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RETAS model software to identify the best fit model version of
aftershock temporal decay

D. Gospodinov*
Paisii Hilendarski University of Plovdiv, 24 Tsar Asen Str., BG-4000 Plovdiv, Bulgaria

The options and the applicability of a FORTRAN 95 software program to model aftershock rate decay in time have been demon-
strated in this paper. The program was designed to perform computations of the maximum likelihood estimates of the restricted
epidemic type aftershock sequence (RETAS) model parameters. This is a trigger model, which provides a stochastic description of
aftershocks temporal evolution in a sequence. The advantage of RETAS is that it offers a number of model versions, including the
Modified Omori formula (M)F) and the epidemic type aftershock sequence (ETAS) models as limit cases. In that way RETAS offers
a wider variety of model versions to fit best the temporal distribution of aftershocks in a sequence. The author has provided examples
on simulated data to demonstrate the use of the software to different types of aftershock sequences and the interpretation of the results

obtained.
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INTRODUCTION

The intensive study of earthquake clustering, es-
pecially aftershocks, is motivated by several key ob-
jectives. First, aftershocks shed light on the phys-
ical processes occurring in the fault zone [1-3].
Strong earthquakes change the stress in the surround-
ing crust, leading to the occurrence of new earth-
quakes and aftershocks [4-5]. Exploring aftershock
sequences of mainshocks presents another way to ex-
amine faults geometry and non-linear features of seis-
micity [6-7].

Second, random process modeling of aftershocks
sequences allows identifying and interpreting of the
actual process deviations from the model prior strong
aftershocks or new earthquakes [8-10]. Stochastic
short-term models that describe the phenomenon
of earthquake clustering are achieving increasing
success in the seismological community [11-14].
These models delineate seismicity as a random point-
process, for which a continuous space-time density
distribution of the earthquake occurrence can be de-
fined. Except for its scientific importance, stochastic
modeling of aftershocks sequence evolution could
be important for operational activity after a strong
earthquake. After such an event, the possibility of
the occurrence of either significant aftershocks or an
even stronger mainshock is a continuing hazard that
hinders the resumption of critical services and reoc-
cupation of partially damaged structures. A stochastic
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parametric model allows determination of probabili-
ties for aftershocks and larger mainshocks during in-
tervals following the mainshock [15-16, 8]. Because
these probabilities are estimated through a particular
model, the closeness between the formulation of the
model and the reality is the essentially important fac-
tor influencing the output. The closer the model is
to the real data, the more reliable the output is. That
is why it is important to consider many models fitted
to the same set of data and to apply some model se-
lection procedures to choose the best model among
them.

The Modified Omori formula (MOF) and the epi-
demic type aftershock sequence (ETAS) model are
among the ones of greatest successes in empirical
studies [17-18]. They, however, consider only two
limit cases, the MOF model with only one parent
event and the ETAS model in which every event
shares in the generation of the subsequent ones.
Gospodinov and Rotondi [12] proposed the restricted
epidemic type aftershock sequence (RETAS), a kind
of trigger model, which is based on the assumption
that only aftershocks with magnitudes larger than or
equal to a threshold M,; can induce secondary seis-
micity. By varying M;, between the cut-off My and
the maximum magnitude M,,,, one considers a num-
ber of RETAS versions, including MOF and ETAS as
limit cases. In that way RETAS offers a wider variety
of model versions from which to choose the one that
fits best the data.

Following a quasi-Newton method, Gospodi-
nov & Rotondi [12] have developed a program in
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FORTRAN 95, which exploits subroutines of the
IMSL library to obtain the maximum likelihood es-
timates (MLEs) of the RETAS model parameters.
The purpose of this paper is to demonstrate the op-
tions of this software and its applicability for mod-
elling aftershocks temporal distribution (the RETAS
model software and simulated data are available at
http://geo.physics.uni-plovdiv.bg/download.htm).

RETAS MODEL FORMULATION

Each stochastic model is developed on the basis
of some basic physical assumptions. For the Modi-
fied Omori Formula (MOF) it is supposed that the to-
tal relaxation process is controlled by the stress field
changes caused by a main shock. The aftershocks are
conditionally independent and follow a nonstationary
Poisson process. By the MOF model the decaying
frequency of aftershocks per unit time is described to
follow a negative power law [17]

K
"= o

(1)

where 7 is the time elapsed from the occurrence of the
main shock, K is a parameter related to the magnitude
of the main shock and to the magnitude cut-off, p is a
coefficient of attenuation and c is a constant.

