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Since the optimization objectives of the cathode catalyst layer (CCL) of a PEM fuel cell affect each other, thinking of 

them separately, would not be realistic and accurate; s o they must be solved simultaneously. In this study, a multi-

objective multivariable optimization based on an agglomerate model, is performed and objective functions like current 

density and the cost of CCL are optimized under different variables. Decision variables include important or measurable 

parameters, namely platinum loading, ionomer volume fraction, agglomerate radius and porosity, and water saturation. 

Comparing these results with those of optimizations whose objectives are combined as a single-objective, found the 

optimization results have a good overlap at low current densities, however when increasing the current the results diverge. 

This deviation occurs as a result of interaction between objectives. The sensitivity analysis shows that the best range of 

platinum loading is 0.1 and 0.4 mg cm-2. The Pareto curve at the voltage of 0.6 V indicates that the best trade-off between 

the cost and the performance of the CCL is achieved, when the current density increases in the range of 5 % to 12 %, 

where the optimization objectives are met simultaneously. 
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INTRODUCTION: 

Cathode catalyst layer (CCL) is an important 

component in proton exchange membrane (PEM) 

fuel cells. In this layer, the proton current and 

oxygen molecules are electrochemically converted 

into an electron current [1]. The losses resulting from 

this conversion; include the limitation in the 

transportation of reactants and products, and poor 

oxygen reduction reaction (ORR) kinetics, which 

can reduce the efficiency of the fuel cells. 

 Modelling of the cathode catalyst layer is 

performed to attain a better discernment of the 

conditions, structure, transport properties and 

electrochemical reactions and also to evaluate the 

effect of variables on the performance. In general, 

there are three models to describe the CCL: (i) ultra-

thin layer, (ii) pseudo-homogeneous and (iii) 

agglomerate models. Usually, the agglomerate 

model has the better representation of the catalyst 

layer (CL) compared to other models [2]. Thus, the 

overall accuracy of these models depends strongly 

on the description of the CL [3]. Therefore an 

agglomerate model has been considered in order to 

simulate the CCL. 

Then, the optimization of CL is performed to 

improve the performance and reduce the expenses of 

the fuel cells. Since improving the performance and 

reducing the cost of CL simultaneously are crucial 

precondition for the commercialization of fuel cell, 

this research has been conducted to study multi-

objective optimization (MOO) of the CCL. Many 

real problems require multi-objective evaluation [4] 

because their optimization objectives affect each 

other. Moreover, the inherent conflicting of the goals 

causes more difficulty during the calculation of the 

optimum solution. Hence, for the optimization study, 

a MOO coupled to above model is applied. 

In the literature, several studies were presented 

for optimizing the PEM fuel cell or its CLs. Some of 

these studies are discussed below in brief and then 

the overall conclusions are also drawn at the end of 

this section. In order to obtain optimum distributions 

of catalyst loading and ionomer across the CCL of 

the PEM fuel cell, Song et al. [5] showed that the 

optimum distributions are linear when the 

optimization is performed using a single-variable, 

while the optimum distribution of ionomer remains 

linear, but that of catalyst loading becomes convex 

when the optimization is behaved as a two-variable 

problem. According to their results, the interaction 

of variables is significant and should not be ignored. 

Madhusudana and Rengaswamy [6] studied the 
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optimization of the agglomerate CCL, in order to 

minimize the total amount of platinum and to 

maximize the current density, separately.  

For the first time, Na and Gou [7] proposed a 

MOO technique with two objective functions of 

performance and expense to optimize fuel cell 

systems. They demonstrated a more cost-effective 

fuel cell system with a high- performance level will 

be obtained. Then Ang et al. [8] suggested a MOO 

technique for a general PEM fuel cell system, using 

the weighted-sum method. They showed that, a more 

efficient system was bigger, and vice versa. Overall, 

their results indicated that, to reach the most of the 

size-efficiency trade-off, the system must be 

operated at efficiency between 40 % and 47 %. Ang 

et al. [9] in another work, reviewed the methods and 

strategies of fuel cell system optimization, and then 

categorized the MOO into a bi-objective and a tri-

objective optimal design. Secanell et al. [10] 

considered fuel cell Membrane-Electrode-Assembly 

for MOO. The objective was to simultaneously 

maximize the efficiency and minimize its production 

expenses. The results showed the expense - 

efficiency compromises, and they illustrated that 

considerable yields in the efficiency and cut in 

expenses were possible. 

