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An analysis of MHD natural convection heat and mass transfer flow with Hall effects 

of a heat absorbing, radiating and rotating fluid over an exponentially accelerated 

moving vertical plate with ramped temperature 
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An investigation of unsteady MHD natural convection heat and mass transfer flow with Hall effects and rotation of a 

viscous, incompressible, electrically conducting, radiating and temperature dependent heat absorbing fluid past an 

exponentially accelerated moving vertical plate with ramped temperature through a porous medium is carried out. An 

exact solution for fluid velocity fluid temperature and species concentration is obtained in a closed form by the Laplace 

transform technique. The expressions for shear stress, rate of heat transfer and rate of mass transfer at the plate are also 

derived. The numerical values of fluid velocity and fluid temperature are displayed graphically whereas those of shear 

stress and rate of heat transfer at the plate are presented in tabular form for various values of the pertinent flow parameters. 
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INTRODUCTION 

The effects of thermal radiation and heat 

generation/absorption on hydromagnetic natural 

convection flow play a crucial role in controlling the 

heat transfer and may have promising applications in 

several physical problems of practical interest viz. 

convection in the earth’s mantle, fire and 

combustion modeling, fluids undergoing exothermic 

and/or endothermic chemical reactions, building 

with buoyancy-driven natural ventilation, radiant 

ceiling heating systems and floor heating systems. 

Keeping in view the importance of such a study, 

Chamkha [1] studied the thermal radiation and 

buoyancy effects on hydromagnetic flow over an 

accelerating permeable surface with a heat source or 

sink. Seddeek [2] investigated the thermal radiation 

and buoyancy effects on MHD natural convection 

heat generating fluid flow past an accelerating 

permeable surface with a temperature-dependent 

viscosity. Ibrahim et al. [3] discussed the effects of 

radiation and absorption on the unsteady MHD free 

convection flow past a semi-infinite vertical 

permeable moving plate with chemical reaction and 

suction. Mohamed [4] considered chemical reactions 

and thermal radiation on hydromagnetic free 

convection flow with heat and mass transfer of a 

viscous fluid past a semi-infinite vertical moving 

porous plate embedded in a porous medium in the 

presence of thermal diffusion and heat generation. 

Prasad et al. [5] investigated the effects of internal 

heat generation/absorption, thermal radiation, 

magnetic field and temperature dependent thermal 

conductivity on the flow and heat transfer 

characteristics of a Non-Newtonian Maxwell fluid 

over a stretching sheet.  

It is noticed that when the density of an 

electrically conducting fluid is low and/or the 

applied magnetic field is strong, Hall current plays a 

vital role in determining the flow-features of the 

fluid flow problems because it induces a secondary 

flow in the flow-field [6]. Taking this fact into 

account, Aboeldahab and Elbarbary [7] considered 

the effects of the Hall current on the 

magnetohydrodynamic free convection flow past a 

semi-infinite vertical plate with mass transfer. Saha 

et al. [8] discussed the effects of Hall current on the 

MHD laminar natural convection flow from a 

vertical permeable flat plate with a uniform surface 

temperature. Zueco et al. [9] made a numerical study 

of the unsteady MHD free convection flow with the 

mass transfer taking the Hall current and viscous 

dissipation into account. Ahmed et al. [10] 

considered the unsteady MHD free convective flow 

past a vertical porous plate immersed in a porous 

medium with Hall current, thermal diffusion and a 

heat source. It is noteworthy that the Hall current 

induces a secondary flow in the flow-field which is 

also the characteristics of Coriolis force. Therefore, 

it is essential to compare and contrast the effects of 

these two agencies and also to study their combined 

effects on such fluid flow problems. Considering 

these two effects, Takhar et al. [11] investigated the 

boundary layer flow of a viscous, incompressible 

and electrically conducting fluid over a moving 

surface in a rotating fluid, in the presence of a 

magnetic field and Hall current with a free moving 

stream. Recently, Seth et al. [12] considered the 
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combined effects of the Hall current, rotation and 

radiation on natural convection heat and mass 

transfer flow past a moving vertical plate. 

 Natural convection flows are generally modeled 

by researchers under the consideration of uniform 

surface temperature or a uniform heat flux. 

However, practical problems often involve non-

uniform thermal conditions. Some of the numerous 

industry based applications considering non-uniform 

thermal conditions include nuclear heat transfer 

control, materials processing, turbine blade heat 

transfer, electronic circuits and sealed gas-filled 

enclosure heat transfer operations. Keeping this fact 

in view, several researchers [13-23] investigated 

natural convection flow from a vertical plate with 

ramped temperature.  