The frequency n(t) in Eq. (1) corresponds to the
intensity function of a point process, i.e.

n(t) = A(t) (2)
where A(7) is the conditional intensity function

Pr{an event occurs in (¢, +dt)} =
= A(t|H;)dt +o(dt) (3)

Formula (3) reveals the probability of an event
to occur in the time interval (7, ¢ +dt). Here H,
is the history of the process which for the MOF is
only given by the time and the magnitude of the main
shock.

The ETAS model [18] assumes that every after-
shock in a certain zone can trigger further shocks and
the contribution of any previous earthquake to the
occurrence rate of the subsequent events is decom-
posable into separate terms representing the time and
magnitude distribution as:

Aj(t,m) = h(t —tjlm;) = k(mj)g(t —1;)  (4)

The temporal decay rate follows the MOF g(¢) o<
(t+¢)~? and the functional form of k(m;) is chosen

to be exponential on the basis of the linear correlation
between the logarithm of the aftershock area and the
main shock’s magnitude, studied extensively by Utsu
and Seki [19]. Hence, the expected resultant rate of
aftershocks is given by Ogata [18]:

(mj—M,)

Koe
At/Hy) =u+ (5)
' tz<t —tj+c)P

where u (shocks/day) is the rate of background activ-
ity, the history H; consists of the times #; (days) and
magnitudes m; of all the events which occurred be-
fore ¢ and the summation is taken over every j—th
aftershock with a magnitude stronger than the cut-off
mj > My i.e. over all events in the sample. The main
shock in this case is indicated by j = 1. In probabilis-
tic terminology, the first term on the right-hand side of
(5) stands for the “independent” seismicity and in the
second the “induced” seismicity is represented by a
superposition of the modified Omori functions shifted
in time. In formula (5) the coefficient @ measures the
magnitude efficiency of a shock in generating its af-
tershock activity and Ky is a multiplier, common to
all aftershocks, which has an impact on the total af-
tershock productivity. The MOF and the ETAS model
are two limit cases, the former with only one parent-
event and the latter with all events sharing in the gen-
eration of the subsequent ones. Gospodinov and Ro-
tondi [12] offer the Restricted Epidemic Type After-
shock Sequence (RETAS) model, which is based on
the assumption that not all events in a sample but only
aftershocks with magnitudes larger than or equal to a
threshold M;;, can induce secondary seismicity. Then
the conditional intensity function for the model is for-
mulated as:

KOe(X(mij(,)
A(t/H,) = —_ 6
(/ l) nu“+ [j;t (t—tj—i-c)P ( )

msztlz

An advantage of the RETAS model is that this gap
is not fixed and by varying M;, all RETAS versions
between the MOF and the ETAS model can be exam-
ined on the basis of the Akaike criterion [20], given
by

AIC = —2 max log L(6) +2k (7)

where k is the number of parameters of the model
and log L is the logarithm of the likelihood function,
given by
N T
log L(6) = Y log Ag (1l H;) — /S Ao(t|H)dt (8)
i=1
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The smallest value of the Akaike criterion recog-
nizes the best fit model. Gospodinov and Rotondi
[12] have developed a program in Fortran 95 which
exploits subroutines of the IMSL library to maximize
the likelihood of the RETAS model following a quasi-
Newton method and we apply the same software in
this study.

One can see how well or poorly the estimated
model is fitted to an earthquake sequence by compar-
ing the cumulative number of earthquakes with the
predicted rate offered by the estimated models. If a
series of events {fo,f,...,fy} is simulated based on
a statistical model A (¢), which is the predicted occur-
rence rate of events per unit time, then by integrating:

A(S,1) = /Stk(u)du )

we obtain the expected cumulative number of events
over the time interval (S,¢). To estimate quantitatively
the significance of deviations of observed to model
cumulative numbers we can first focus on formula
(1), which presents the MOF model. The basic as-
sumption behind this model, as revealed above, is that
the events in an aftershock sequence follow a nonsta-
tionary Poisson process. Then the process, offered
by formula (6), being a superposition of such mod-
els (u = 0), is a nonstationary Poisson process itself.
For such processes the common mean and variance
are both given by formula (9) for S = 0 [21]. Thus,
we may use this formula to calculate the standard de-
viation of the expected cumulative number and use it
as error bounds for quantitative estimation of the pos-
sible departure between real data and model.

