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QSAR study of aromatic compounds toxicity to Chlorella vulgaris
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As demands for energy have increased worldwide, oil has become the main pollutant of the ocean. The impact of
aromatic compounds, which are primary pollutants in oil, on various marine ecosystems has become a growing concern.
Establishing a quantitative structure—activity relationship (QSAR) model to predict the toxicity of unknown aromatic
compounds may thus serve as an important pollution-preventive measure. In this study, 21 aromatic compounds, 15 of
which served as a training set and 6 as a test set, were selected. The structural parameters of the compounds were
obtained by multiple linear regression, and a 2-descriptor prediction model was established. The test set was used to
determine the predictive ability of the model. The model built using the proposed method showed satisfactory statistical
results (R?= 0.974 vs. the test set R?= 0.804). These data show that the model provides good predictability and stability
and can thus be used to predict the inhibitory effect of aromatic compounds on Chlorella vulgaris.
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INTRODUCTION

Asdemands for energy have increased worldwide,
exploration and production of offshore oil and gas
have steadily expanded [1]. Oil transport via marine
vessels and oil pipelines in the ocean frequently
resultsin oil spills. Thus, oil has become the main
pollutantcausing serious damage to the marine
ecosystem [2]. While aromatic compounds are
widely used in the industry, most of them are
toxic;in fact, aromatic compounds are the main
pollutantsin  oil.Bioaccumulation of aromatic
compounds can destroy human hematopoietic
functions and even cause cancer. The effect of
aromatic compounds in marine ecosystems has
elicited great concern from environmental
scientists[3].

Algae are important primary producersand the
bases of marine food chain. Theseorganisms
maintain  thefunctions of various marine
ecosystems. Previous findings show that algae are
more sensitive to pollution than fish or crustaceans.
Chlorellais an algal species with a wide ecological
distribution and short growthperiod.It is easy
toisolateandculture. ~ Symptoms of  Chlorella
poisoning can be directly observed at the cellular
level; thus, the species is an ideal test organism in
toxicity experiments [4]. As such, using algae to
evaluate the effect of toxicaromatic compounds on
marine ecosystems is ecologically significant.
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Quantitative  structure—activity — relationships
(QSARs) establish links between the activity of
organic matter and its structure. QSAR is based on
theoretical calculations of parameters and does not
rely on experimental parameters; thus, the method is
both convenient and timesaving. It can predict,
filter, and preliminarily evaluate the activity of
organic matterby establishing a mathematical model
that can predict its biological activity[5,6]. QSARis
widely used in predictions of biological
toxicity[7]and has become a rapid, economical, and
effective method to generate basic toxicity data for
risk evaluation and management of compounds.
QSAR employs a variety of methods, such as
multiplelinearregression(MLR)[8],partialleast-squar
esregression  (PLS) [9], and  nonlinear
regression,among  others, to  establish a
mathematical model.

The effects of aromatic compounds on algae have
recently been studied using QSAR.Sacan et al.[10]
built a QSAR model describing the toxicity of
substituted benzene to oblique Scenedesmus and
found that the toxicity of the aromatic hydrocarbons
is associated with their molecular size,
hydrophobicity, and highest occupied molecular
orbital energy(EHOMO). Modelliet al. [11}
usedrelevant data on ionization energy, electron
affinity, and relationship between EHOMO and
lowest occupied molecular orbital energy(ELUMO)
to predict the ionization energy, electron affinity,
and  bio-toxicity of polycyclic  aromatic
hydrocarbons (PAH).

