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Heating of the solar corona by Alfvén waves – self-induced opacity
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Static distributions of temperature and wind velocity at the transition region are calculated within the framework of magnetohy-
drodynamics (MHD) of completely ionized hydrogen plasma. The numerical solution of the derived equations gives the width of the
transition layer between the chromosphere and the corona as a self-induced opacity of high-frequency Alfvén waves (AW). The domain
wall is direct consequence of the self-consistent MHD treatment of AW propagation. The low-frequency MHD waves coming from the
Sun are strongly reflected by the narrow transition layer, while the high-frequency waves are absorbed – that is why we predict con-
siderable spectral density of the AW in the photosphere. The numerical method allows consideration of incoming AW with arbitrary
spectral density. The idea that Alfvén waves might heat the solar corona belongs to Alfvén, we simply solved the corresponding MHD
equations. The comparison of the solution to the experiment is crucial for revealing the heating mechanism.
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ALFVÉN MODEL FOR CORONA HEATING

The discovery of the lines of the multiply ionized
iron in the solar corona spectrum [1] posed an impor-
tant problem for the fundamental physics - what is the
mechanism of the heating of the solar corona and why
the temperature of the corona is 100 times larger than
the temperature of the photosphere.

The first idea by Alfvén [2] was that Alfvén waves
(AW) [3] are the mechanism for heating the corona.
AW are generated by the turbulence in the convection
zone and propagate along the magnetic field lines.
Absorption is proportional to ω2 and the heating
comes from high-frequency AW. Alfvén’s idea for the
viscous heating of plasma by absorption of AW was
analyzed in the theoretical work by Heyvaerts [4]. In
support of this idea is the work by Chitta [5] (Fig-
ures 8, 9 therein). The authors came to the conclusion
that the spectral density satisfies a power law with
an exponent of 1.59. This gives a strong hint that
this scaling can be extrapolated in the nearest spec-
tral range for times less than 1 s and frequencies in
the 1 Hz range. We should also mention two recent
papers [6, 7] investigating the possibility of heating
the Solar corona by AW. Furthermore, Tomczyk [8]
states that there exist very few direct measurements
of the strength and orientation of coronal magnetic
fields, meaning that the mechanisms responsible for
heating the corona, driving the solar wind, and ini-
tiating coronal mass ejections remain poorly under-
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stood. However, recently discovered spatially and
temporally ubiquitous waves in the solar corona [9]
gave strong support for Alfvén’s idea. A clear pres-
ence of outward and inward propagating waves in the
corona was noted. k−ω diagnostics revealed coronal
wave power spectrum with an exponent of ≈−3

2 (cf.
Fig. 2 of [8]). The low frequency AW, on the other
hand, reach the Earth orbit and thanks to the magne-
tometers on the various satellites we “hear” the bass
of the great symphony of solar turbulence.

The purpose of the present work is to examine
whether the initial Alfvén idea is correct and to solve
the MHD equations which give the dependence of the
temperature on the height T (x) and the related veloc-
ity of the solar wind U(x) supposing static density
of the incoming AW. Due to the high density of the
transition layer MHD is an adequate tool to analyze
the beginning of the process. Without a doubt the ki-
netic approach is indispensable for the treatment of
low density solar corona but this problem is beyond
the purpose of the present work. When the plasma
gets hotter and more dilute the MHD treatment is not
sufficient and a detailed kinetic theory is required.

Our starting point are the MHD equations for the
velocity field v and magnetic field B

∂tρ +divj = 0, j = ρv, (1)

∂t

(
1
2

ρv2 + ε +
B2

2µ0

)
+divq = 0, (2)

∂t(ρv)+∇ ·Π = 0, (3)
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where

q = ρ

(1
2

v2 +h
)

v+v ·Π(visc)−κ∇T +S (4)

is the energy density flux, ρ is the mass density, ε is
the internal energy density, κ is the thermal conduc-
tivity, h is the enthalpy per unit mass;

S =
1
µ0

[B× (v×B)−νmB× (∇×B)] , (5)

is the Poynting vector and νm ≡ c2ε0ρΩ is the mag-
netic diffusion determined by Ohmic resistance ρΩ

and vacuum susceptibility ε0; vacuum permeability
is µ0. For hot enough plasma ρΩ is negligible and we
ignore it hereafter. The total momentum flux

Π = ρvv+P1 +Π(visc)+Π(Maxw) (6)

is a sum of the inviscid part ρvv+P of the fluid, with
pressure P,

Π(visc)
ik =−η

(
∂ivk+∂kvi−

2
3

δik∇ ·v
)
−ζ δik∇ ·v, (7)

the viscous part of the stress tensor, with viscosity η

and second viscosity ζ , and lastly, the Maxwell stress
tensor

−Π(Maxw)
ik =

1
µ0

(
BiBk−

1
2

B2
δik

)
, (8)

with δik the Kronecker delta. We model coronal
plasma with completely ionized hydrogen plasma

κ = 0.9
T 5/2

e4m1/2
e Λ

, η = 0.4
m1/2

p T 5/2

e4Λ
, ζ ≈ 0,

(9)