Relation (9) also produces a transformation of
time from ¢ to T = A(r) [9] so that the occurrence
times #; are transformed 1:1 into 7; and the earth-
quakes follow the standard stationary Poisson process
on the new axis if the intensity function is the true one
for the data.

INPUT DATA FILES

Two types of input data files are used in the RE-
TAS model analysis. One should contain the real
catalog data in two columns; left column values are
events’ magnitudes and the right column values are
the time periods [days] after the first earthquake oc-
currence (see example of part of reras297.txt file in
Table 1).

The second input file contains parameter values,
necessary for the program implementation (see the
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Table 1. Example of a catalog data file (part of retas297.txt
file). Left column — magnitudes, right column — the time
periods [days] after the first earthquake occurrence.

7.2 0

5.1 0.004166664
4 0.008333331
3.8 0.010416664
3.8 0.013194442
3.8 0.013888887
3.7 0.017361109

contents of dataretas297.txt file in Table 2). This
file’s name should be input interactively after running
the program. The parameters in the file are as follows:

1% row — name of the catalog data file, which will
be analyzed by the program (refas63.txt in our exam-
ple)

2" row — lower magnitude cut-off of the data sam-
ple. For computational reasons, if this value is 3.7
(as in the example), it should be written down as
3.695. In fact this magnitude is usually the magnitude
of completeness of your broader data sample and its
value should be estimated before analyzing the data
through the RETAS software.

3" row — number of runs for each triggering value
My, Usually the program converges quickly.

4™ row — number of runs, after which there is an
onscreen printing of the maximum likelihood func-
tion value, the corresponding threshold magnitude,
and the triggering magnitude, which yields lowest
AIC for the moment. If the value in this row is 1, the
program will print the mentioned parameters for each
run. If the value is equal to the one in the 3™ row (as
in the example in Table 2) then onscreen printing will
be only once for all runs of a corresponding triggering
magnitude.

Table 2. Parameter values, necessary for the program im-
plementation (contents of dataretas297.txt file; see details
in text)

retas297.txt
3.695

10

10

1.d-6 20.d0
1.d-6 5.d0
1.d-7 6.d0
6.d-13.d0
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The next four rows — from 5™ to 8", contain the
value ranges (lower and upper cut-offs), which the
initial model parameter values are taken from. For
each run the program takes an initial set of random
parameter values (within these ranges) for K, «, ¢, p
(formula 6; u in the formula is accepted to be 0 and
not estimated) and after that evaluates the maximum
likelihood estimates (MLE) of these parameters for
the corresponding M;,.

The package contains three input data sets for dif-
ferent types of aftershock sequences: one, for which
the best fit model is RETAS with M,;, = 4.4 (re-
tas297.txt and dataretas297.txt); a second one, for
which the best fit model is ETAS with M, = My = 3.8
(etas215.txt and dataetas215.txt); the third data set is
best fitted by the MOF model with M;, = M,,,4i, = 6.6
(mof215.txt and datamof215.txt).

J\retas\retasa

enter datafile.txt name:=

J\retas\retasa

enter datafile.txt name=
dataretas297.txt_

JAretas\retasanalysis.exe

360.21736110 4.90
366.36527780 4.70 6.50
366.36875000 4.50 7.20
number of events: 297

5.40

RETAS ANALYSIS SOFTWARE

The executable program file is retasanalysis.exe.
It evaluates the maximum likelihood parameters es-
timates (MLE) for the RETAS model, which best
fits the examined data set (minimum AIC). The pro-
gram was developed in Fortran 95 which exploits sub-
routines of the IMSL library to maximize the likeli-
hood of the RETAS model following a quasi-Newton
method. As usual, the program runs after double
clicking over its icon. After starting, a window opens
(see Fig. 1la) and the user is invited to input a
file name (the one which contains parameter values,
necessary for the program implementation; datare-
tas215.txt in our example). File extension should also
be included (Fig. 1b) and then ’ENTER’ should be
pressed.

Pause - Please enter a blank line (to continue) or a DOS command.