Srinivasarao et al. [11] individually considered 

some objective functions in order to optimize the 

CL. The optimized parameters of CL are vigorously 

influenced by the constraints and the objective 

functions. Khajeh-Hosseini et al. [12] improved a 1D 

agglomerate model for the CCL of a PEMFC to 

study the effects of catalyst layer variables on the 

activation loss. Additionally, the harmony search 

algorithm was utilized to get the optimal values of 

variables to minimize the activation overpotential of 

CL. 

Tahmasbi et al. [13] applied a novel approximate 

to the MOO technique in the fuel cell system based 

on simultaneous power maximization and cost 

minimization by a genetic algorithm. Power 

maximization results at the peak power (1.95 kW), 

the unit expense of energy is $0.64. On the contrary, 

the expense minimization decreased the unit expense 

of energy to $0.33, while, output power was 

decreased to 0.93 kW. It means the optimization of 

fuel cell system is strangely influenced by the 

weighting factors of the objective functions. Mert 

and Özçelik [14] implemented MOO of a direct 

methanol fuel cell with three objective functions of 

power, energy and exergy efficiencies, and then 

calculated the optimal values of objective functions 

separately and simultaneously. According to these 

results, the best results drawn for the objectives, 

when considered separately, are larger than those 

when all the objectives are considered 

simultaneously. At last Feali and Fathipour [15] 

determined the trade-off curve between fuel 

utilization and output power density by genetic 

algorithm. They showed that to attain the optimum 

trade-off between the power and utilization, the 

current of the fuel cell should be less than 0.9 mW 

cm-2.  

Although recently a few multi-objective 

optimizations have been performed for the fuel cell 

system, the optimizations of CCL are restricted to 

single-objective ones, such as that of cost or 

performance. Since the objectives of optimization 

affect each other, considering the objective functions 

separately would not be realistic and accurate, so 

objective functions of CCL must be solved 

simultaneously. In all cases above, the interaction 

between the goals of the CCL was not taken into 

consideration, each goal was optimized separately. 

In this study, a multi-objective multivariate 

optimization (MOMO) based on an agglomerate 

model is performed for CCL of PEM fuel cell. This 

optimization utilized to study the cost and the 

performance trade-off concerned with the model of 

CCL. The fminimax and bvp4c functions of 

MATLAB software are aided in optimization and 

modelling stage, respectively. Objective functions 

are current density and cost of CCL, and decision 

variables include platinum loading, ionomer volume 

fraction, agglomerate radius and porosity, and water 

saturation. 

This paper is organized as follows: Section 2 

presents the CCL modelling. Section 3 describes the 

CCL optimization formulation based on this model. 

Section 4 provides the important results from the 

investigation of objectives and variables. Section 5 

concludes the paper. 

CATHODE CATALYST LAYER 

MODELLING 

Before any optimization can be done, the 

problem must first be modelled. The catalyst layer 

was modelled as an ultra-thin layer in the earlier 

models. Afterward, the catalyst layer is considered 

to be of finite thickness. Recently, microscopic 

images (SEM and TEM) have shown that the 

catalyst layer is built of Platinum/Carbon particles 

and a Nafion film, called agglomerates [16]. 

Agglomerate models have numerous parameters, 

including operational parameters, namely 

temperature, pressure and saturated liquid water, and 

structural parameters such as platinum loading, 

ionomer volume fraction, porosity and CL thickness, 

radius and porosity of agglomerate, etc.  
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Since the major variations occur in the diffusion 

direction of reactants (Z direction), a high-precision, 

one-dimensional model is applied to speed up the 

implementation of written code in the optimization 

stage. It’s reasonable to assume an isothermal model 

in the low-temperature fuel cell where the generated 

heat is spent on the heating of the produced water.  

In this study, a one-dimensional, isothermal, 

steady-state, agglomerate model is considered and 

developed for the CCL of a PEM fuel cell. 

The agglomerate CL consists of Nafion ionomer, 

platinum and carbon particles as shown in Fig. 1. 

There are more details of agglomerate models in the 

references [3, 6, 12, 17]. 