Λ = ln
(rDT

e2

)
,

1
r2

D
=

4πe2ntot

T
, e2 ≡ q2

e

4πε0
,

where qe is the electron charge, me is the mass of
electron, mp is the proton mass, T is the temperature
and ntot = ne +np is the total density of electrons and
protons; ρ = mpnp. We suppose that µ0 = 4π and
ε0 = 1/4π , but in the practical system all formulae
are the same; as well as in Heaviside-Lorentz units
where µ0 = 1 and ε0 = 1. As we mentioned above

νm =
c2

4π

e2m1/2
e Λ

0.6T 3/2 � νk ≡
η

ρ
=

0.4T 5/2

e4m1/2
p npΛ

; (10)

i.e. the hot hydrogen plasma is sticky, dilute, and “su-
perconducting” νm ≈ 0. Let us mention also the rela-
tions κρΩ = 1.5T/q2

e and η/κ ≈ 4
9
√memp,

ρΩ =
1

4πε0

e2m1/2
e Λ

0.6T 3/2 . (11)

For weakly ionized plasma the magnetic viscosity
definitely dominates νm > νk. As the plasma gets hot-
ter absorbing AW the ohmic resistance becomes neg-
ligible. For illustrative purposes we shall completely
ignore it νm = 0,ρΩ = 0 in order to emphasize the im-
portance of the viscosity at high final temperatures.

MHD EQUATIONS AND ENERGY FLUXES

The time derivative ∂tB which implicitly partici-
pates in the energy conservation Eq. (2) at zero Ohmic
resistivity obeys the equation

dtB = B ·∇v−Bdivv, dt ≡ ∂t +v ·∇ . (12)

Analogously the momentum equation Eq. (3) can be
rewritten by the substantial derivative

ρ dtvi = −∂iP+∂k

{
η

(
∂kvi +∂ivk−

2
3

δik∂ jv j

)}

+∂i (ζ ∂ jv j)−
1
µ0

(B× rotB)i . (13)

In our model we consider AW propagating along
magnetic field lines B0. We focus our attention on
the narrow transition layer, where the static magnetic
field is almost homogeneous and the waves are within
acceptable accuracy one dimensional. For the veloc-
ity and magnetic fields we assume

v(t,x) =U(x)x̂+u(t,x)ẑ,
B(t,x) = B0x̂+b(t,x)ẑ,

(14)

with homogeneous magnetic field B0x̂ perpendicular
to the surface of the Sun. The transverse wave ampli-
tudes of the velocity u(t,x) and magnetic field b(t,x)
we represent with the Fourier integrals

u(t,x) =
∫ ∞

−∞
ũ(ω,x)e−iωt dω

2π
, (15)

b(t,x) =
∫ ∞

−∞
b̃(ω,x)e−iωt dω

2π
. (16)

For illustrative purposes it is convenient to con-
sider monochromatic AW with u(t,x)= û(x)e−iωt and
b(t,x) = b̂(x)e−iωt .
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Wave equations

For linearized waves the general MHD equations
(13) and (12) give the following system for û(x) and

b̂(x)≡ b̂(x)/B0

(−iω +Udx) û =V 2
Adxb̂+

1
ρ

dx (ηdxû) , (17)

−iω b̂ = dxû−dx(Ub̂), (18)

where
VA(x) = B0/

√
µ0ρ(x) (19)

is the Alfvén velocity. In our numerical analysis we
solve the first order linear system of equations

−idx Ψ =
i

νkU
MΨ = KΨ, (20)

Ψ ≡




û

b̂
ŵ


 , K=

i
νkU

M,

Ψ† =
(

û∗, b̂
∗
, ŵ∗
)
,

where ŵ≡ dxû, and

M≡




0 0 −νkU
0 νk(−iω+dxU) −νk

iω −V 2
A(−iω+dxU)

(
V 2

A−U2
)
+U

ρ
dxη


.

For homogeneous medium with constant η , ρ, VA,
and U , in short for constant wave-vector matrix K,
the exponential substitution Ψ ∝ exp(ikx) in Eq. (20)
or equivalently Eq. (17) and Eq. (18) gives the secular
equation

iνkUdet(K− k1)

= ωD
(
ωD + iνkk2)−V 2

Ak2 = 0, (21)

where ωD ≡ω−kU is the Doppler shifted frequency.
This secular equation gives the well-known disper-
sion

ωD
(
ωD + iνkk2)=V 2

Ak2

of the AW. This equation is quadratic with respect to
ω and cubic with respect to k.

Wind variables

We solve the wave equation Eq. (20) from “Sun’s
surface” x = 0 to some distance large enough x = l,
where the short wavelength AW are almost absorbed.
This distance is much bigger than the width of the

transition layer λ , but much smaller than solar ra-
dius. The considered one-dimensional 0 < x < l time-
independent problem has three integrals correspond-
ing to the three conservation laws related to mass,
energy and momentum. The mass conservation law
Eq. (1) gives the constant flow

j = ρ(x)U(x) = ρ0U0 = ρlUl = const, (22)

where ρ0 = ρ(0), ρl = ρ(l), U0 = U(0), and Ul =
U(l). The energy conservation law reduces to a con-
stant flux along the x-axis

q =qideal
wind(x)+ q̃(x)

=ρU
(

1
2

U2 +h
)
+ q̃ = const. (23)

Here the first term describes the energy of the ideal
wind, i.e. a wind from an ideal (inviscid) fluid. The
second term q̃(x) includes all other energy fluxes; in
our notations tilde will denote sum of the non-ideal
(dissipative) terms of the wind and wave terms. In de-
tail the non-ideal part of the energy flux q̃(x) consists
of: the wave kinetic energy ∝ |û|2, viscosity (wind
∝ 4

