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As demands for energy have increased worldwide, oil has become the main pollutant of the ocean. The impact of 
aromatic compounds, which are primary pollutants in oil, on various marine ecosystems has become a growing concern. 
Establishing a quantitative structure–activity relationship (QSAR) model to predict the toxicity of unknown aromatic 
compounds may thus serve as an important pollution-preventive measure. In this study, 21 aromatic compounds, 15 of 
which served as a training set and 6 as a test set, were selected. The structural parameters of the compounds were 
obtained by multiple linear regression, and a 2-descriptor prediction model was established. The test set was used to 
determine the predictive ability of the model. The model built using the proposed method showed satisfactory statistical 
results (R2 = 0.974 vs. the test set R2 = 0.804). These data show that the model provides good predictability and stability 
and can thus be used to predict the inhibitory effect of aromatic compounds on Chlorella vulgaris. 
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INTRODUCTION 

Asdemands for energy have increased worldwide, 
exploration and production of offshore oil and gas 
have steadily expanded [1]. Oil transport via marine 
vessels and oil pipelines in the ocean frequently 
resultsin oil spills. Thus, oil has become the main 
pollutantcausing serious damage to the marine 
ecosystem [2]. While aromatic compounds are 
widely used in the industry, most of them are 
toxic;in fact, aromatic compounds are the main 
pollutantsin oil.Bioaccumulation of aromatic 
compounds can destroy human hematopoietic 
functions and even cause cancer. The effect of 
aromatic compounds in marine ecosystems has 
elicited great concern from environmental 
scientists[3]. 

Algae are important primary producersand the 
bases of marine food chain. Theseorganisms 
maintain thefunctions of various marine 
ecosystems. Previous findings show that algae are 
more sensitive to pollution than fish or crustaceans. 
Chlorellais an algal species with a wide ecological 
distribution and short growthperiod.It is easy 
toisolateandculture. Symptoms of Chlorella 
poisoning can be directly observed at the cellular 
level; thus, the species is an ideal test organism in 
toxicity experiments [4]. As such, using algae to 
evaluate the effect of toxicaromatic compounds on 
marine ecosystems is ecologically significant. 

Quantitative structure–activity relationships 
(QSARs) establish links between the activity of 
organic matter and its structure. QSAR is based on 
theoretical calculations of parameters and does not 
rely on experimental parameters; thus, the method is 
both convenient and timesaving. It can predict, 
filter, and preliminarily evaluate the activity of 
organic matterby establishing a mathematical model 
that can predict its biological activity[5,6]. QSARis 
widely used in predictions of biological 
toxicity[7]and has become a rapid, economical, and 
effective method to generate basic toxicity data for 
risk evaluation and management of compounds. 
QSAR employs a variety of methods, such as 
multiplelinearregression(MLR)[8],partialleast-squar
esregression (PLS) [9], and nonlinear 
regression,among others, to establish a 
mathematical model. 

The effects of aromatic compounds on algae have 
recently been studied using QSAR.Sacan et al.[10] 
built a QSAR model describing the toxicity of 
substituted benzene to oblique Scenedesmus and 
found that the toxicity of the aromatic hydrocarbons 
is associated with their molecular size, 
hydrophobicity, and highest occupied molecular 
orbital energy(EHOMO). Modelliet al. [11} 
usedrelevant data on ionization energy, electron 
affinity, and relationship between EHOMO and 
lowest occupied molecular orbital energy(ELUMO) 
to predict the ionization energy, electron affinity, 
and bio-toxicity of polycyclic aromatic 
hydrocarbons (PAH). 
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Table 1. Aromatic compounds descriptions and toxicities to Chlorella vulgaris 

pEC50 
NO. Name SMILES* TpiPC MATS3v 

Exp. Pre. Dif. 