1102 ©2015Bg 2015 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria



N. Li et al.: OSAR study of aromatic compounds toxicity to Chlorella vulgaris

Table 1. Aromatic compounds descriptions and toxicities to Chlorella vulgaris

NO. Name SMILES* TpiPC MATS3v pECS0
Exp. Pre. Dif.
1 Phenol Oclcececl 5119 -0.233 —2.339 —2.083 —0.256
2 o-chloroaniline cl(c(ccecl)CHN 5384 —0.192 —2.242 —1.858 —0.384
3 m-chloroaniline cle(eccc1CN 5376 —0.316 —2.202 —2.165 —0.037
4 p-nitroaniline cI([N+](=0)[O—])ccc(N)cel 5.889 —0.300 —1.894 —1.880 —0.014
5 nitroaniline cl(c(cccel)N)[N+](=0)[O—] 5924 —0.219 -1.815-1.672 -0.143
6 m-nitroaniline cl(cc(ccel)N)[N+](=0)[O—] 5905 —0.300 -1.782 —-1.877 0.095
7 nitrobenzene cl(cceee])[N+](=0)[0—] 5.690 —0.115 —1.665—1.529 —0.136
8 nitrophenol Oclce(ccc)[N+]([O-])=0 5905 -0.246 —1.627-1.745 0.118
9 2,4-dinitrotoluene Cclece(ccl[N+]([O-])=O)[N+]([O-])=O 6.534 —0.289 —1.605 —1.557 —0.048
10 p-nitrophenol cl(ce(ccelc)[N+](=0)[O-])[N+](=0)[0O-] 6.534 -0.289 —1.570 —1.557 —0.013
11 2-chlorotoluene cl(c(ccecl)Cle 5384 —0.188 —1.478 —1.849 0.371
12 3-nitrochlorobenzene cl(cc(cecl)CHN+](=0)[0—] 5905 —0.204 —1.202 —1.644 0.442

13 2,4-nitrochlorobenzene cl(cc(cccl CI)[N+](=O)[O-])[N+](=0)[O—] 6.534 —0.182 —1.503 —1.297 0.244

14 o-dinitrobenzene cl(c(ccec)[N+](=0)[O-D[N+](=0)(O-) 6.416 —0.071 —0.940 —1.082 0.142
15 2.4-dichloronitrobenzene cl(c(cc(Chee)CHN+](=0)[0—] 6.109 —0.239 —0.681 —1.633 0.952
16 naphthalene cl2cccecleecc2 7.454 —0.076 —0.663 —0.608 —0.055
17 acenaphthene c12c3CCclecec2ecec3 8.252 —0.063 —0.233 —0.202 —0.031
18 fluorine cl12c3c(cee3)Celcece2 7.694 —0.197 -0.193 —0.791 0.598
19  benzo(a)anthracene cl2c3c(cceleclecceelce2)ecee3 9.918 —0.039 0.658 0.635 0.023
20 pyrene cl2c3c4ceclecece2ecc3ceecd 9.965 0.005 0.783 0.766 0.017
21 benzo(a)pyrene cleec2c(cl)cc3cecdecceSc4c3c2ecs 10.604 0.021 1.046 1.102 —0.056
*SMILES: Simplified molecular input line entry specification.
In the present study, PaDEL-Descriptor [12] Calculation Methods

software was used to calculate the 2D descriptors of
21 aromatic hydrocarbons, andSPSS 19.0 software
was employed to perform MLR and select two
optimal  descriptors.  Regression  equations
considering the Chlorella toxicity data and these
optimal descriptors were obtained by the stepwise
regression method.

DATA COLLECTION AND METHODS
Data

Data of the 21 aromatic compounds, including
phenol and benzo(a)pyrene, and their toxicity to
Chlorella within 96 h of exposure were obtained
from the literature [13]. These data were used to
establish a QSAR model through the linear
regression method with SPSS 19.0. During model
building, 15 molecules (5/7) were randomly
assigned to the training set, and the remaining 6
molecules were assigned to the test set, as shown in
Table 1 (Note: molecules in boldface constitute the
test set). The pECs)(—LogECs;) values of these
compounds represent their inhibitory activities
toward Chlorella.

PaDEL-Descriptor software was used to calculate
the molecular structural descriptors of each of the 21
aromatic compounds; parameters with zero values
were then deleted to obtain 36 groups of structure
parameters. Finally, QSAR analysis was performed
using MLR.

This study used the MLR method to build a
QSAR model. MLR analysis is based on calculation
of regression equations through analysis of the
relationships between variables; this method is often
used for QSAR modeling [14-15]. The
mathematical model of the multivariate linear
regression equation is:

Y By & Goxg + Gag + 4 Bydy

where Y is the bio-activity of the aromatic
compound, namely,pECsg; Xy, Xz, X3, ..., X, are the
molecular structural descriptors of the compounds;
B1, B2, P3,---, Bnare the regression coefficients; Piis
an average change of dependent variable Y caused
by one unit of change of independent variable
xi,when the other independent variables remain
unchanged, i=1, 2, ..., k; and P, is a constant.