3 η + ζ and wave ∝ η components), heat conduc-
tivity ∝ κ, and Poynting vector ∝ b̂∗,

q̃(x) ≡ j
4
|û|2−ξUdxU−

1
4

η dx|û|2−κ dxT

+
1

2µ0

(
U
∣∣∣b̂
∣∣∣
2
−B0 Re(b̂∗û)

)
, (24)

where ξ ≡ 4
3 η +ζ . Here time averaged energy flux is

represented by the amplitudes of the monochromatic
oscillations, this is a standard procedure for alternat-
ing current processes. In our case we have, for ex-
ample,

〈
û2
〉

t =
〈
(Re û)2

〉
t
=
〈1

4(û+ û∗)2
〉

t =
1
2 |û|

2 .

The other terms from Eq. (4) are averaged in a similar
way in the equation above.

The momentum conservation law Eq. (6) gives
constant flux Π = Πxx

Π = Πideal
wind(x)+ Π̃(x) = ρUU +P+ Π̃, (25)

the sum of the ideal wind fluid and the other terms

Π̃(x)≡ 1
4µ0

∣∣∣ b̂
∣∣∣
2
−ξ dxU, (26)

which take into account the wave part of the Maxwell
stress tensor ∝ b2 and viscosity of the wind ∝ ξ .

We have to solve the hydrodynamic problem
for calculation of wind velocity and temperature at
known energy and momentum fluxes. The problem
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is formally reduced to analogous one for a jet engine,
cf. Ref. [10]. We approximate the corona as com-
pletely ionized hydrogen plasma, i.e. electrically neu-
tral mixture of electrons and protons. The experimen-
tal data tells us that proton temperature Tp is higher
than electron one Te. This is an important hint that
heating goes through the viscosity determined mainly
by protons. However for illustration purpose and sim-
plicity we assume proton and electron temperatures to
be equal Te = Tp = T. For such an ideal (in thermody-
namic sense) gas the local sound velocity is

c2
s (x) =

cP

cV

P
ρ
= γ

T
〈m〉 , γ =

cP

cV

=
5
3
, (27)

〈m〉= npmp +neme

np +ne
≈ 1

2
mp, ne = np =

1
2

ntot,

P = ntotT =
ρT
〈m〉 =

j
U

T
〈m〉 , h = cP

T
〈m〉 =

ε +P
ρ

,

where, as we mentioned earlier, h is the enthalpy per
unit mass and ε is the density of internal energy.

In order to alleviate the final formulae we intro-
duce two dimensionless variables χ and τ which rep-
resent the non-ideal part of the energy and momentum
flux respectively

χ(x)≡ q̃(x)
ρ0U3

0

∣∣∣∣
0

x
, τ(x)≡ Π̃(x)

ρ0U2
0

∣∣∣∣∣

0

x

, (28)

and analogously for the wind velocity and tempera-
ture

U(x)≡ U(x)
U0

,

Θ(x)≡ T (x)
〈m〉U2

0
,

Θ0 = Θ(0),

(29)

where U0 = U(0). The energy and momentum con-
stant fluxes Eq. (23) and Eq. (25) in the new notation
take the form

q− q̃(0)
ρ0U3

0
=

1
2

U2
+ cPΘ−χ =

1
2
+ cPΘ0, (30)

Π− Π̃(0)
ρ0U2

0
= U +Θ/U− τ = 1+Θ0. (31)

From the second equation we express the dimension-
less temperature Θ and substitute in the first one.

Solving the quadratic equation for the wind velocity
U we derive

U =U0U ,

U(x) =
1

γ +1

(
γ + s2 + τ(x)−

√
D(x)

)
,

(32)

where for the discriminant we have

D = (s2−1)2−2(γ2−1)(χ +1)

+ γτ
[
γτ +2

(
γ + s2)] ,

s2 ≡ c2
s (0)
U2

0
= γΘ0,

c2
s (x) =

(
∂P
∂ρ

)

S
=

γT (x)
〈m〉 .

(33)

Here γ is the constant ratio of the heat capacities, and
s ≡ cs(0)/U0 is the ratio of the sound and wind ve-
locity at x = 0. We suppose that initial wind velocity
is very small U(0)� cs(0). The velocity distribution
Eq. (32) can be substituted in Eq. (31) and we derive
the dimensionless equation for the temperature distri-
bution

T (x) = 〈m〉U2
0 Θ(x), (34)

Θ(x) =U(x)
(
1+Θ0 + γτ(x)−U(x)

)
, Θ0 =

s2

γ
.

The solutions for velocity U(x) Eq. (32) and tem-
perature T (x) Eq. (34) distributions are important in-
gredients in our analysis and derivation of the self-
consistent picture of the solar wind. We use a one
dimensional approximation and in addition the con-
stant flux of mass, energy and momentum gives 3 in-
tegrals of motion. This enables us to solve the nonlin-
ear part of the problem analytically. That is why we
do not solve the differential equations for the density
ρ(x) = ρ(0)U(0)/U(x), temperature T (x) and wind
velocity U(x), and use analytical expressions contain-
ing the energy and momentum fluxes. Thus the nu-
merical problem is reduced to a system of three linear
differential equations.