1 Phenol Oc1ccccc1 5.119 −0.233 −2.339 −2.083 −0.256

2 o-chloroaniline c1(c(cccc1)Cl)N 5.384 −0.192 −2.242 −1.858 −0.384

3 m-chloroaniline c1c(cccc1Cl)N 5.376 −0.316 −2.202 −2.165 −0.037
4 p-nitroaniline c1([N+](=O)[O−])ccc(N)cc1 5.889 −0.300 −1.894 −1.880 −0.014
5 nitroaniline c1(c(cccc1)N)[N+](=O)[O−] 5.924 −0.219 −1.815 −1.672 −0.143
6 m-nitroaniline c1(cc(ccc1)N)[N+](=O)[O−] 5.905 −0.300 −1.782 −1.877 0.095
7 nitrobenzene c1(ccccc1)[N+](=O)[O−] 5.690 −0.115 −1.665 −1.529 −0.136
8 nitrophenol Oc1cc(ccc1)[N+]([O−])=O 5.905 −0.246 −1.627 −1.745 0.118
9 2,4-dinitrotoluene Cc1ccc(cc1[N+]([O-])=O)[N+]([O−])=O 6.534 −0.289 −1.605 −1.557 −0.048
10 p-nitrophenol c1(cc(ccc1c)[N+](=O)[O−])[N+](=O)[O−] 6.534 −0.289 −1.570 −1.557 −0.013
11 2-chlorotoluene c1(c(cccc1)Cl)c 5.384 −0.188 −1.478 −1.849 0.371
12 3-nitrochlorobenzene c1(cc(ccc1)Cl)[N+](=O)[O−] 5.905 −0.204 −1.202 −1.644 0.442
13 2,4-nitrochlorobenzene c1(cc(ccc1Cl)[N+](=O)[O−])[N+](=O)[O−] 6.534 −0.182 −1.503 −1.297 0.244
14 o-dinitrobenzene c1(c(cccc1)[N+](=O)[O-])[N+](=O)(O-) 6.416 −0.071 −0.940 −1.082 0.142
15 2,4-dichloronitrobenzene c1(c(cc(Cl)cc1)Cl)[N+](=O)[O−] 6.109 −0.239 −0.681 −1.633 0.952
16 naphthalene c12ccccc1cccc2 7.454 −0.076 −0.663 −0.608 −0.055
17 acenaphthene c12c3CCc1cccc2ccc3 8.252 −0.063 −0.233 −0.202 −0.031
18 fluorine c12c3c(ccc3)Cc1cccc2 7.694 −0.197 −0.193 −0.791 0.598
19 benzo(a)anthracene c12c3c(ccc1cc1ccccc1c2)cccc3 9.918 −0.039 0.658 0.635 0.023
20 pyrene c12c3c4ccc1cccc2ccc3ccc4 9.965 0.005 0.783 0.766 0.017
21 benzo(a)pyrene c1ccc2c(c1)cc3ccc4cccc5c4c3c2cc5 10.604 0.021 1.046 1.102 −0.056

*SMILES: Simplified molecular input line entry specification. 

In the present study, PaDEL-Descriptor [12] 
software was used to calculate the 2D descriptors of 
21 aromatic hydrocarbons, andSPSS 19.0 software 
was employed to perform MLR and select two 
optimal descriptors. Regression equations 
considering the Chlorella toxicity data and these 
optimal descriptors were obtained by the stepwise 
regression method. 

DATA COLLECTION AND METHODS 

Data 

Data of the 21 aromatic compounds, including 
phenol and benzo(a)pyrene, and their toxicity to 
Chlorella within 96 h of exposure were obtained 
from the literature [13]. These data were used to 
establish a QSAR model through the linear 
regression method with SPSS 19.0. During model 
building, 15 molecules (5/7) were randomly 
assigned to the training set, and the remaining 6 
molecules were assigned to the test set, as shown in 
Table 1 (Note: molecules in boldface constitute the 
test set). The pEC50(−LogEC50) values of these 
compounds represent their inhibitory activities 
toward Chlorella. 

