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Non-universal critical properties of the ferromagnetic mean spherical model with
long-range interaction
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The bulk critical behavior of the mean spherical model with long-range interaction (decaying at large distances r as r

—d=0 \where d

is the space dimensionality and 0 < o < 2) is studied at the upper critical dimension by using the properties of the Lambert W-function.
Exact expressions for the spherical field, the free energy density and the specific heat per spin are presented. The exact results are
compared with the asymptotic ones on the basis of the calculated absolute and relative errors. Asymptotic analytical expressions for
the absolute errors are also provided. It is shown that the obtained results are valid in a broader neighborhood of the critical point.
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INTRODUCTION

The spherical model of a ferromagnet of Berlin
and Kac [1] is one of the few statistical mechani-
cal models which have been exactly solved in any
space dimensionality d and exhibit a non-trivial criti-
cal behavior for d; < d < d,, where d; and d,, are the
lower and the upper critical dimensions, respectively.
It has been defined on the regular d-dimensional lat-
tice. With each lattice site one associates a continu-
ous real variable (spin). The spins of this model are
subject to a global constraint with spherical symme-
try, while those of the Ising model are subject to lo-
cal ones. When the global constraint of Berlin and
Kac [1] is satisfied in the sense of an ensemble aver-
age, the model is known as the mean spherical model.
As it could be expected, the spherical model and the
mean spherical model have the same thermodynamic
properties (see [2]). The equivalence between the in-
finite translational invariant standard spherical model
and the Heisenberg model with n spin components, in
the case n — oo, has been discussed in [2—4].

The investigation of systems with long-range in-
teraction was initiated on the ferromagnetic spherical
model [5]. The spherical model has been extensively
used for analytic exploration of the scaling properties
of confined systems, in one or more directions (see
e.g. [2,6-11] and references therein). The Casimir
effect which remains the central theme of both theo-
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retical and experimental investigations, has been the-
oretically studied on the spherical model in several
papers [12-16].

Different quantum versions of the spherical model
(or the large n-limit of O(n) symmetric models), some
of which are models of Bose gas, are also available
[17-27].

Recently it has been shown [28-30] that the Lam-
bert W-function can be applied for an exact computa-
tion of non-universal critical properties with leading
logarithmic behavior at the upper critical dimension
of the system. The basic mathematical properties of
the Lambert W-function, some of its applications as
well as interesting historical remarks have been pre-
sented in [31].

In this paper, using the properties of the Lambert
W-function we study the bulk critical behavior of the
ferromagnetic mean spherical model with long-range
interaction (decreasing at long distances r as 479,
0 < 0 <2) at the upper critical dimension, d =20.
At zero field in the neighborhood of the critical point,
exact analytical results for the spherical field, the free
energy density and the specific heat per spin are ob-
tained and compared with the known asymptotic ones
[2] on the basis of the calculated absolute and rela-
tive errors. Special attention is paid to the cases when
the upper critical dimension coincides with the real
physical dimensions (chains, thin layers, i.e. films
and three-dimensional systems). It is shown that the
obtained results hold true in a broader neighborhood
of the critical point. Besides, the expansion of the
critical region is estimated.
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THE MODEL

The Hamiltonian of the mean spherical model on
a d-dimensional lattice is

1
H==2Y Jijsis;+ %ZS? —hY.si (D)
ij i i

where the spin at the i-th site, s; = s5;(r), is a continu-
ous real variable, J;; is the interaction matrix between
spins at sites i and j, and A is an ordering external
magnetic field. The spherical field u provides the
spherical constraint

Y. (si) =N, 2)

where N is the total number of spins on the lattice
and (---) denotes the standard thermodynamic aver-
age computed with the Hamiltonian (1).