Boundary conditions for the waves

At known background wind variables U(x) and
T (x) we can solve the wave equation Eq. (20) for
run-away AW at x = l. As we will see later the
run-away boundary condition Eq. (49) corresponds to
right propagating AW at the right boundary of the in-
terval. The wave equation Eq. (20) is extremely stiff
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at small viscosity, and numerical solution is possible
to be obtained only downstream from x = 0 to x = l.
We have to find the linear combination of left and
right propagating waves at x = 0, which gives the run-
away condition at x = l.

The solution of wave equation according to
Eq. (23) determines the energy flux related to the
propagation of AW

q̃wave (Ψ(x))≡Ψ†gΨ =
j
4
|û|2− 1

2
η Re(û∗ŵ)

+
B2

0
2µ0

(
U
∣∣∣b̂
∣∣∣
2
−Re

(
b̂
∗
û
))

, (35)

where

g(x)≡




1
4 j − B2

0
4µ0
−1

4 η

− B2
0

4µ0

UB2
0

2µ0
0

−1
4 η 0 0


 . (36)

Here j-term represents kinetic energy of the wave, η-
term comes from the viscous part of the wave energy
flux, and B0-terms describe the Poynting vector of the
wave.

In order to take into account the boundary con-
dition at x = l we calculate the eigenvectors of the
matrix K, which according to Eq. (20) determine the
wave propagation in a homogeneous fluid with ampli-
tude ∝ exp(ikx). Then the eigenvalues of K give the
complex wave-vectors

k = k′+ ik′′ = eigenvalue(K), (37)

i.e.
det(K− k1) = 0. (38)

The three eigenvectors L, D and R are ordered by spa-
tial decrements of their eigenvalues

k′′L < 0 < k′′R < k′′D, (39)

and are normalized by the conditions

−L†gL = R†gR = D†gD = 1, (40)

where the sign corresponds to the direction of wave
propagation. Notation L corresponds to left propagat-
ing wave, R to right propagating wave, and D for an
overdamped at small viscosity mode.

For technical purposes we introduce the matrix
notations

L=




Lu(x)
Lb(x)
Lw(x)


 , R=




Ru(x)
Rb(x)
Rw(x)


 , D=




Du(x)
Db(x)
Dw(x)


 .

(41)

For low enough frequencies ω → 0 and wind veloc-
ities the modes describe: 1) right-propagating AW
with k′R ≈ ω/VA and small k′′R ≈ νkω2/2V 3

A� k′R, 2)
left propagating wave kL =−kR, and a diffusion over-
damped mode k′′D ≈ V 2

A/νkU � k′D which describes
the drag of a static perturbation by the slow wind
U � VA in a fluid with small viscosity. In this low
frequency and long wavelength limit the stiffness ra-
tio of the eigenvalues is very large

rDR =
|kD|
|kR|
≈ k′′D

k′R
≈ V 3

A
νkUω

� 1. (42)

The strong inequality is applicable to the chromo-
sphere where the viscosity of the cold plasma is very
low. As we emphasized the wave equations Eq. (20)
form a very stiff system and indispensably has to be
solved downstream from the chromosphere x = 0 to
the corona x = l using algorithms for stiff systems.
Let

ψL(x) =




uL(x)
bL(x)
wL(x)


 , ψR(x) =




uR(x)
bR(x)
wR(x)


 (43)

are the solutions of the wave equation Eq. (20) with
boundary conditions

ψL(0) = L(0), ψR(0) = R(0). (44)

We look for a solution as a linear combination

ψ(x) = ψR(x)+ r ψL(x), (45)

in other words we suppose that from the low viscos-
ity chromosphere plasma do not come overdamped
diffusion modes. The strong decay rate make them
negligible at x= 0. Physically this means that AW (R-
modes) are coming from the Sun and some of them
are reflected from the transition layer (L-modes)

ψ(0) = R(0)+ r L(0). (46)

Analogously for the configuration of open corona
we have to take into account the run-away boundary
condition for which we suppose zero amplitude for
the wave coming from infinity

ψ(l) = t̃ R+ c̃D(l). (47)
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Written by components



uR(l)
bR(l)
wR(l)


+ r




uL(l)
bL(l)
wL(l)




= t̃




Ru(l)
Rb(l)
Rw(l)


+ c̃




Du(l)
Db(l)
Dw(l)


 . (48)

This boundary condition gives a linear system of
equation for the reflection coefficient r, transmission
coefficient t̃ and the mode-conversion coefficient c̃.

For l → ∞ when exp[−k′′D(l)l]� 1exp[−k′′R(l)l]
the amplitude of D-mode is negligible and the run-
away boundary condition reads

ψ(l) = ψR(l)+ rψL(l)≈ t̃R(l), (49)

or by components
(

uR(l)
bR(l)

)
+ r
(

uL(l)
bL(l)

)
= t̃
(

Ru(l)
Rb(l)

)
. (50)

These systems give the amplitudes of the reflected
wave r and transmitted wave t̃ in the solution Eq. (45).
For this solution we have the energy fluxes

T ≡ ψ
†(l)g(l)ψ(l)

= |̃t|2 + |c̃|2 +(̃tc̃∗D†(l)g(l)R(l)+ c.c.),
(51)

1−R ≡ ψ
†(0)g(0)ψ(0)

= 1−|r|2 +
(
r∗L†(0)g(0)R(0)+ c.c.