The current study seeks to investigate the effects 

of Hall current and rotation on unsteady 

hydromagnetic natural convection heat and mass 

transfer flow of a viscous, incompressible, 

electrically conducting, optically thin heat radiating 

and temperature dependent heat absorbing fluid 

through a fluid saturated porous medium past an 

exponentially accelerated vertical plate having the 

ramped temperature profile. This problem has not 

yet received attention from the researchers, although 

natural convection heat and mass transfer flow of a 

heat absorbing and radiating fluid resulting from 

such a ramped temperature profile of a plate moving 

with time dependent velocity may have strong 

bearings on numerous problems of practical interest 

where initial temperature profiles are of much 

significance in the design of hydromagnetic devices 

and in several industrial processes occurring at high 

temperatures where the effects of thermal radiation 

and heat absorption play a vital role in the fluid flow 

characteristics. 

FORMULATION OF THE PROBLEM 

Consider unsteady hydromagnetic natural 

convection flow of viscous, incompressible, 

electrically conducting, optically thin heat radiating 

and temperature dependent heat absorbing fluid past 

an infinite moving vertical plate embedded in a 

porous medium taking Hall current and rotation into 

account. The Cartesian co-ordinate system is 

considered in such a way that the x  axis is along 

the length of the plate in the upward direction and 

the y  axis is normal to the plane of the plate in the 

fluid and the z   axis is perpendicular to the x y    

plane. The fluid is permeated by a uniform 

transverse magnetic field 0B  which is applied in a 

direction parallel to the y  axis. Initially i.e. at time 

0t ,   both the fluid and plate are at rest and at a 

uniform temperature T
 . Also the species 

concentration within the fluid is maintained at a 

uniform concentration C
 . At time 0t ,   the plate 

is exponentially accelerated with a velocity 0

a tU e
 

 

in the x  direction and the temperature of the plate 

is raised or lowered to 0wT (T T )t / t 
     when 

0t t   and thereafter at 0t t ,   the plate is 

maintained at a uniform temperature wT . a  and 0U  

are an arbitrary constant and uniform velocity of the 

plate ( . . 0i e a  ) respectively. Also at time 0t ,   

the species concentration at the surface of the plate 

is raised to a uniform concentration wC  and this is 

maintained thereafter. Since the plate is of infinite 

extent along the andx z   directions and is 

electrically non-conducting, all the physical 

quantities depend only on andy t  . The geometry 

of the problem is shown in Figure 1. It is assumed 

that the induced magnetic field produced by fluid 

motion is negligible in comparison to the applied 

one. This assumption is valid for metallic liquids and 

partially ionized fluids [24]. Also no electric field is 

applied so the effect of polarization of the fluid is 

neglected [25]. 

 

Fig.1. Geometry of the Problem 

Keeping in view the assumptions made above, 

the governing equations for unsteady hydromagnetic 

natural convection flow of an electrically 

conducting, viscous, incompressible, temperature 

dependent heat absorbing and optically thin 

radiating fluid in a uniform porous medium, under 

Boussinesq’s approximation, taking the Hall current 

and rotation into account are given by 
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where e em   is the Hall current parameter. 
*

1 0, , , , , , , ', , , , , , , , ,p M ru w T K k c Q C D q g         

e  
and 

e  are, respectively, fluid velocity in the 'x 

direction, fluid velocity in the z direction, the fluid 

temperature, permeability of a porous medium, 

thermal conductivity, specific heat at constant 

pressure, heat absorption coefficient, species 

concentration, molecular (mass) diffusivity, 

radiating flux vector, kinematic coefficient of 

viscosity, electrical conductivity, fluid density, 

acceleration due to gravity, coefficient of thermal 

expansion, coefficient of expansion for species 

concentration, cyclotron frequency and the electron 

collision time. 

The initial and boundary conditions for the fluid 

flow problem are 

 , ,0, for   0 and  0, 5a   
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In the case of an optically thin gray fluid the local 

radiant absorption is expressed by  
 

 * * 4 44 ,rq
a T T

y
 


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
    (6) 

where *a  is the absorption coefficient and *  is the 

Stefan-Boltzmann constant.  

Assuming a small temperature difference 

between the fluid temperature T   and the free stream 

temperature 
4

,T T
   is expanded in a Taylor series 

about the free stream temperature T  to linearize 

equation (6) which, after neglecting the second and 

higher order terms in ( ),T T   assumes the form  
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Making use of equations (6) and (7) in equation (3), 

we obtain 
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In order to non-dimensionalize equations (1), (2), 

(4) and (8), the following non-dimensional variables 

and parameters are introduced 
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Equations (1), (2), (4) and (8), in non-

dimensional form, are given by  
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where 
2 ,K 1K , ,M rG , cG , rP , R ,   and cS   are, 

respectively, the rotation parameter, permeability 

parameter, magnetic parameter, thermal Grashof 

number, solution Grashof number, Prandtl number, 

radiation parameter, heat absorption parameter and 

Schmidt number. 