Other assumptions of modelling are: 

The void spaces between the agglomerates may 

be partially or fully filled with water 

The PEMFC operates at steady-state and 

isothermal condition 

The agglomerate particles are spherical in shape 

Reaction kinetics are first-order with respect to 

the oxygen concentration 

The gases are assumed to be ideal. 

 

Fig. 1. Cathode catalyst layer based on agglomerate 

model. 

GOVERNING EQUATIONS 

As the considered model is one-dimensional, 

isothermal and steady state, the CL phenomena 

consist of proton transfer, oxygen diffusion and 

overpotential losses along the vertical direction of 

catalyst layer (Z direction). Ohmic and concentration 

losses will be calculated when these parameters have 

been determined. 

 

Current Profile 

The oxygen conservation within agglomerate in 

steady-state indicates: 

∇. NO2
= RO2

               (1) 

Where 𝑅𝑂2
 represents the oxygen consumption 

rate and 𝑁𝑂2
 shows flux of oxygen in the Nafion that 

is defined by Fick’s diffusion law: 

NO2
= −DO2,agg

eff ∇CO2
        (2) 

Where 𝐷𝑂2,𝑎𝑔𝑔
𝑒𝑓𝑓

 is the effective diffusion 

coefficient of oxygen inside agglomerate that is 

calculated by the Bruggeman’s relation [6].  

A combination of Eqs. (1) and (2) and expanding 

the produced equation leads to: 

DO2,agg
eff

r2  
d

dr
 (r2 dCO2

dr
) − k1. a. CO2

= 0        (3) 

Equation (3) is a 2nd-order ODE which is solved 

analytically [17]: 

C∗ =
sinh (3φr)

r∗sinh (3φ)
 

(Where: φ =
ragg

3
√

k1.a

DO2,agg
eff  ) ,(4) 

Now, we define Er as the agglomerate 

effectiveness factor as [17]: 

Er =
R̅O2

RO2,max
= [

1

φ
(

1

tanh (3φ)
−

1

3φ
)] ,    (5) 

The consumption rate of oxygen per unit volume 

of the catalyst layer can be linked to the current of 

protons i as: 

RO2

A

a
=  

1

4F
 ∇. i                       , (6) 

Where  ∇. i can be substituted by di/dz for a one-

dimensional study [10]: 

di

dz
= 4F (

1

Erk1A
+

δ

aaggDO2,N

ragg+δ

ragg
)

−1
CO2

HO2

,  (7) 

Oxygen Profile 

For the ORR, the consumption rate of oxygen is 

(itot−i)/nF. Hence the distribution of oxygen 

concentration in the CL is [6]: 
dCO2

dz
=

i−Iδ

4FDO2,CL
eff                       , (8) 

 

Overpotential Loss Profile 

The resistance against the migration of electron 

and proton in the catalyst layer is defined by Ohm’s 

law [6]:  
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dη

dz
=

i

keff +
i−Iδ

σeff                        , (9) 

Boundary Conditions 

According to Fig. 1 and ideal gas assumption, 

boundary conditions at Z=0 are: 

CO2
|

z=0
=

PO2

RT
=

PO2

1.33exp (−
666

T
) 

  ,  i|z=0 = 0, 

(10) 

And boundary condition at Z=LC is: 

i|z=𝐿𝑐 = Iδ  ,                      (11) 

Solution method 

Equations (7-9) along with boundary conditions 

Eqs. (10) and (11) form a coupled system of 

nonlinear ODEs with the unknown independent 

variables i, CO2
 and η that control the transfer of 

protons, oxygen and electrons within the catalyst 

layer. In this study, the coupled system of equations 

is solved through coding in MATLAB software by 

shooting method, as shown in Fig. 2. After solving 

the system of equations and calculating the losses, 

the performance curve is drawn. 

Model validation 

This model was verified using a comparison with 

the experimental data conducted by Chang et al. [18] 

and also the non-isothermal, two-phase and three-

dimensional model by Obut et al. [19] in Fig. 3. As 

seen over the whole range of the performance curve, 

a very good agreement between all results is 

obtained; therefore, if the agglomerate model 

including numerous operational and structural 

parameters were used, considering the assumptions 

such as the isothermal, one-dimensional and steady 

state could not reduce the accuracy of the results. 

The values of the input variables for the base case 

are shown in Table 1.  

Cathode catalyst layer optimization 

After the CL modelling has been conducted and 

its precision has been confirmed, CL optimization is 

performed. Modelling offers powerful tools and 

guidance for performance optimization.  