)
. (52)

Then we introduce the absorption coefficient

A ≡−ψ
†(x)g(x)ψ(x)

∣∣∣
l

0
= 1−R−T . (53)

The described solution is normalized by unit energy
flux of the R-wave. If we wish to fix energy flux of
the right propagating wave to be qwave(0) we have to
make the renormalization

Ψ(x) = Awaveψ(x). (54)

In this section we have described Absorbing Bound-
ary Conditions (ABC) well known from radar calcu-
lations, but realization for AW is more complicated
and require eigenvector analysis. Now using Ψ(x) we
can calculate the wave part of the energy flux Eq. (35)
and the wave part of the momentum flux

Π̃wave(x)≡
1

4µ0

∣∣∣ b̂(x)
∣∣∣
2
. (55)

This section is written in dimensional variables, but
all equations can be easily converted in dimensionless
variables as is done in the next sub-sub-section.

Dimensionless wave variables,
convenient for numerical calculations

Using mechanical units for length l, velocity U0
and density ρ0 we can convert all equations in dimen-
sionless form. The formulae remain almost the same
and we wish to mention only the differences. Intro-
ducing dimensionless density

ρ(x) = ρ(x)/ρ0 = 1/U(x) (56)

and wave energy flux

Qwave(0) =
qwave(0)

ρ0U3
0

= (1−R) |Awave|2 , (57)

we have dimensionless matrices

M=




0 0 −νU
0 ν(−iω+W ) −ν

iωU −V 2
A(−iω+W )

(
V 2

A−U2
)
+U2dxη


,

and

g≡ 1
4




1 −a2 −η(x)
−a2 2a2U(x) 0
−η(x) 0 0


 , (58)

V 2
A(x) = a2U(x), V 2

A(0) = a2U(0) = a2. (59)

For the dimensionless energy flux we have (Fig. 1b)

Qwave(x)=
1
4

∣∣∣û
∣∣∣
2
+

a2

2

(
U
∣∣∣b̂
∣∣∣
2
−Re(b̂

∗
û)
)

−1
2

η Re
(

û
∗
ŵ
)
= Ψ†

gΨ, (60)

where (Fig. 1a)

û =
û

U0
, ŵ =

ldxû
U0

, ω =
lω
U0

. (61)

Then for the dimensional wave energy flux we have

qwave(x) = ρ0U3
0 Qwave(x), (62)

and analogously for the momentum flux of the wave
(Fig. 1c)

Πwave(x) = ρ0U2
0 Pwave(x), Pwave =

1
4

∣∣∣b̂
∣∣∣
2
. (63)

in the next section we will consider all parts of the
energy and momentum fluxes.
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(a)

(b)

(c)

Fig. 1. AW profiles of velocity (a), energy flux (b) and
momentum flux (c).

Total wave fluxes

The total energy and momentum fluxes are inte-
grals over all frequencies. From Eq. (60) we have

Qwave,ω(x)=Ψ†
ω

gΨω =Wωψ
†
ω
(x)g(x)ψω(x), (64)

where Wω is the spectral density of the waves. We

can construct the total energy flux of the waves as

Qtotal
wave(x) =

∫ ∞

ω=0
Wωψ

†
ω
(x)g(x)ψω(x)

dω

2π

= ∑
ω>0

Wωψ
†
ω
(x)g(x)ψω(x), (65)

Qtotal
wave(0)≡Q0 = ∑

ω>0
Wωψ

†
ω
(0)g(0)ψω(0). (66)

Observational data gives a power law dependence of
the spectral density of AW in the solar corona. One
can suppose that the spectral density of the waves
coming from the chromosphere has the same power
law dependence, i.e. Wω = C/ω

α . α is between 1.5
and 2: 3

2 [8], 1.59 [5], 2 [11]. C is the unknown pa-
rameter of the theory, which we vary for fixed α in or-
der to reproduce the temperature increase in the tran-
sition layer. Note that here we have used the dimen-
sionless frequency. If we want to use the dimensional
one, then the parameter C also has to become dimen-
sional. If we know the initial total energy flux of the
waves, we can calculate the spectral density as

Wω = Q0/ ∑
ω>0

ψ
†
ω
(0)g(0)ψω(0). (67)

Analogously to Eq. (65), the total momentum flux is
calculated from Eq. (63) as

P total
wave(x) = ∑

ω>0
Wω Pwave,ω(x)

=
∫ ∞

ω=0
Wω Pwave,ω(x)

dω

2π
. (68)

In order to simulate plasma heating by AW with
power law spectral density, in the work by Topchiyska
[12] an illustration is given with 8 AW with differ-
ent frequencies. Wave propagation can be easily seen
for moderate of T (l)/T0 = 3. In order to concen-
trate our attention on a realistic temperature increase
T (l)/T0 = 100 in the present work we take into ac-
count only one wave with frequency 300 Hz. No
doubt waves in the Hz range do not exist in the so-
lar corona because they are absorbed during the heat-
ing, but we wish to emphasize the importance of Hz
range waves in the solar photosphere, which are not
observable at the moment.