PaDEL-Descriptor software was used to calculate 
the molecular structural descriptors of each of the 21 
aromatic compounds; parameters with zero values 
were then deleted to obtain 36 groups of structure 
parameters. Finally, QSAR analysis was performed 
using MLR.  

Calculation Methods 

This study used the MLR method to build a 
QSAR model. MLR analysis is based on calculation 
of regression equations through analysis of the 
relationships between variables; this method is often 
used for QSAR modeling [14–15]. The 
mathematical model of the multivariate linear 
regression equation is:  

 

where Y is the bio-activity of the aromatic 
compound, namely,pEC50; x1, x2, x3, …, xn are the 
molecular structural descriptors of the compounds; 
β1, β2, β3,…, βn are the regression coefficients; βiis 
an average change of dependent variable Y caused 
by one unit of change of independent variable 
xi,when the other independent variables remain 
unchanged, i = 1, 2, …, k; and β0 is a constant. 

RESULTS 

The simplified group of 36 molecular structural 
parameters wastreated as a group of independent 
variables, and the values of theinhibitory activity 
were considered as dependent variables. The 
stepwise selection method was used to analyze, 
predict, and build an ideal mathematical model 
containing two descriptors. The model equation is 
as follows:  
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(1) 
The correlation coefficients obtained are as 

follows: R2=0.974, F=226.452, SE=0.188,and n=15; 
these values indicate statistically sound results. 
Equation (1) reveals thatTpiPC and 
MATS3vinfluence the activity of the aromatic 
compounds. Equation (1) was then defined as 
Model I, andthe test value of each independent 
variableis shown in Table 2. 

Table 2. Descriptions of the parameters and their test 
values 
Variable Descriptions B T Sig. VIF 
TpiPC autocorrelation 0.468 10.464 0 2.541

MATS3v path count 20434 3.477 0.005 2.541

Table 2 shows thatall values of theindependent 
variable (VIF) <10, which illustratesthelack of 
multiple linear relationships between the 
independent variables; Sig<0.01 indicates the 
significant influence of the two structural 
parameters considered on the activity of the 
compounds andtherelative stabilityof the model. 
When Model I was applied to the test set, the 
correlation coefficients R2 = 0.809 and SE = 0.448 
were obtained. These results confirm the reliability 
and predictive ability of Model I. 

The inhibitory activity of the 21 aromatic 
compounds toward Chlorella was predicted by 
using Model I, and the results are shown in Table 1. 
Correlations between the experimental and the 
predicted values are shown in Fig. 1, and residual 
errors between the experimental and predicted 
values are shown in Fig. 2. Fig. 1 demonstrates that 
the experimental and predicted values of the training 
and test sets are consistent; any variations observed 
were similar and good correlations were found. 

 
Fig. 1.Comparison between actual values and 

predicted values. 

 
Fig. 2.Error of samples. 

The values that are indicated in Fig. 2 fluctuate 
around the zero point, which indicates that the 
model achieves reliable prediction and can thus be 
used to predict the inhibitory toxicity pEC50 of 
aromatic compounds to Chlorella. 

DISCUSSION 

This study used PaDEL-Descriptor software to 
calculate the descriptors of 21 aromatic compounds; 
a 2DQSAR model considering the inhibitory 
activities of the compounds and theircompound 
descriptors was then built. The keyof QSAR studies 
is to determine how to produce structural descriptors 
that express the structural characteristics of various 
molecules [16]. Existing parameters can be divided 
into four categories: (1) the substituent parameter, 
or the linear free-energy relationship parameter, is 
the earliest and most commonly used structural 
description. It accumulates a large amount of 
available data and features a considerable number of 
successful examples. (2) With the rapid 
development of theoretical chemistry and computer 
technologies, scientistshave found that quantum 
chemistry, orbit energy, and geometrical features 
are well associated with bioactivity[17]. (3) 
Interaction parameters and three-dimensional 
molecular structure descriptors (3D descriptors). (4) 
Various topological parameters deduced from the 
2D topology [18]. The 3DQSAR method generally 
well predicts relationships between the structure and 
properties of compounds. In case a 3D descriptor 
cannot be obtained for a compound, this compound 
should be excluded from the sample. 2D descriptors 
can easily beobtained as long as the molecular 
structure is known, and theycan serve as 
excellentmodels for 3D descriptors. This research 
used the SMILES format of the 21 aromatic 
compounds as input in PaDEL-Descriptor 
todetermine their structures. The parameters of the 
model in this study are ideal. We thus conclude that 
the 2Dmodel is stable and exhibits good ability for 
predicting the inhibitory effectof toxic aromatic 
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compounds onChlorella. 
The 21 bioactive aromatic compounds used in 