To cut the costs of the fuel cells, the studies 

progress in two routes: replacing the platinum with 

suitable non-precious metal alternatives [20] and 

optimal design of the fuel cell to predict and 

understand phenomena occurring in the cell. 

Optimal designs of catalyst layers will be further 

classified according to their composition and 

structure [21]. 

The optimization problems sometime include 

more than one objective function needing to be 

optimized simultaneously. The process of 

optimizing a number of objective functions is called 

multi-objective optimization [4]. MOO is also 

known as multi-criteria [22] or multi-attribute 

optimization. In MOO it is not possible to find a 

single solution as an optimal solution for all of the 

functions together [4]. MOO consists of three 

phases: model building, optimization and decision 

making. After having found some solutions of the 

MOO problem, we must select a solution from this 

set [23]. One of the benefits of MOO is that it takes 

the interaction between the objectives into 

consideration. 

 

Fig. 2. Algorithm for solving the differential equations 

of CCL. 

Objective Functions 

Objective functions of CL optimization usually 

contain maximization of current density, output 

power, current density per Pt loading, and 

minimization of voltage losses, fuel cell size, and CL 

cost per power. This simulation can optimize many 

objective functions simultaneously but here, in order 
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to compare our results with existing results, two 

objective functions namely current density and CL’s 

cost are used. 

The CL is a combination of Pt/C and ionomer 

solution; therefore, the sum of platinum and ionomer 

costs is a good indicator of CL’s cost. So in order to 

create the cost function of CL, the expression below 

is procured from curve fitting of rPt and related cost 

data and the cost of Nafion solution [11]. The 

manufacture cost of CL depends on the synthesis 

technology and the laboratory, and could be added to 

the cost function of the catalyst layer only if it was 

determined. 

The objective function of current density is also 

obtained from solving the modelling equations. A 

minus is added by the current density function, so 

that the two objective functions could be minimized. 

Table 1. Input data used for base case in modelling stage [10, 17-19]. 

Parameters Quantity Value / Units 

T 

P 

O2X 

s 

CL 

ohmicR 

Ptm 

Ptρ 

Cρ 

Pt/cr 

O2, refC 

Cα 

aα 

κ 

σ 

τ 

aggr 

aggε 

aggδ 

CLε 

gε 

mcL 

gcL 

Ap 

Temperature 

Pressure 

Oxygen mole fraction in CCL 

Liquid water saturation 

Catalyst layer thickness 

Ohmic resistance 

Pt mass loading 

Density of Pt 

Density of Carbon 

Platinum mass ratio on Pt/C  particles 

concentration2 Reference O 

Transfer factor of Cathode 

Transfer factor of Anode 

Protonic conductivity 

Electronic conductivity 

CL tortuosity 

Radius of agglomerate 

Spherical agglomerate porosity 

Thickness of agglomerate 

CL porosity 

GDL porosity 

Volume fraction of membrane in the CL 

Volume fraction of GDL in the CL 

Adjustable parameter 

Co60  

1.1 bar 

21 % 

0.5 

30 μm 
2Ωm 4-0.47×10 

2-0.003 kg m 
3-21,400 kg m 

3-1800 kg m 

0.2 
3-2.28 mol m 

1.0 

0.5 
1-m1-300 Ω 

1-m 1-72,000 Ω 

1.5 

0.3 μm 

0.45 

30 nm 

0.2 

0.74 

0.3 

0.1 

If  i < 2000  Ap=3 

else  Ap=0.3 

Table 2. Comparing the results of multi-objective optimization and optimization of Ref. [11]. 

 Results of  Ref. [11]: 

 % Gain 

in  cost  

% Gain in 

performance 

    1-Cost function / $ W 2-Current density / mA cm Voltage   

(V)    Base case    Optimized case     Base case      Optimized case 

 14.81 10 0.5212 0.61182 292.02 265.47 0.8 

 33.12 10 0.1339 0.2002 1189.9 1081.7 0.6 

 40.43 10 0.1021 0.17139 2084.8 1895.3 0.4 

 Results of this work: 

 14.68 10 0.523 0.613 290 265  0.8 

 24.38 10 0.152 0.201 1180   1070 0.6 

 26.01 5 0.128 0.173 1980 1880 0.4 
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Fig. 3. Comparing the modelling results with results 

in [18, 19]. 