Mass, energy and momentum fluxes

In the one-dimensional model which we analyze
the conservation laws Eq. (1), Eq. (2) and Eq. (3) are
converted in three integrals of our dynamic system de-
scribing the mass j = ρ0U0 j, energy q = ρ0U3

0 Q, and
momentum Π = ρ0U2

0 P fluxes
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j = Uρ = 1, (69)

Q =
1
2

U2
+ cPΘ0T −κΘ0dxT −

(4
3

η +ζ

)
U dxU

+ ∑
ω>0

Wω

(
1
4

∣∣∣ûω

∣∣∣
2
+

a2

2

(
U
∣∣∣b̂ω

∣∣∣
2
−Re

(
b̂
∗
ω ûω

)))
− ∑

ω>0
Wω

1
2

η Re
(

û
∗
ω ŵω

)
= const, (70)

P = U +
Θ0T
U
−
(

4
3

η +ζ

)
dxU + ∑

ω>0
Wω

1
4

∣∣∣ b̂ω

∣∣∣
2
= const. (71)

Here we can recognize the energy flux of an ideal in-
viscid gas

Q ideal
wind =

1
2

U2
+ cPΘ0T , Θ = Θ0T , (72)

dissipative energy flux of the wind related to heat con-
ductivity and viscosity

Q diss
wind =−κΘ0dxT −

(
4
3

η +ζ

)
U dxU , (73)

the non-absorptive part of the wave energy flux

Qideal
wave = ∑

ω>0
Wω

{1
4

∣∣∣ûω

∣∣∣
2

+
a2

2

[
U
∣∣∣b̂ω

∣∣∣
2
−Re

(
b̂
∗
ω ûω

)]}
, (74)

and the absorptive part of the wave energy flux

Q diss
wave =− ∑

ω>0
Wω

1
2

η Re
(

û
∗
ω ŵω

)
(75)

proportional to the viscosity. Analogously for the mo-
mentum flux we have:

P ideal
wind = U +

Θ0T
U

, (76)

P diss
wind = −

(
4
3

η +ζ

)
dxU , (77)

P ideal
wave = ∑

ω>0
Wω

1
4

∣∣∣ b̂ω

∣∣∣
2
, (78)

P diss
wave = 0 (79)

for the transversal AW. As a rule the dissipative fluxes
are against the non-dissipative ones. One can intro-
duce non-ideal wind energy flux

Q̃ ≡Qnonideal
wind = Qdiss

wind +Qtotal
wave = Q−Qideal

wind

=−κdxT −
(4

3
η +ζ

)
UdxU− ∑

ω>0
Wω

(1
2

ηRe
(

û
∗
ω ŵω

))

+ ∑
ω>0

Wω

[1
4

∣∣∣ûω

∣∣∣
2
+

a2

2

(
U
∣∣∣b̂ω

∣∣∣
2
−Re

(
b̂
∗
ω ûω

))]
, (80)

Qtotal
wave = Qideal

wave +Qdiss
wave. (81)

The non-ideal wind momentum flux is

P̃ ≡Pnonideal
wind = Pdiss

wind +P total
wave = P−P ideal

wind =−
(

4
3

η +ζ

)
dxU + ∑

ω>0
Wω

1
4

∣∣∣ b̂ω

∣∣∣
2
, (82)

P total
wave = P ideal

wave +Pdiss
wave. (83)
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Then according to Eq. (28) we have

χ(x) ≡ Q̃
∣∣∣
0

x
= Q ideal

wind

∣∣x
0 , (84)

τ(x) ≡ P̃
∣∣∣
0

x
= P ideal

wind

∣∣x
0 . (85)

This analysis finally reveals the usefulness of di-
mensionless variables. The dimensional momentum
flux τ and energy flux χ participate in the important
analytical expressions for the wind variables Eq. (32)
and Eq. (34).

Self-consistent procedure and results

First we fix the boundary condition, the temper-
ature T0 and proton density np(0) for x = 0. For
these parameters we calculate density ρ0, Debye ra-
dius length rD(0), Coulomb logarithm Λ0, viscosity
η0, heat conductivity κ0, Ohmic resistivity ρΩ0 , and
sound speed cs(0). Initial velocity of the wind is bet-
ter to be parameterized by the dimensionless param-
eter s� 1, i.e. U0 = cs(0)/s. Analogously plasma
beta parameter β0 determines the Alfvén speed at
VA(0) =

√
γ

2β
cs(0). Let us also fix the maximal fre-

quency for which we will consider plasma waves ω

and calculate the absorption rate of the energy density
of Alfvén waves 2k′′(0). One can choose the interval
of the solution of MHD equations to be much larger
than the AW mean free path 1/2k′′(0), for example

l =
10

2k′′(0)
=

10V 3
A(0)

νk(0)ω2 . (86)

Having units for length l, velocity U0 and density ρ0
we can calculate dimensionless variables at x = 0 :
κ0, η0, and Θ0.

Fig. 2. Dimensionless temperature vs dimensionless dis-
tance. A hundred times increase of the plasma temperature
by absorption of AW.

Fig. 3. Dimensionless wind velocity vs dimensionless dis-
tance. A hundred times increase of the plasma velocity by
absorption of AW.

The input parameters of the program are T0,
ntot(0), β0, ω, and s which parameterizes j =
〈m〉ntot(0)U0. We have obtained our results by set-
ting T0 = 6000 K, ntot(0) = 5× 1014 m−3, β0 = 1,
ω/2π = 300 s−1, s= 137. We calculate l, a, η0 = ν0,
κ0 and choose some Awave which finally determines
increasing of the temperature T (1) = T (l)/T (0).