JAretas\retasanalysis.exe

The program is still running, please, wait...

fmax= 178.398592623411
best Mth now is=4.40

Mth=5.40

The program is still running, please, wait...

etasanal xe
4.292501245655137E-002
alpha= 1.759535967379666
5.06534245327T4841E-002
1.023207659370601

final Mth is=4.40
press ENTER to end the program

Fig. 1. Subsequent windows of the RETAS software implementation.
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The program reads the catalog data file (re-
tas297.txt) and the other parameters, and the catalog
data is printed oncreen - time periods after the first
shock in days (left), magnitudes (center) and again
magnitudes in an increasing order (right). The last
row presents the number of events (Fig. 1c). The pur-
pose of this operation is that the user verifies he is
analyzing the right data set. After pressing 'ENTER’,
code execution continues and the program issues an
announcement 'The program is still running. Please,
wait ... Different times for program completion are
needed depending on the number of events. This is so
because the program verifies all RETAS model ver-
sions for different My;. It starts form the lower mag-
nitude cut-off (M;;, = My - RETAS degenerates into
ETAS; see Fig. 1d) and then M, is increased step by
step to the case when it is equal to main shock mag-
nitude (RETAS turns to MOF).

Program run times for the different catalog data
files are presented in Table 6. At the end the program
prints on the screen the parameter MLEs (K, a, c, p)
for the identified best fit model version (Fig. 1e).

OUTPUT FILES

The RETAS software generates three output files
in the same directory as follows:

output.txt — The file includes the catalog data
file name (retas297.txt), the lower magnitude cut-
off (usually magnitude of completeness), number of
events, ranges for initial model parameter values, pa-
rameter MLEs, number of estimated parameters, the
M, value for which the best fit model was recognized
and the corresponding value of the Akaike criterion
(see Table 3).

aichist.txt (Table 4) - The file keeps the AIC val-
ues and model parameter estimates (K, «, ¢, p) for the
different values of the threshold magnitude M;;. The
two left columns (M,;,, AIC) allow to plot the Akakike
criterion versus the triggering magnitude M, and thus
to recognize the prevailing clustering pattern for the
studied sequence. The graphic interpretation not only
reveals the best fit model (its parameter estimates are
also printed in output.txt), but provides the possibility
to analyze secondary minima of the curve, too.

When using the AIC criterion to select between
competing models, individual AIC values are not suit-
able as they are less interpretable and contain arbi-
trary constants. It is more reasonable to rescale AIC
or AIC; to the differences

dAIC; = AIC; — AlCpin (10)
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Table 3. Contents of the output.txt file

Data set : retas297.txt
Magnitude cut-off : [3.69, ...]

Number of data = 297

parameter inf sup

k .0000010 20.0000000
alpha .0000010 5.0000000
c .0000001 6.0000000
p .6000000 3.0000000
parameter estimate

k .042925012457

alpha 1.759535967380

c 050653424533

p 1.023207659371

Number of parameters =4  final Mth = 4.40

AIC =-376.067754063429200

Table 4. Example of the AIC values and model parame-
ter estimates (formula (6)) for the different values of the
threshold magnitude M;;,. This information is included in
aichist.txt

Mlh AIC K o C p

3.7 -368.254  0.0144  2.068  0.049 1.036
3.8 -368.225 0.015 2.058  0.049 1.03
6.5 -350.308 0.009 2277  0.057 0.964
7.2 -312.726 10.945 0.284 0.057 0.926

dAI lmi“ where AIC;, is the minimum of the differ-
ent AIC; values for a dataset. After this transforma-
tion the best model has dAIC; = 0, while the rest of
the models have positive values.

The dAIC; allow meaningful interpretation with-
out the unknown scaling constants and sample size
issues that enter into AIC values. These differences
are easy to interpret and allow comparison and rank-
ing of candidate models [22]. The larger the dAIC;,
the less probable the model i is as being the best ap-
proximating model in the candidate set. It is generally
important to know which model is the second best, as
well as some measure of its standing with respect to
the best model. There are some simple rules of thumb,
which are useful in measuring the relative strength of
models in the set: Models having dAIC; < 2 have sub-
stantial support for being alternatives of the best fit
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Table 5. Example of real and expected cumulative number of events in time according to the best fit model. Standard
deviation stands for the error bounds. This information is included in outcum.txt

Time [days] M Cum.N Cum.Nm Cum.Nm + st.d. Cum.Nm - st.d.
0 7.2 1 1 1 1
0.00416666 5.1 2 2.73239 4.3853844 1.0793958
0.00833333 4 3 4.378021 6.4703936 2.2856492
0.01041666 3.8 4 5.156669 7.427499 2.8858389

model, those in which 4 < dAIC; < 7 have consider-
ably less support, and models having dAIC; > 10 have
essentially no support [22].
outcum.txt (Table 5) - By substituting the ML es-
timates of the best fit model parameters in relation (6)
we may calculate the expected cumulative number of
events, using the standard deviation (formula 9) as er-
ror bounds. These are presented in the above men-
tioned output file. The columns in the file represent:
Time [days] — Time periods after the occur-

rence of the first event in the sequence in days
M — Events magnitudes
Cum.N — Real cumulative number of earth-

quakes in time
Cum.Nm — Expected cumulative number of
earthquakes for the best fit model, calculated
by formula (6).
Cum.Nm + st.d. — upper error bound (after

calculating the variance by formula (6))
Cum.Nm - st.d. - lower error bound (after cal-
culating the variance by formula (6))
The results of outcum.txt can be plotted to enable
analysis of earthquakes temporal distribution in the
sequence.