RESULTS

The simplified group of 36 molecular structural
parameters wastreated as a group of independent
variables, and the values of theinhibitory activity
were considered as dependent variables. The
stepwise selection method was used to analyze,
predict, and build an ideal mathematical model
containing two descriptors. The model equation is
as follows:

pEle w =5F11 & 0400TEIFC + I40RMATESY
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@)
The correlation coefficients obtained are as
follows: R?=0.974, F=226.452, SE=0.188,and n=15;
these values indicate statistically sound results.
Equation (1) reveals thatTpiPC and
MATS3vinfluence the activity of the aromatic
compounds. Equation (1) was then defined as
Model I, andthe test value of each independent
variableis shown in Table 2.

Table 2. Descriptions of the parameters and their test
values

Variable Descriptions B T Sig. VIF
TpiPC autocorrelation 0.468 10.464 0 2.541
MATS3v  pathcount 20434 3.477 0.005 2.541

Table 2 shows thatall values of theindependent
variable (VIF) <10, which illustratesthelack of

multiple linear relationships between the
independent variables; Sig<0.01 indicates the
significant influence of the two structural

parameters considered on the activity of the
compounds andtherelative stabilityof the model.
When Model 1 was applied to the test set, the
correlation coefficients R*= 0.809 and SE = 0.448
were obtained. These results confirm the reliability
and predictive ability of Model 1.

The inhibitory activity of the 21 aromatic
compounds toward Chlorella was predicted by
using Model I, and the results are shown in Table 1.
Correlations between the experimental and the
predicted values are shown in Fig. 1, and residual
errors between the experimental and predicted
values are shown in Fig. 2. Fig. 1 demonstrates that
the experimental and predicted values of the training
and test sets are consistent; any variations observed
were similar and good correlations were found.
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Fig. 1l.Comparison between actual values and
predicted values.
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The values that are indicated in Fig. 2 fluctuate
around the zero point, which indicates that the
model achieves reliable prediction and can thus be
used to predict the inhibitory toxicity pECsy of
aromatic compounds to Chlorella.

DISCUSSION

This study used PaDEL-Descriptor software to
calculate the descriptors of 21 aromatic compounds;
a 2DQSAR model considering the inhibitory
activities of the compounds and theircompound
descriptors was then built. The keyof QSAR studies
is to determine how to produce structural descriptors
that express the structural characteristics of various
molecules [16]. Existing parameters can be divided
into four categories: (1) the substituent parameter,
or the linear free-energy relationship parameter, is
the earliest and most commonly used structural
description. It accumulates a large amount of
available data and features a considerable number of
successful examples. (2) With the rapid
development of theoretical chemistry and computer
technologies, scientistshave found that quantum
chemistry, orbit energy, and geometrical features
are well associated with bioactivity[17]. (3)
Interaction parameters and three-dimensional
molecular structure descriptors (3D descriptors). (4)
Various topological parameters deduced from the
2D topology [18]. The 3DQSAR method generally
well predicts relationships between the structure and
properties of compounds. In case a 3D descriptor
cannot be obtained for a compound, this compound
should be excluded from the sample. 2D descriptors
can easily beobtained as long as the molecular
structure is known, and theycan serve as
excellentmodels for 3D descriptors. This research
used the SMILES format of the 21 aromatic
compounds as input in PaDEL-Descriptor
todetermine their structures. The parameters of the
model in this study are ideal. We thus conclude that
the 2Dmodel is stable and exhibits good ability for
predicting the inhibitory effectof toxic aromatic
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compounds onChlorella.

The 21 bioactive aromatic compounds used in
this study are toxic moleculeswith different
substituents and various numbers of benzene rings.
The two descriptors in the model are TpiPC, and
MATS3v, otherwise known as autocorrelation and
path  count, respectively. The topology
autocorrelation descriptor reveals the distribution of
atomic properties in the molecular topology,
whereas the path count reflects the number of
carbon atoms and branching conditions in the
molecule. Bothdescriptors are molecular topology
parameters. H. Wiener[19] is the first chemist to
introducethe topological index. Studies have shown
that the Wiener index demonstrates good
correlationsbetweenthe properties of hydrocarbon
molecules, such as critical constant, viscosity,
surface tension, and chromatographic retention
time[20]. Our model demonstrates that molecular
autocorrelation and path count are also significantly
correlated with the toxicity of aromatic compounds.