Finally, the following relations are used for the 

cost function of carbon-supported platinum and the 

cost function of ionomer, respectively: 

C1=251.7 rpt/C+6.6092 , C2=24.0566       / $ 

g−1,(12) 

Weight of carbon-supported platinum and weight 

of ionomer come from the following relations, 

respectively: 

WPt+WC=mPt ×10−3 Area/rPt/C      / g,      (13) 

 Wi= mPt×10−3Area/rPt/C ×fi /(1-fi)       / g  

Where fi (mass ionomer ratio) will be obtained from 

the following relation: 

fi= 
Lmc  ρi rPt/C LC×105

mPt+Lmc ρi  rPt/C LC×105
 ,(14) 

Finally, the objective functions are obtained from the 

following relations: 

f1=-Iδ      /A cm-2,  (15) 

f2=( C1 (WPt + WC ) + C2Wi)      / $,   (16) 

Variables and constraints 

There are many variables in the catalyst layer 

structure that influence the efficiency of the fuel 

cells. These variables are a combination of structural 

and operational parameters. Operational parameters 

include temperature, pressure and water saturation, 

and structural variables include thickness of Nafion 

film, agglomerate radius and porosity, catalyst 

loading, carbon loading, carbon-platinum ratio, 

Nafion fraction, GDL passing into CL, GDL 

porosity, CL porosity and thickness. 

Although this study is theoretical, the decision 

variables can be controlled during the manufacture 

of the PEM fuel cell as follows:  Agglomerate radius 

and porosity, and water saturation can be controlled 

through the synthetic techniques of MEA, pore 

formers, and water management, respectively. The 

catalyst layer thickness and ionomer fraction depend 

on the amount of used ionomer, carbon and 

platinum. 

In a written program, we can investigate all 

variables simultaneously, but here only important or 

measurable parameters are scrutinized. These 

parameters include: platinum loading, ionomer 

volume fraction, agglomerate porosity, agglomerate 

radius and water saturation. 

To avoid unrealistic design criteria, the upper and 

lower limits below are applied to the parameters: 

x= [mpt, lmc, εagg, ragg, s] 

lb=[0.01, 0.1, 0.1, .01, .01];                           (17) 

ub=[2.0, 0.9, 0.9, 0 .5, 0.7]; 

Constraints of the multi-objective optimization 

problem can be imposed on problem variables or 

objective functions. Constraints of variables are 

defined as volume fraction of solid, ionomer and 

void in the CL: 

      εv = εCL = 1 −
mPt

LC
(

1

ρPt

+  
1−rPt/C

rPt/C.ρc

) −

Lmc    0 < εv < 1    

      εi = Lmc =
fi

1−fi
 

1

ρi

 
mPt

rPt/CLC
         0 < εi < 1, 

(18)        εs = 1 − εv − εi =
mPt

LC
(

1

ρPt

+

 
1−rPt/C

rPt/C.ρc

)     0 < εs < 1 

In addition, constraints imposed on objective 

functions, such as the cost and the performance, 

could be seen as CL cost less than a specific value 

(e.g., base cost) or its performance greater than the 

base value, e.g., up to 20 %. 

    CL costOptimized <  CL costBase case                 

(19) 

     Curren densityOptimized

− Curren density Base case

>  (0 − 20) % 

Solution algorithm 

However the possible solutions to the MOO are 

usually in conflict with several objectives, but the 

Pareto set has minimum conflict [24]. One of the 

methods most used to solve a MOO in order to obtain 

a Pareto-optimal set is the min-max method. This 

method tries to find a feasible design that minimizes 

its distance from the ideal design [25]. This method 

also uses the nonlinear programming algorithm, a 

sequential quadratic programming (SQP). There are 

two functions to solve constrained nonlinear MOO 

in MATLAB: fminimax and fgoalattain, both of 

which use a SQP method [26, 27].  

In this study, we use the fminimax method 

because the fgoalattain method is more complicated 
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due to use the weighting coefficients. However, both 

methods have local solutions [5]. Due to the low 

range of variables and because a local minimum for 

a convex function is always a global minimum, this 

disadvantage does not cause difficulties. On the 

other hand, same results are obtained for different 

initial guesses. 