CHARTS AND RESULTS INTERPRETATION

The RETAS software only provides the results
from the RETAS analysis in the output files, revealed
above. If one wants to plot the results, any adequate
software can be applied. Below we present the results
from the RETAS model analysis for the three input
data sets:

retas297.txt - the file contains a sequence of N =
297 aftershocks, starting with a main shock of mag-
nitude M, = 7.2

The model, for which the minimum AIC (dAIC; =
0) value was obtained, turned out to be RETAS with
M,;, = 4.4 (see Table 3 and Fig. 2a). A highly compet-
itive model is also RETAS with M,, = 4.5 (dAIC; =
0.599, much less than 2). That points to a clustering
type, where predominantly aftershocks with magni-
tudes equal to or bigger than 4.4 cause secondary ac-
tivity. If the data is for a defined seismic region, these
results could be correlated to its geotectonic features
like faults etc. Some small deviations between actual
and expected numbers are observed from the 50" to
the 200" day (Fig. 2b), but they are not significant
as the real values stay within the error bounds for the
entire period.

etas215.txt - this is a sequence of N = 215 after-
shocks, the first being the strongest of magnitude M =
6.6. The dAIC; values on Fig. 3a identify the best fit
model for the data to be ETAS (M,;, = My = 3.8).

The ETAS model is clearly identified as the RE-
TAS version, which best describes the temporal evo-
lution of this sequence, as the dAIC value to the sec-
ond best fit model (RETAS; M,;, = 3.9) is more than 5.
The dAIC curve on Fig. 3a has a secondary minimum
for M;, = 4.9.

This result reveals that if we analyze only stronger
aftershocks (My = 4.4), the clustering type would
be different. Gospodinov and Rotondi [12] obtained
similar results for the Umbria-Marche region in Italy).

Table 6. MLEs of the RETAS model parameters (Formula (6)) for the different data sets. Right most column provides
information about the time needed for the program implementation on a PC (Intel®Core™i3 CPU, 4.00GB, 32-bit OS)

Data sets K o c P Time needed for the program implementation [min]
retas297.txt 0.042 1.759 0.05 1.023 ~ 15
etas215.txt 0.058 1.562 0.042 1.22 ~ 10

mof215.txt 0.007 2.495 0.002 0.871 ~ 15
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Fig. 2. a) Values of dAIC; versus the triggering magnitude M,;, from the analysis of the data in retas297.txt. The model for
which dAIC; = 0 is the one, best fitting the data (M;;, = 4.4); b) Cumulative real (circles) and expected (continuous line)
numbers in time (days). The expected values were calculated by relation (6) for the best fit model. Standard deviation
stands for the error bounds (dashed curves) and the vertical lines are magnitudes.

Aftershocks with magnitudes above this cutoff seem
to be more clustered temporally to events of magni-
tudes M = 4.9 or stronger, while weaker shocks are
more scattered in time. All this comes to support that
the RETAS model analysis (dAIC curve) throws light
not only on the best fit model, but also about more de-
tails of aftershock clustering features in a sequence.
The results on Fig. 3b point out that there is a rela-
tive deviation of actual numbers, compared to model,
for the time span between the 7" and the 17" day,
which probably is due to the occurrence of several af-
tershocks of magnitude M = 5 or higher, which have

rate productivity higher than the one predicted by the
model.

mof215.txt - this data set is composed of N = 215
earthquakes. The strongest of them is the first one of
magnitude M = 6.6. The dAIC; values on Fig. 4a
identify the best fit model for the data to be MOF
(M, = M,,0i, = 6.6). The MOF model does not have
a competing alternative as dAIC to the second best fit
model (RETAS; M;;, = 5.4) is more than 5. No signif-
icant divergence between real and model cumulative
numbers is observed on Fig. 4b (actual values stay
within the error bound for the total time period).