Several studies onQSAR between aromatic
compounds and algae have been conducted.Netzeva
et al.[21] built a QSAR model that showed the
inhibitory effect of 65 toxic aromatic compounds to
Chlorella; these researchers usedMLR to build a
QSAR model with two descriptors and achieve the
equation Log (1/EC50) = 0.73LogKow
—0.59Elumo—1.91; R*=0.84 and SE=0.43. While the
statistical results of this model are satisfactory,the
regression coefficients are lower compared with that
(R’=0.974) of the model presented in this paper.
Thus, TpiPC and MATS3v may be more suitable for
predictthe inhibitory effect of toxicaromatic
compounds onChlorella than other descriptors.

CONCLUSIONS

In this paper, PaDEL-Descriptor software was
used to determine the molecular structure of 21
aromatic compounds. Calculations were based on
15 randomly selected molecules constituting a
training set and 6 molecules constituting a test set.
An ideal model with two descriptors was built by
using the stepwise regression method. The model
showed good correlation and strong stability after
determination of its R?, Sig, VIF, and R’by using the
test set. This model can predict the inhibitory effect
of toxic aromatic compounds on C. vulgaris.
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QSAR-M3CJIIEJIBAHE HA TOKCUYHOCTTA HA APOMATHU CHEJJMHEHWA CITPAMO
Chlorella vulgaris

H. JIu"? ®. Yeu"?, JI. Sur "2 . Koy

! Kniowosa na6opamopus no ev3cmarnoéssane na Mopckume 6uopecypcu u xabumami 6 nposuHyus.
JIaonune, Yuueepcumem 6 /lanuan, Kumaii
’Knouosa nabopamopus no cesephu mopcku kyamypu, Munucmepcemeo na semedenuemo, Ynusepcumem no
okeanonocus ¢ lanuan, Kumaii

Tlocrenmna Ha 4 anpui, 2015 r.
(Pesrome)

C yBenMuyaBaHETO Ha THPCEHETO HA €HEprus II0 CBETANeTPONBbT € CTaHal IVIaBHUS 3aMbPCUTENl Ha OKEAHHTE.
ApoMaTHHTE ChEIUHEHHs, KOUTO ca KOMIIOHCHT Ha IIEeTpoja ca CTaHaId OCHOBHA HapacTBallla 3aIljlaxa 3a MOPCKHTE
exocuctemu. ChCTaBSIHETO Ha MOJENl Ha KOJMYECTBEHA BpBb3Ka CTpyKTypa-akTuBHOCT (QSAR) 3a mpenckasBane Ha
TOKCHYHOCTTa HA HEHM3BECTHH apOMAaTHHM CBHEJWHEHHS MOXKE [a IOCIY)KH 3a Tpedna3BaHe OT 3aMbpcsiBaHe. B
Hacrosimara padora ca moxOpaHu 21 apoMaTHH ChEIWHEHUs, OT KOUTO TETHAJIECET ca 3a yInpakHeHHe, a IIecT - 3a
TectyBaHe.CTpyKTypHUTE TMapaMeTpH Ha ChEIMHEHUATa ca IOJyYeHH 4Ype3 MHOKECTBEHA JIMHEHHa perpecus W e
CbCTaBEH 2-JECKPUNTOPEH MpeAcKasBall MoJel. TecTOBUTE CBhEIUHEHUS Ca U3IOJ3BaHU 3a OIpelelsiHe
IpeJcKa3Baiara CrocoOHOCT Ha Mojena. To3u Mofen, W3ION3BAll HPEUIOKEHUS METOJ IOKa3Ba 3aJ0BOJHTEIIHU
cratuctiyecku pesyintati (R*= 0.974 cpemy TectoBata croitHoct R*= 0.804).Te3u 1aHHH MOKa3BAaT, 4e MOJAETBT HMA
Jno0pa mpeJckasBala CocoOHOCT U 3aTOBa MOXE Jla Ce U3I0J3Ba 3a IpecKa3BaHeTo Ha edexTa Ha MHXUOUpaHe Ha
apomatHH cbepiuHeHus crpsamo Chlorella vulgaris.
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