In this research, the current density and the cost 

of CL are optimized under various conditions 

through the MOO technique using the min-max 

method. First of all, coding with MATLAB 

software, the set of equations obtained from the 

modelling stage is calculated using the bvp4c 

function as shown in the algorithm in Fig. 2. Then, 

MOO functions are solved through fminimax 

function and via Eq. (20). The fminimax is formed 

of objective functions, variables and constraints 

according to Eq. (20). The optimization algorithm is 

shown in Fig. 4. 

fminimax    f1 , f2   

w.r.t.:     mpt, lmc, εagg, ragg, s (20) 

Subject to:   0 ≤  εv ≤ 1 , 0 ≤  εi ≤ 1  and  

0 ≤  εs ≤ 1  

 

Fig. 4. Algorithm for performed multi-objective 

optimization. 

Optimization validation 

This simulation can optimize many objective 

functions simultaneously, but here, in order to 

compare our results with the available result, only 

two objective functions, namely maximization of 

current density and minimization of CL cost, are 

used. Our results are arranged in such a way that they 

can be compared with results in Ref. [11]. Input data 

are also the same as those of Ref. [11], with the rest 

of the data used in Table 1. Many variables are also 

considered in the catalyst layer modelling, but here 

only important or measurable parameters are 

scrutinized. These parameters include: platinum 

loading, carbon-platinum ratio, ionomer volume 

fraction, agglomerate porosity and radius, and water 

saturation. 

Optimization results at three voltages, including 

high, medium and low voltages, and two states, base 

case and optimized case, are compared in Table 2 

and Fig. 5. As can be seen, the results of both models 

at the base case conformed at high, medium and low 

voltages; therefore, their results can be compared. 

Optimization results show a good agreement at low 

current density. Increasing current density, which 

causes an increase in losses and cost-saving resulting 

from using less platinum, makes a divergence appear 

between optimizations. It occurs because in the 

above-mentioned reference, two objectives are 

actually optimized through a single objective 

manner, while in our study two objectives are used 

separately and simultaneously, so interactive effects 

of objectives are considered. 

 

Fig. 5. Comparing these results and results in [11] at 

base case and optimized case. 

RESULTS AND DISCUSSION 

Since the amount of catalyst is the most important 

factor influencing the optimization objectives of the 

catalyst layer (performance and cost), before any 
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optimization is done, the effect of platinum on the 

performance is investigated in various voltages. 

Pt loading diagram is drawn vs. current density 

and cost at the voltages of 0.8, 0.6 and 0.4 V in Fig. 

6. The slope of the curve is very small where the 

platinum loading is larger than 0.4 mg cm-2; that is, 

increasing a large amount of platinum leads to small 

changes in current density, so it would not be 

economical to increase the platinum loading any 

more than that. By contrast, the slope of the curve is 

very sharp where the platinum loading is less than 

0.1 mg cm-2; it means that, in order to reduce the 

cost, a large drop in the current density occurs 

through reducing Pt in small scales; therefore, the 

reduction of Pt in larger scales would not be 

technically justified. So, the best compromise 

between the cost and the performance should be 

achieved within this platinum range. 

 

Fig. 6. Diagram of platinum loading vs. current 

density at the voltages of 0.8, 0.6 and 0.4 volt. 

 

Fig. 7. Performance curve of fuel cell for both the base 

case and the multi-objective optimization case. 

The catalyst layer cost increases 166 % at all 

three voltages in the above platinum ranges while the 

current density increases by 51.4 % at the voltage of 

0.8 V, 12.7 % at the voltage of 0.6 V and 9.2 % at 

the voltage of 0.4 V; thus, the current is more 

dependent on the amount of platinum at high 

voltages, due to the importance of activation 

overpotential, instead, it is far less dependent at low 

voltages. 

Figure 7 demonstrates the performance curve of 

the fuel cell in both cases; base case and multi-

objective optimization case. In Fig. 7, one of the 

objectives, namely cost, is considered the same as 

base cost, and another objective, namely 

performance, is optimized. Although the amount of 

increase in the CL performance is higher at the high 

currents, its relative increase is higher at the low 

current densities. 

 

Fig. 8. Pareto curve for multi-objective optimization 

of catalyst layer at the voltage of 0.6 V. 