this study are toxic moleculeswith different 
substituents and various numbers of benzene rings. 
The two descriptors in the model are TpiPC, and 
MATS3v, otherwise known as autocorrelation and 
path count, respectively. The topology 
autocorrelation descriptor reveals the distribution of 
atomic properties in the molecular topology, 
whereas the path count reflects the number of 
carbon atoms and branching conditions in the 
molecule. Bothdescriptors are molecular topology 
parameters. H. Wiener[19] is the first chemist to 
introducethe topological index. Studies have shown 
that the Wiener index demonstrates good 
correlationsbetweenthe properties of hydrocarbon 
molecules, such as critical constant, viscosity, 
surface tension, and chromatographic retention 
time[20]. Our model demonstrates that molecular 
autocorrelation and path count are also significantly 
correlated with the toxicity of aromatic compounds. 

Several studies onQSAR between aromatic 
compounds and algae have been conducted.Netzeva 
et al.[21] built a QSAR model that showed the 
inhibitory effect of 65 toxic aromatic compounds to 
Chlorella; these researchers usedMLR to build a 
QSAR model with two descriptors and achieve the 
equation Log (1/EC50) = 0.73LogKow 
−0.59Elumo−1.91; R2=0.84 and SE=0.43. While the 
statistical results of this model are satisfactory,the 
regression coefficients are lower compared with that 
(R2=0.974) of the model presented in this paper. 
Thus,TpiPC and MATS3v may be more suitable for 
predictthe inhibitory effect of toxicaromatic 
compounds onChlorella than other descriptors. 

CONCLUSIONS 

In this paper, PaDEL-Descriptor software was 
used to determine the molecular structure of 21 
aromatic compounds. Calculations were based on 
15 randomly selected molecules constituting a 
training set and 6 molecules constituting a test set. 
An ideal model with two descriptors was built by 
using the stepwise regression method. The model 
showed good correlation and strong stability after 
determination of its R2, Sig, VIF, and R2by using the 
test set. This model can predict the inhibitory effect 
of toxic aromatic compounds on C. vulgaris. 
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(Резюме) 

С увеличаването на търсенето на енергия по светапетролът е станал главния замърсител на океаните. 
Ароматните съединения, които са компонент на петрола са станали основна нарастваща заплаха за морските 
екосистеми. Съставянето на модел на количествена връзка структура-активност (QSAR) за предсказване на 
токсичността на неизвестни ароматни съединения може да послужи за предпазване от замърсяване. В 
настоящата работа са подбрани 21 ароматни съединения, от които петнадесет са за упражнение, а шест - за 
тестуване.Структурните параметри на съединенията са получени чрез множествена линейна регресия и е 
съставен 2-дескрипторен предсказващ модел. Тестовите съединения са използвани за определяне 
предсказващата способност на модела. Този модел, използващ предложения метод показва задоволителни 
статистически резултати (R2 = 0.974 срещу тестовата стойност R2 = 0.804).Тези данни показват, че моделът има 
добра предсказваща способност и затова може да се използва за предсказването на ефекта на инхибиране на 
ароматни съединения спрямо Chlorella vulgaris. 
 
 
 
 
  