For long-range interaction potential

Jr)~r @9 550 and r—e, (3)

the long-wavelength (small k& = |k|) leading asymp-
totic of its Fourier transform is U (k) ~ k°. The case
o > 2 corresponds to short-range interaction, i.e. in
this case the universality class does not depend on ©.
For 0 < 0 <2, we have long-range interaction and
the critical behavior depends on ¢. The critical be-
havior of systems with long-range interaction in re-
stricted geometry was discussed in [32].

At zero field, the thermodynamic limit form of the
mean spherical constraint (2) is

dUd,6(¢)
do
where K = 3J, B =1/(kgT) (with the Boltzmann’s

constant kg = 1), @ = u/J is the scaled spherical field
and the function U is defined by

=K, 4)

Uno(0)=Cm) [ dtreo- [ akain(o-+K°). )

-7

The left hand side of (4) is a strictly decreasing func-
tion of ¢ > 0 attaining its maximum at ¢ = 0ifd > ©.
The considered model undergoes a phase transition at
the critical point K., determined by

dUd o
do
The bulk free energy density of the model has the fol-

lowing form [2]:

BS(K) =+

2
270

K. =

0), d>o. (6)

(Uso($) ~K9) + 3K ~K, (1)

where ¢ is the solution of (4).

Equations (7) and (4) provide the basis for study-
ing the bulk critical behavior of the model. By dif-
ferentiating twice the free energy density (7) with re-
spect to the temperature, one obtains the zero-field
specific heat per spin

O 11,99
c(K):=-K W(ﬁf(l())—i‘i‘il( x ®

Since ¢ decreases when K increases, see (4), and
¢ =0 for K > K., then the zero-field specific heat
per spin keeps its maximum value ¢(K) = 1/2 for all
K > K. and the Dulong-Petit low of classical thermo-
dynamics holds for all T < T [2].

SOME EXACT RESULTS AND
THE ASYMPTOTIC ONES

The function U, defined by (5), can be represented
in the form

Uio(9) = (257;1)(1 /OXDxd_lln(‘P +x%)dx, (9)

where xp = 27(d/Sy)"/% is the radius of the spheri-
calized Brillouin zone, S; = 27¢/2/T'(d/2) is the sur-
face of the d-dimensional unit sphere and I' is the Eu-
ler gamma function.

At the upper critical dimension d =20 in the
neighborhood of the critical point (K./K —1 — 07),
i.e. when ¢ < 1, the asymptotic behavior of the func-
tion (9) is

Use.o () ~ <1nxg — %) +2(;%)

(B n(S)-L) w

XD D

and for the mean spherical constraint (4), one obtains

(3)(5)-(5)

The critical value, determined by (6), is K. = 2/x3,.
By the substitution In(¢/x§) =1, the equation (11)
takes the form of the defining equation for the Lam-
bert W-function [31]

an

W (x)e" ™ = x
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which always has an infinite number of solutions,

most of them complex, and so W(x) is a multival-

ued function. When x is a real variable, then for

—1/e <x <0 there are two branches with real val-

ues of W (x): the branch Wy (x) satisfying —1 < Wp(x)

and the branch W_; (x) < —1, as lirg W_i(x) = —oo.
x—0~

Thus, in therms of the Lambert W-function, the

exact solution of (11) is
¢ = x5 expW_(—1)], (12)

where the variable t = K. /K — 1 is a measure of the
deviation from the critical point K.. The choice of the
real branch W_; (x) of the Lambert W-function among
the solutions of (11) corresponds to the fact that at
t =0(K = K_) the scaled spherical field ¢ vanishes.

For the free energy density near the critical point,
from (7), (10) and (12) omitting the terms of order
O(¢>In¢), we obtain

Bf(r) = Bef(0)+Bof(), (13)

where the free energy density at = 0(K = K,) is

Bef(0) = % (mxg — ;) +%1an —K. (14
with correction
1 _
S(Bf(1) = 5Kt =texpWor(=0)].  (15)

For the specific heat per spin near the critical point
from (8) and (12), using the derivative of the Lambert
W-function, we get the following exact result

1 1

c(t) = 5 + W (D) (16)
The last result shows that the specific heat capacity
remains finite at t = 0(K = K.) but at this point its
graph has a cusp. The obtained expression (16) allows
us to find a critical region (0,7] in which the zero-
field specific heat per spin decreases to zero and at
the endpoint, we have ¢(7)) = 0. From this and (16),
we obtain

W_l(—lo) = -3.