In Fig. 8, a Pareto curve is drawn to optimize the 

objectives of performance and cost of the CL at the 

voltage of 0.6 V, where the base case (voltage 0.6 V, 

current 1.07 A cm-2 and cost 1.819 $) is also marked 

with a circle. With multi-objective optimization at 

the base case current density, first the cost suddenly 

dropped compared to the base case, and then to 

increase the current density, the cost gradually 

increases. As shown in the graph on the left, the 

slope of the curve is very smooth, which shows that 

increasing the current density does not lead to too 

high a price; therefore, the current density can be 

increased as necessary. In the graph on the right, a 

slight rise in current leads to an increase in the cost 

several times, so increasing the performance in this 

area would not be economical; therefore, the trade-

off between the cost and the performance is 

achieved, depending on the kind of application, 

when the current density increases in the range of 5 

% to 12 %. In this range, the optimization objectives 

are met simultaneously; that is, the current is more 

than the base and the cost is lower than the base case. 

In Fig. 9, a Pareto curve is drawn as the cost-

power ratio vs. current at the voltage of 0.6 V. The 

above base case is also marked with a circle to 

compare. Here, a compromise is achieved between 

the objectives of cost-power ratio and current density 
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in the current density range of 1.13-1.23 A cm-2 

depending on the decision maker. Likewise, the 

current is more than the base and the cost is lower 

than the base case simultaneously. 

 

Fig. 9. Pareto curve for multi-objective optimization 

of catalyst layer at the voltage of 0.6 V: as term of cost 

power ratio vs. current density. 

 

Fig. 10. Pareto curve as term of current density, cost, 

and power at the voltage of 0.6 V. 

 

Fig. 11. Comparing the amount of platinum loading in 

both the base case and optimized case. 

A Pareto curve for the three objective functions 

of current density, cost and power is drawn at the 

voltage of 0.6 V in Fig. 10. The diagram is drawn 

three-dimensionally in order to compare those 

variations caused by price, although the two 

functions of current density and power are not 

independent. As shown, the slopes of the current and 

the power are smooth, but the slope of the cost will 

be steep, particularly at the high currents; so even if 

the cost increases so much at higher currents, the 

current in these conditions cannot increase more than 

20 %. 

In Fig. 11, the platinum loading is compared in 

the base case and optimized case. As can be seen, a 

large amount of platinum is necessary due to the 

importance of activation overpotential caused by 

beginning the reaction at the high voltages. Even the 

Pt loading in the optimized case is higher than the 

base case. Conversely, less platinum is required at 

low voltages or high current densities because of the 

stronger effect of ohmic and mass transport losses. 

So, less platinum is consumed and costs are saved 

more significantly. 

 

Fig. 12. Objective functions vs. platinum loading 

(mPt). 

In this section, objective functions of current 

density and cost are plotted vs. two optimized 

decision variables at the voltages of 0.8, 0.6 and 0.4 

volts. In Figs. 12, 13, current density is considered 

the same as base case and cost is optimized. 

In Fig. 12, objective functions are plotted vs. 

platinum loading (mPt). Platinum loading has a direct 

and strong effect on CL cost, so usage of it must be 

reduced as far as possible. As shown, at low current 

densities, large amounts of platinum are necessary 

due to the activation overpotential caused by 

beginning the reaction that leads to increase in cost. 

Conversely, for the same reasons as in Fig. 11, less 

platinum is required at high current densities, so the 

cost decreases. 

In Fig. 13, objective functions are plotted vs. 

ionomer volume fraction (lmc). Ionomer content 

also directly effects CL cost, so usage of it must be 

reduced as far as possible. Ionomer volume fraction 

has two opposing effects on CL performance. Large 
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amounts of lmc lead to reduced catalyst layer 

porosity, and as a result a decrease in the oxygen 

diffusion coefficient. On the other hand, according 

to Bruggeman’s correction, the effective protonic 

conductivity increases, and hence CL performance 

increases. In high current densities, the effect of 

effective protonic conductivity dominates more 

clearly the effect of oxygen diffusion. Therefore, as 

shown, although more ionomer is used at high 

current densities, total cost is decreased. 

 

Fig. 13. Objective functions vs. ionomer volume 

fraction (lmc) 

CONCLUSIONS 

After the CL modelling has been conducted and 

its precision has been confirmed, catalyst layer 

optimization is performed. In this study, objective 

functions such as power, current density and CL cost 

are optimized under various conditions using the 

multi-objective optimization technique through the 

min-max method. 