In our self-consistent calculation we use the non-
linear fit T (x) = 1+

(
∑3

n=0 anxn
)

tanh(b1x) for the nu-
merically calculated profile of the temperature T (x)
(Fig. 2) as well as for the velocity U(x) (Fig. 3).
In order to accelerate the convergence for the initial
approximation we use a0 = 20, a1 = a2 = a3 = 0,
b1 = 10. Let us explain in detail the successive ap-
proximations.

1. At fixed wind profiles T (x) and U(x) we calcu-
late Λ = Λ0 +

3
2 lnT + 1

2 lnU , η , κ, dxη , and dimen-
sionless matrices M and g. Then we have to solve the
wave equation and to renormalize the solution with
some fixed dimensionless energy flux for the R-mode
Qwave(0).

2. Using so obtained wave variables Ψ we have to
solve equations (30) and (31) to find U(x) and Θ(x),
and respectively T (x) from Eq. (29). The variables η ,
κ, dxη , and dxκ, which participate in the coefficients
have to be calculated simultaneously.

3. Having solved the equations for the wind vari-
ables and formerly the equations for the wave vari-
ables we can calculate the total energy and momen-
tum flux. If the maximal relative difference between
two successive temperature profiles is larger than
some predetermined value we go to step 1 and repeat
the procedure.

The width of the transition layer λ , and the in-
creasing of the temperature T (1) are functions of
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the wave energy flux coming from the chromosphere
qwave(0).

l
λ

= max
x

∣∣dx lnT
∣∣' 1

l b1
. (87)

The wave amplitude Awave is determined in a
way that ensures the desired temperature increase
T (1;Awave) = T (l)/T (0) in the end (Fig. 2) of the
space interval. In our numerical illustration we used
one wave which corresponds to δ -like spectral den-
sity of AW. In general, at fixed temperature increase
and chosen spectral density of the AW the MHD the-
ory has no more free parameters. All that is left is to
compare the calculations with other models and ob-
servational data for heating of the solar corona and
launching of the solar wind.

CONCLUSION

Discussions

In spite that iron was suspicious from the very
beginning the problem of Coronium was a 70 year
standing mystery until unambiguous identification as
Fe13+ by Grotrian and Edlen in 1939. The same 70
year time quantum was repeated. In 1947 Alfvén [2]
advocated the idea that absorbtion of AW is the mech-
anism of heating of solar corona. Unfortunately the
idea by Swedish iconoclast [13] was never realized in
original form: what can be calculated, what is mea-
sured, what is explained and what is predicted. That
is why there is a calamity of ideas still on the arena,
for a contemporary review see the SOHO proceedings
( [14]). The wide variety of effects in the physics of
the corona is not directly related with hydrodynamic
mechanism of its creation from the chromosphere as
gerontology has few common points with tocology.
From qualitative point of view the narrow width of
the transition layer λ = min |dx/dlnT (x)| is the main
property which should be compared against the pre-
dictions of other scenarios. For example, in order for
the nanoflare hypothesis to be vindicated [15] such
reconnections are needed to explain the narrow width
of the transition layer at the same boundary condi-
tions of wind velocity and temperature. Moreover
electric fields of the reconnections heats mainly the
electron component of the plasma. How then proton
temperature in the corona is higher? Launching of
Hinode gave a lot of hints for the existence of AW in
the corona [16], see also [17]. However most of the
research was in the UV region where high frequency
AW are already absorbed. All observations are for

low frequency (mHz range) AW for which hot corona
is transparent. The best that can be done is to ex-
tract the low frequency behavior of the spectral den-
sity of AW and to extrapolate to higher frequencies
responsible for heating. The observed AW are irrele-
vant for the heating. In order to identify AW respon-
sible for the heating it is necessary to investigate high
frequency (1 Hz range) AW in the cold chromosphere
using optical not UV spectral lines. We are unaware
whether such type of experiments have been planned.
One of the purposes of the present work is to focus the
attention of experimentalists on the 1 Hz range AW
in the chromosphere, which we predict on the basis
of our MHD analysis. For such purposes we suggest
Doppler tomography [18] of Hα; Ca lines are an-
other possibility. Doppler tomography was success-
fully used for investigation of rotating objects, such
as accretion disks [19] and solar tornados [20]. Here
we wish to mention the Doppler tomography by Coro-
nal Multi-channel Polarimeter build by Tomczyk [8].
For investigation of AW by Doppler tomography we
suggest development of frequency dependent Doppler
tomography operating as a lock-in voltmeter. The
data from every space pixel should be multiplied by
sinωt and integrated over many wave periods. Fi-
nally one can observe time averaged distribution of
the AW amplitude. Systematic investigation of such
frequency dependent Doppler tomograms will reveal
that the Swedish iconoclast [13,21] is again right that
AW heat the solar corona, after another 70 years of
dramatic launching of vast variety of ideas.

