS. Not only is it the 
basic parameter to decide the vehicle control 
strategy, but also it helps drivers using battery 
power reasonably as to control and predict the 
driving range. In this paper, EV’s power battery 
SOC estimation algorithm is proposed based on BP 
neural network whose initial parameters optimized 
by adaptive mutation PSO. Finally, the experiment 
demonstrated the basic performance of the 
algorithm. The results are as follows: 

(1) The convergence rate of adaptive PSO-BP 
neural network is not only faster than BP neural 
network but also has strong ability of global 
optimization.  

(2) Using BP neural network for EV’s power 
battery SOC estimation is feasible. Furthermore, 
the algorithm with its initial parameters optimized 
by adaptive mutation PSO has better performance 
than basic BP neural network and has higher 
accuracy in the SOC estimation of EV’s power 
battery. So it has application value.  

Acknowledgments. The authors gratefully 
acknowledge the support of the Beijing University 
of Aeronautics and Astronautics and the Guilin 
University of Aerospace Technology. The work is 
supported by the project of the Guilin University of 
Aerospace Technology under Grant No. X12Z002. 

REFERENCES 

1. Feng Jin, He Yong-ling. Advanced Material Research, 
490-495, 3854 (2012). 

2. Feng Jin, He Yong-ling, J. Theor. Appl. Inform. 
Technol.,48, 1398 (2013). 

3. Lin Chen-tao, Wang Jun-ping, CHEN Quan-shi, 

Battery Bimonthly, 134, 376, (2004) (in Chinese). 
4. Yinjiao Xing, Wei He, M. Pecht, Kwok Leung Tsui, 

Appl. Energy, 113,106 (2014). 
5. Wu Hong-jie, Qi Bo-jin, Zheng Min-xin, Liu Yong-

zhe, J. Beijing Univ. Aeronautics Astronautics, 33, 
945 (2007) (in Chinese). 

6. Lin Cheng-tao, Chen Quan-shi, Wang Jun-ping, 
HuanG Wen-hua, Wang Yan-chao, J. Tsinghua Univ. 
(Sci & Tech), 46, 247 (2006) (in Chinese). 

7. Hu Xiao-song, Sun Feng-chun, ZoU Yuan, J. Central 
South Univ. Technol., 18, 1525 (2011). 

8. Xia Chao-ying, Zhang Shu, Sun Hong-tao. Chinese J. 
Power Sources, 31, 414 (2007) (in Chinese). 

9. M. Charkhgard, M. Farrokhi, IEEE Trans. Industr. 
Electronics, 57, 4178 (2010). 

10. Jaemoon Lee, Oanyong Nam, B.H. Cho, J. Power 
Sources, 174, 9 (2007). 

11. V. Valdez, A. Jojutla, IEEE Neural networks 
conference, 39, 193 (2006).  

12. G. Das, P.K. Pattnaik, S.K. Pattnaik, S.K. Padhy, 
Expert Systems with Applications, 41, 3491 (2014). 

13. Yu Chang-guan. Modern control theory and 
applications, second ed., Harbin Institute of 
Technology, Press. Harbin, 2007 (in Chinese). 

14. Liu Rui-hao, Sun Yu-kun, Chen Kun-hua, Electrical 
Measurement&Instrumentation, 48, 34 (2011) (in 
Chinese). 

15. Lei Xiao, Chan Qing-quan, Liu Kaipei, Ma Li, Trans. 
China Electrotech. Soc., 23, 81 (2008) (in Chinese) 

16. G. L. Plett, J. Power Sources, 134, 277 (2004). 
17. Liu Qiu-li, Ma Xiao-jun, Yuan Dong, Su Jian-qiang, 

Computer Eng., 38, 143 (2012) (in Chinese).  
18. M. Carvalho, T.B. Ludermir, Sixth International 

conference on hybrid intelligent systems, 6, 2 (2006). 
19. Gan Xu-sheng, Duanmu Jing-shun, Meng Yue-bo, 

CONG Wei, J. Central South Univ. Technol., 20, 
1592 (2013). 

20. A. Alfi, Acta Automatica Sinica, 37, 541 (2011). 

 
 
 
 



Feng Jin，He Yong-ling: Adaptive mutation particle swarm optimized BP neural network in state-of-charge estimation of… 

912 

 

ОЦЕНКА НА ЗАРЕЖДАНЕТО НА ЛИТИЕВО-ЙОННИ БАТЕРИИ С ПОМОЩТА НА 
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(Резюме)  

Състоянието на зареждане (SOC) на литиево-йонните батерии за елктромобилите (EV) е силно нелинейно. 
Произволният избор на началните параметри на невронните мрежи с обратно разпространение (BP) може да 
причини значителна неточност и дълго време за трениране. В настоящето изследване се въвежда BP 
оптимизирана невронна мрежа с начални параметри, оптимизирани чрез алгоритъм, основаващ се рояк на 
частици (PSO) с цел оценяване на състоянието на зареждане на литиево-йонна батерия (SOC). Анализирани са 
поведението на BP-невронната мрежа, както и оптимизираното поведение с адаптивна мутация. Съставен е 
модел на адаптивна мутация PSO-BP невронна мрежа, описващ състоянието на зареждане на батерията SOC. 
Експерименталните резултати показват, че  чрез използването на BP-невронната мрежа, оптимизирана чрез 
адаптивна мутация PSO за оценка на SOC на литиево-йонните батерии за електромобили се преодоляват 
недостатъците от попадане на целевата функция в локален минимум, дълги времена на трениране и пр. 

 