The results of this study were compared with 

those of Ref. [11] to validate the performed 

optimization. This comparison suggested that the 

results of optimizations are in good agreement at low 

currents, however when increasing the current the 

results diverge, caused by increasing the amount and 

the number of losses. In fact, this deviation is due to 

the number of objectives; that is, whether single-

objective or multi-objective optimization is 

employed. 

The Pt loading curve is drawn vs. current density 

and cost at the voltages of 0.8, 0.6 and 0.4 V. It 

determines that increasing a large platinum loading 

leads to small changes in current density where the 

platinum loading is larger than 0.4 mg cm-2. 

Conversely, a large drop in the current density 

occurs through reducing Pt at small scales, where the 

platinum loading is less than 0.1 mg cm-2. So the best 

compromise between the efficiency and the cost 

should be attained within this platinum range. 

The performance curve demonstrates that in both 

cases, base case and multi-objective optimization 

case, although the increase in the CL performance is 

higher at high currents, its relative increase is higher 

at low currents. 

The Pareto curve demonstrates that to optimize 

the objectives of performance and cost of the CL at 

the voltage of 0.6 V, the trade-off between the cost 

and the performance is achieved, depending on the 

kind of application, when the current density 

increases in the range of 5 % to 12 %. In this range, 

the optimization objectives are met simultaneously; 

that is, the current is more than the base form and the 

cost is lower than the base form. 

The platinum loading is compared in the base 

form and optimized form, where the large amount of 

platinum is necessary due to the importance of 

activation overpotential caused by beginning the 

reaction at high voltages. Even the Pt loading in the 

optimized case is higher than the base case. 

Conversely, less platinum is required at low voltages 

or high current densities. So, lower platinum is 

consumed and costs are saved more significantly.  

Nomenclature  

a 

aagg  

 

A            

c  

CL 

DO2  

DKn  

Er  

fi 

F  

GDL 

HO2 

i  

Iδ  

kl  

LC 

Lg,c  

Lm,c  

mPt  

mC  

NO2        

 

ODE 

P  

ragg  

rPt 

R     

R̅   

s 

T  

W 

r, z 

δagg  

εagg 

εCL 

εg 

εi 

εs 

εv 

η 

active surface area within the agglomerate / m−1 

total external area of active sites of agglomerate 

per unit volume of CL / m−1 

total active area of agglomerate per unit volume 

of CL / m−1 

concentration / mol m−3 

Catalyst Layer 

diffusion coefficient / m2 s−1 

Knudsen diffusion coefficient / m2 s−1 

effectiveness factor 

mass ionomer ratio   

Faraday constant 96,485 /coulombs mol−1 

Gas Diffusion Layer 

dimensionless Henry’s constant 

local current density /A m−2 

cell current density /A m−2 

reaction rate constant / m s−1 

catalyst layer thickness / m 

volume fraction of GDL penetrating into the CL 

volume fraction of ionomer phase in the CL 

platinum mass loading / kg m−2 

carbon mass loading / kg m−2 

molar flux of dissolved oxygen in the ionomer 

phase of an agglomerate 

Ordinary Differential Equation 

Pressure / Pa 

agglomerate radius / m 

mass fraction of platinum to Pt/C  articles 

dissolved oxygen rate per unit of agglomerate 

/mol m−3 s−1 

universal gas constant  8.314 /J mol−1 K−1 

liquid water saturation 

temperature / K 

weight 

coordinate / m 

ionomer film thickness,m  

spherical agglomerate porosity 

CL porosity 

GDL porosity 

volume fraction of ionomer  

volume fraction of solids 
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ρc 

ρPt 

σ        

κ 

φ 

τ 

 

a 

c 

agg 

O2 

N 

r 

1 

CL 

C 

ref. 

tot. 

 

eff 

* 

 

volume fraction of voides  
activation overpotential / V 

 carbon density / kg m−3 

platinum density / kg m−3 

electronic conductivity / Sm−1 

protonic conductivity / Sm−1 

Thiele module 

CL tortuosity 

Subscriptions 

anode 

cathode 

agglomerate 

oxygen 

Nafion 

radius 

first-order reaction 

catalyst layer 

catalyst layer boundary  

reference condition 

total 

Superscriptions 

effective 

concentration or radius ratio 
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