Thus, for the endpoint of the critical region, we get
th=3 e 3.

Using the absolutely convergent series [31]

L
Woi(—t) =L — L+ =

L
Ly(=2+Ly) Ly(6—9Ly+2L3)
202 6L3
Ly(—12+36L, — 2213 +3L3)
* 1214

L\’
+0<<L1) ) (17)

where L; = In7 and L, = In(—1In7), we get the asymp-
totic expressions for the scaled spherical field ¢, the
correction to the free energy density at7 = 0(K = K,)
and the specific heat per spin. Retaining the leading
two terms of (17) from (12), (15) and (16), we obtain
as follows

Furn z—xgﬁ, (18)
2
S(Bf(t))appr. = g’ (19)
and
Cappr (1) % % 20)

In the theory of phase transitions these asymptotic
expressions show a typical behavior at the upper crit-
ical dimension. The logarithmic solution (18) is well
known (see e.g. [2, p. 88]. It was obtained, neglecting
the linear ¢-term in (11). From (20), for the endpoint
of the interval (0,)4ppr.|, We obtain to,ppr. = e 2. The
specific heats (16) and (20), are graphically presented
in Fig. 1.

C, Coppr.

I I I I I I = I
0.02 0.04 0.06 0.08 0.10 0.12 014 - _

Fig. 1. The dependences of the specific heats ¢ and cgpp.
on the deviation from the critical point . The dashed line
corresponds to Cqppr.-
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COMPARISON BETWEEN THE EXACT RESULTS
AND THE ASYMPTOTIC ONES

From (17), retaining the leading L /L,-term, we
get the following asymptotic expressions for the ab-
solute errors:

— t
A¢ = ‘(b - ¢appr.‘ %xgia (21)

2

A(Bf) = ﬁ’f_fappr.‘ ~ lrl;Tl‘ (22)

and
1

2|Inz |3’
On the other hand, we get the following estimate for
the expansion of the critical region

At =ty —toappr. = (3—€) /€. (24)

Ac = |c = cappr| = (23)

For more detailed analysis, some numerical data
for the absolute errors and relative errors are given in
Table 1 and Table 2, respectively. Special attention is
paid to systems with real physical dimensions (chains,
thin layers, i.e. films and three-dimensional systems).

CONCLUSIONS

In a broader neighborhood of the critical point, the
critical behavior of the mean spherical model with

long-range interaction (decaying at large distances r
as r~979, where d is the space dimensionality and
0 < 0 <2)is studied.

Exact expressions for the scaled spherical field
(12), the correction to the free energy density (15) and
the specific heat per spin (16), in terms of the Lambert
W-function are obtained. These results are compared
with the known asymptotic ones on the basis of the
calculated absolute and relative errors. Besides, us-
ing the series expansion of the Lambert W-function,
asymptotic analytical expressions for the absolute er-
rors are presented (see (21), (22) and (23)).

The obtained expressions (16) and (20) for the
specific heat capacity per spin allow us to estimate the
expansion of the critical region (24). This expansion
easily can be seen in Fig. 1.

Let us note that the absolute error A¢ and the rel-
ative error |A(Bf)/(Bf)| depend on both the devia-
tion from the critical point ¢ and the upper critical di-
mension d = 20 of the system, while the absolute er-
rors A(Bf) and Ac and the relative errors |A¢ /¢ | and
|Ac/c| depend only on ¢ (see Table 1 and Table 2).