Plasma heating by AW – a historical perspective

What have we learned from the one-dimensional
static MHD problem? We have demonstrated that
qualitatively predicted self-induced opacity of plasma
is an intrinsic property. Absorption of AW causes
viscous heating of ions and that is why the proton
temperature is higher than the electron one. In this
way we have revealed an effective method for ion
heating which can be applied to many plasma prob-
lems. Actually plasma heating by MHD waves is
used in the MIT alcator [22]. We suggest however
that the toroidal geometry can be replaced by Budker
probkotron geometry, in which the energy of the AW
will be focused in a narrow jet with a hundred times
increased temperature. A de Laval nozzle will be re-
alized by strong magnetic fields. We do believe that
that this will be an effective method for navigation in
the Solar System (cf. [23]). Electric power from a nu-
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clear reactor will create a fast electron-proton jet and
this will dramatically decrease the initial mass of the
rocket. For large-scale Earth-based installations such
a jet of high-temperature deuterium will inject a fresh
idea in nuclear fusion physics.
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(2007); R. Erdélyi and V. Fedun, Science 318, 1572-
1574 (2007); Y. Katsukawa et al., Science 318, 1594-
1597 (2007)

[17] D. Jess et al., Science 323, 1582–1585 (2009)
[18] T. Marsh, Europhysicsnews 36 No. 4, 133-138

(2005)
[19] T. R. Marsh and K. Horn, MNRAS 235, 269–286

(1988)
[20] http://www.mps.mpg.de/en/forschung/sonne/
[21] “Students using astrophysical textbooks remain

essentially ignorant of even the existence of plasma
concepts, despite the fact that some of them have
been known for half a century. The conclusion is that
astrophysics is too important to be left in the hands
of astrophysicists who have gotten their main knowl-
edge from these textbooks. Earthbound and space
telescope data must be treated by scientists who are
familiar with laboratory and magnetospheric physics
and circuit theory, and of course with modern plasma
theory.” Hannes Alfvén quoted by Anthony L. Peratt,
’Dean of the Plasma Dissidents’, Washington Times,
supplement: The World and I (May 1988), 197.
http://todayinsci.com/A/Alfven Hannes/AlfvenHannes-
Quotations.htm

[22] J. A. Snipes et al., Phys. Plasmas 12, 056102 (2005);
http://dx.doi.org/10.1063/1.1865012

[23] E. Y. Choueiri, Scientific American, 300, 58-65
(2009); doi:10.1038/scientificamerican0209-58

[24] J. A. Araneda, Y. Maneva, and E. Marsch, Phys. Rev.
Lett., 102, 175001 (2009)

[25] Y. G. Maneva, J. A. Araneda, and E. Marsch, ed. by I.
Zhelyazkov, AIP Conference Proceedings, vol. 1121,
pp. 122–126 (2009)

[26] Y. G. Maneva, J. A. Araneda, and E. Marsch, Twelfth
International Solar Wind Conference, eds. M. Mak-
simovic, K. Issautier, N. Meyer-Vernet, M. Moncu-

378



T. M. Mishonov et al.: Heating of the solar corona by Alfvén waves – self-induced opacity

quet and F. Pantellini, AIP Conference Proceedings,
vol. 1216, pp. 227–230, (2010)

[27] Y. G. Maneva, Ph.D. Thesis, (Göttingen, uni-edition,

2010), ISBN 978-3-942171-39-7
[28] T. M. Mishonov, M. V. Stoev, and Y. G. Maneva, Eur.

Phys. J. D 44, 533–536 (2007)

НАГРЯВАНЕ НА СЛЪНЧЕВАТА КОРОНА ЧРЕЗ АЛФВЕНОВИ ВЪЛНИ –
САМОИНДУЦИРАНА НЕПРОЗРАЧНОСТ

Т. Мишонов, Н. Захариев, Р. Топчийска, Б. Лазов, Ст. Младенов

Катедра по теоретична физика, Физически факултет, Софийски университет “Св. Климент Охридски”,
бул. “Дж. Баучер”№5, 1164 София, България

(Резюме)

За първи път Ханес Алфвен предлага идеята, че нагряването на слънчевата корона се осъществява благодарение на Алф-
венови вълни (АВ) [1,2]. Тези вълни се генерират от турбуленцията в зоната на конвекция и се разпространяват по магнитните
силови линии.

Цели. Пресметнато е статично разпределение на температурата и скоростта на вятъра в преходната зона, използвайки маг-
нитохидродинамика (МХД) на напълно йонизирана водородна плазма.

Методи. Численото решение на изведените уравнения позволява да се определи дебелината на преходния слой между хро-
мосферата и короната, в който се поражда явлението самоиндуцирана непрозрачност на високочестотни АВ. Обособяването на
граница на зоната е директно следствие от самосъгласуваното МХД разглеждане на разпространението на АВ.

Резултати.НискочестотнитеМХД вълни, идващи от Слънцето, се отразяват силно от тесния преходен слой, а високочестот-
ните вълни се поглъщат. Това ни позволява да предскажем значителна спектрална плътност на АВ във фотосферата. Численото
разглеждане позволява отчитането на падащи АВ с произволна спектрална плътност.

Заключение. Идеята, че АВ могат да нагреят слънчевата корона, принадлежи на Ханес Алфвен. Нашата работа се състои в
решаването на съответните МХД уравнения. Сравняването на решението с експериментални данни е от съществено значение
за разкриването на механизма на нагряване на короната.

1. H. Alfvén, Nature 150 (1942), 405-406.

2. H. Alfvén,MNRAS 107 (1947), 211-219.
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