&0 250
al
2l _ 200
a2
404 £
5 3150
<301 2
21004
201 E
[
. 50
0 T T T O
35 45 55 85 0

Trigeering magnitude

-7

55 =

A |||| ||.|||I| L0 1w e

50 100 1580 200
Time [days]

Fig. 3. The results from the RETAS software analysis for etas215.txt (best fit model is ETAS for M,;, = My = 3.8).

Notation as in Fig. 2
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Fig. 4. The results from the RETAS software analysis for mof215.txt (best fit model is MOF for M,;, = M,,;4i, = 6.6).

Notation as in Fig. 2

CONCLUSIONS

In fact, by RETAS we denote a number of stochas-
tic model versions, defined by formula (6). The MOF
and the ETAS model are two limit cases of these ver-
sions, the former with only one parent-event and the
latter with all events sharing in the generation of the
subsequent ones. In that case the advantage of using
RETAS is that we estimate the MLEs for the ETAS
and MOF models as limit cases (we lose nothing), but
we also verify all intermediate cases (for the differ-
ent My, values), for which only aftershocks of mag-
nitudes equal to or bigger than M, can induce sec-
ondary aftershocks. We identify the model, best fit-
ting our data, as the one with the minimum AIC value.
In the present paper the author applied the RETAS
software on three data sets, presenting completely dif-
ferent types of aftershock sequences. The software
correctly identified the corresponding best fit model
versions, providing the necessary files to plot the ex-
pected and real cumulative numbers in time. Except
that RETAS gives us a wide range of model versions
to depict the temporal evolution of a series of after-
shocks, it also provides broader possibility to relate
the results from the stochastic analysis to other infor-
mation about a seismic region, as for example, the
possible length distribution of faults, which have trig-
gered secondary aftershocks.
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CO®TYEPHA ITPOTPAMA 3A UIEHTU®UILIMPAHE HA HAV-IOBPATA BEPCUS
HA RETAS MOJEJIA 3A ITPEACTABSIHE 3ATUXBAHETO HA AGTEPIHIOKOBATA AKTMBHOCT BbB BPEMETO

Op. T'ocriogHOB

Qusuuecku ¢akynmem, ITnosduscku yHusepcumem “Ilaucuti XuneHdapcku”,
ya. “Llap Acen” N°24, 4000 IInosdus, Baizapus

(Pesome)

B Tasu cratusi ca IeMOHCTPUPaHM Bb3MOKHOCTUTE U MPUIOKMMOCTTa Ha codryepHa mporpama, HamucaHa Ha FORTRAN 95, 3a
MozenupaHe crajia Ha adrepiiokoBaTa akTMBHOCT BbB BpeMeTo. [Iporpamara e rnpefHa3sHaueHa 3a M3BbpPUIBaHE M3UMCIEHNS] Ha Ma-
paMeTpuTe Ha OrpaHMYEH enmuIeMuYeH TUIT Mojel Ha adrepinokoBa aktuBHOCT (RETAS) 3a ommcaHue BpeMeBOTO pasIpeesieHne Ha
adrepuouure. ToBa e TpUrepupai Mozes, KONTO OCUTYPSIBA CTATUCTUYECKO OMVCaHMe Ha BpeMeBaTa eBOMIOLMS Ha BTOPUYHUTE TPY-
coBe B cepudTa. [IpenumcTtBo Ha RETAS e, ye MopmerbT npeaara peguiia Bepcuy, KaTo eIHOBPeMEHHO BK/IIOYBA Hali-M3I0/I3BaHUTE
moznenu - moauduuypanara popmyna Ha Omopu (MOF) 1 enuaeMuyHMsT TUIT MOfes Ha adrepuiokoBa akTuBHOCT (ETAS) kaTo rpaHmny-
Hu cryvan. [To To3u HaumH RETAS nipesijiara mo-roisiMo pasHoo6pasye Ha MOy 3a IoA6MpaHe Ha Hali-no0pus OT TSX C LeJT OTICaHue
BPeMeBOTO pa3npejeseHye Ha BTOPMYHY TPYCOBE B efHA Ce¥3MMYHA II0C/Ief0BaTeTHOCT. ABTOPBT € IIPeJoCTaBII IPMMepY Ha CUMYIIA-
paHu JaHHY, 32 Ia JeMOHCTPUPAT U3I0A3BaHETO Ha coPTyepa 3a pasjIMyHy TUITOBe adTePUIOKOBY CEPUM, KATO € ITOCOYMIT ¥ HAaUMHUATE
3a MHTepIpeTalys Ha MIOTyYeHUTe pe3yaTaTu.
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