Finally, this treatment by using the Lambert W-
function is applicable in a broader neighborhood of
the critical point. Moreover, it can be applied to a
wide class of models with leading logarithmic behav-
ior at the upper critical dimensions.

Table 1. Numerical data for the absolute errors

A A(Bf) Ac
f d=1(c=1/2) d=2(c=1) d=3(c=3/2)
1x107° 2.881 x 1077 5.762 x 107 1.250 x 10~ 1.625 x 10712 0.010
1x10~* 4.052 x 1076 8.104 x 10~° 1.759 x 1073 2.286 x 10710 0.014
1x1073 6.219 x 1073 1.243 x 1074 2.700 x 10~ 3.509 x 108 0.021
1x1072 1.110 x 1073 2.221x 1073 4.821x 1073 6.265 x 107 0.034
1x107! 0.027 0.054 0.119 1.547 x 1073 0.046
Table 2. Numerical data for the relative errors
IABS)/(BS)|[%] 1A/ ¢]|[%] |Ac/c|[%]
¢ d=1(c=1/2) d=2(c=1) d=3(c=3/2)
1x1073 1.575x 10710 3.476 x 10710 9.952 x 10710 23.023 2.568
1x1074 2.215x 1078 4.889 x 1078 1.399 x 1077 26.674 3.649
1x1073 3.401 x 10~ 7.504 x 107°© 2.148 x 107> 31.996 5.727
1x1072 6.072x 10~ 1.339x 1073 3.836 x 1073 40.554 10.849
1x 107! 0.150 0.332 0.963 55.353 41.321

272



(1]
(2]

(3]
(4]

(5]
(6]

(7]

(8]

(9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

E. S. Pisanova, S. I. Ivanov: Non-universal critical properties of the ferromagnetic mean spherical model

REFERENCES

T. H. Berlin, and M. Kac, Phys. Rev. 86, 821 (1952).
J. G. Brankov, D. M. Danchev and N. S. Tonchey, in
Series in Modern Condensed Matter Physics (World
Scientific, Singapore, 2000), p. 1.

H. E. Stanley, Phys. Rev. 176, 718 (1968).

A. M. Khorunzhy, B. A Khoruzhenko, P. L. A. and
M. V. Shcherbina, in Phase Transitions and Criti-
cal Phenomena, edited by C. Domb and L. Lebowitz
(Academic Press, New York, 1992), p. 73.

G. S. Joyce, Phys. Rev. 146, 349 (1966).

M. N. Barber, and M. E. Fisher, Annals of Phys. 77,
1 (1973).

S. Singh, and R. K. Pathria, Phys. Rev. B 32, 4618
(1985).

V. Privman, in Finite Size Scaling and Numerical
Simulations of Statistical Systems, edited by V. Priv-
man (World Scientific, Singapore, 1990), p. 1.

X. S. Chen, and V. Dohm, Phys. Rev. E 67, 056127
(2003).

D. M. Dantcheyv, and J. G. Brankov, J. Phys. A: Math.
Gen. 36, 8915 (2003).

H. Chamati, J. Phys. A.: Math. Theor. 41, 375002
(2008).

D. M. Dantchev, Phys. Rev. E 53, 2104 (1996).

D. M. Dantchev, Phys. Rev. E 58, 1455 (1998).

H. Chamati, and D. M. Dantchev, Phys. Rev. E 70,
066106 (2004).

D. M. Dantchev, H. W. Diehl, and D. Griineberg,
Phys. Rev. E 73,016131 (2006).

D. M. Dantchev, and D. Griineberg, Phys. Rev. E 79,
041103 (2009).

[17]

(18]

[19]

(20]
(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

A. Verbeure, and V. Zagrebnov, J. Stat. Phys. 69, 329
(1992).

Y. Tu, and P.B. Weichman, Phys. Rev. Lett. 73, 6
(1994).

T. W. Nieuwenhuizen, Phys. Rev. Lett. 74, 4289
(1995).

T. Vojta, Phys. Rev. B 53,710 (1996).

B. Momont, A. Verbeure, and V. Zagrebnov, J. Stat.
Phys. 89, 633 (1997).

T. W. Nieuwenhuizen, and F. Ritort, Physica A 250,
8 (1998).

H. Chamati, D. M. Dantchev, E. S. Pisanova, and
N. S. Tonchev, Preprint No 1C/97/82 Trieste, cond-
mat/9707280 (1997).

H. Chamati, E. S. Pisanova, and N. S. Tonchev, Phys.
Rev. B 57,5798 (1998).

H. Chamati, D. M. Dantchev, and N. S. Tonchev, Eur.
Phys. J. B 14, 307 (2000).

M. Napiorkowski, and J. Piasecki, Phys. Rev. E 84,
061105 (2011).

M. Napiorkowski, P. Jakubczyk, and K. Nowak, J.
Stat. Mech. PO6015 (2013).

E. S. Pisanova, N. S. Tonchev, and Hr. T. Kisov, AIP
Conf. Proc. 1203, 255 (2009).

E. S. Pisanova, and N. S. Tonchev, J. Phys.: Conf.
Ser. 253, 012020 (2010).

E. S. Pisanova, and S. I. Ivanov, Bulg. J. Phys. 40,
159 (2013).

R. M. Corlles, G. H. Gonnet, D. E. Hare, D. J. Jef-
frey, and D. E. Knuth, Advances in Comput. Math. 5,
329 (1996).

H. Chamati, and N. S. Tonchev, Mod. Phys. Lett. B
17 (23), 1187 (2003).

273



E. S. Pisanova, S. I. Ivanov: Non-universal critical properties of the ferromagnetic mean spherical model

HEVHUBEPCAJTHU KPUTUYHU CBOVICTBA HA CPEJTHOCO®EPUYHUS MOJET HA ®EPOMATHETUK C
TIAJIEKOJIEVICTBUE

E. IlncanoBa, C. IBaHOB

@usuuecku paxynmem, Inosduscku ynusepcumem “Ilaucuii Xunenoapcku”,
yn. “Ilap Acen” N°24, 4000 ITnosdus, Banzapus

(Pesome)

PasrienaH e KacM4ecku cpegHocheprueH MOZeN ¢ Aanekoneiictsue [1] B ropHaTa KpuTUYHa pasMepHocT. Ha ocHOBaTa Ha CBOIi-
crBarta Ha QyHKUMATA Ha Jlambepr [2] ca ImoMyyeHy TOUYHM pe3ynTaTu 3a chepuyHOTO Iole, INTPTHOCTTA Ha CBOGOAHATA €Heprus U
crenudUYHATA TOIUIMHA (OTHECEHA KbM eIVH CIMH) B [HAa IO-UIMPOKA OKOTHOCT HA KPUTUYHATA TOUYKA. 3a CJIydauTe, KOTaTo rop-
HaTa KPUTUYHA Pa3MEPHOCT Ha CUCTeMAaTa ChBIaJa C peasHuTe GU3UUHM Pa3MePHOCTH (BEPUKKA, ThHBK CI0/ U TPUMepHA CUCTeMA)
MOTyYeHUTE TOYHM Pe3yITATV Ca CPAaBHEHY C aCMMIITOTMYHNUTE TaKyBa Ha 6a3a pecMeTHATUTe a6COMIOTHY ¥ OTHOCUTEIHY IPELIK.

PasmiexgaHeTo e MPWIOKMMO KbM IIMPOK KJIAC MOZE/Y 32 TOYHO MTpecMsITaHe Ha HeyHUBEePCATHM KPUTUYHY CBOJCTBA C aCUMIITO-
TUYHO JIOTADUTMUYHO [TOBEZeHMe B TOPHATA KPUTUYHA Pa3MEPHOCT.
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