It may be noted that the characteristic time 
0

t is 

defined according to the non-dimensional process 

mentioned above, as 

 
2

0 0 ./t U
       

(14) 

The initial and boundary conditions (5a) to (5e), 

in non-dimensional form, are given by  

  0,  0, 0, 0 and 0, (15a)u w T C y t     for

, 0, 1, at 0 and 0, (15b> )atu e w C y t     

, at 0 and 0< 1, (15c)T t y t    
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where a is the plate acceleration parameter.  

 

Combining equations (10) and (11), we obtain 
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The initial and boundary conditions (15a) to 

(15e), in compact form, are given by  
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Equations (12), (13) and (16) are subject to the 

initial and boundary conditions (17a) to (17e) and 

are solved by the Laplace transform technique. The 

exact solutions for the fluid temperature ( , ),T y t  

species concentration ( , )C y t  and fluid velocity 

( , )F y t  are obtained and presented in the following 

form after simplification 
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( 1)H t   and ( )erfc x  are, respectively, the unit 

step function and complementary error function.  

Expressions for 
1 2 3, andf f f  are provided in 

Appendix-I.
 

SHEAR STRESS AND RATE OF HEAT 

TRANSFER AT THE PLATE: 

Expressions for the primary shear stress at the 

plate
x , secondary shear stress at the plate 

z  and 

rate of heat transfer at the plate
uN are obtained and 

presented in the following form after simplification  
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The expressions for 
4 5andf f  are provided in 

Appendix-I. 

Rate of mass transfer at the plate: 

The expression for the rate of mass transfer at the 

plate hS , is given by 

.c
h

S
S

t
      (26) 
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Expression (26) reveals that rate of mass transfer 

at the plate increases on increasing the Schmidt 

number cS  and decreases on increasing the time. 

Since cS  presents a relative strength of the viscosity 

to molecular diffusivity of the fluid, cS  decreases on 

increasing the molecular diffusivity. This implies 

that the molecular diffusivity tends to reduce the rate 

of mass transfer at the plate and there is a reduction 

in rate of mass transfer at the plate with the progress 

of time. 

RESULTS AND DISCUSSION 

In order to analyze the physics of the flow 

regime, numerical computations from the analytical 

solutions (18) and (19) for the velocity field and 

temperature field and from the analytical 

expressions (24) and (25) for the shear stress and rate 

of heat transfer at the plate are carried out by 

assigning some chosen values to different physical 

parameters. Throughout our investigation, the values 

of the Prandtl number
rP , magnetic parameter M , 

permeability parameter 
1K  and Schmidt number cS

have been fixed at 0.71, 15, 0.2 and 0.6 respectively 

as far as the numerical computations are concerned. 

It is known that 0.71rP   corresponds to the ionized 

air and 15M   represents the strong magnetic field. 

The effects of the pertinent flow parameters on 

species concentration are already analyzed by Seth 

et al. [22]. Due to this reason, we have omitted the 

numerical computation for species concentration. 

The numerical results, computed from analytical 

solutions and expressions, are illustrated in Figures 

2 to 12 along with Tables 1 to 5. 

The variation of the primary velocity u  and the 

secondary velocity w , versus the boundary layer co-

ordinate y  under the influence of the plate 

acceleration parameter a , Hall current parameter m

, rotation parameter 2 ,K  radiation parameter ,R  

heat absorption parameter  , thermal Grashof 

number 
rG , solution Grashof number 

cG and time t  

are depicted graphically in Figures 2 to 9. It is 

observed from these figures that the secondary 

velocity w  attains a distinctive maximum value in 

the region near the plate and then decreases properly 

on increasing the boundary layer coordinate y to 

approach the free stream value. This may be due to 

the effects of the Coriolis force and Hall current 

which induce a secondary flow in the flow field.  

 
. , ,m K 2

Fig. 2. Velocity profiles when 0 5 2  . 

2, 3,3, 10, 00.6 .n .5a d
r c c

R G SG t       

 
a K 2

Fig. 3. Velocity profiles when 0.2, 2,   

2, 3,3, 10, 00.6 .n .5a d
r c c

R G SG t     
 

It is observed from Figure 2 that, an increase in the 

plate acceleration parameter a  causes andu w  to 

increase in the region near the plate and the effect of 

the plate acceleration parameter a  is almost 

negligible in the region away from the plate. This 

observation suggests that the higher plate velocity 

results in an accelerated fluid motion in the region 

near the plate. It is inferred from Figure 3 that both 

andu w  are getting accelerated on increasing .m  

This phenomena is in excellent agreement with the 

fact that in an electrically conducting fluid whose 

density is low and/or the applied magnetic field is 

strong, a current known as the Hall current is 

induced which moves in a direction normal to both 

the electric and magnetic field i.e. the total current 

produced in the flow-field does not move in the 

direction of the electric field. Thus, the Hall current 

has a tendency to accelerate both the primary and 

secondary fluid velocities. It is depicted from Figure 

4 that, on increasing
2K , u  gets decelerated whilst 

a reverse pattern occurs for .w  This is in agreement 

with the fact that in a rotating medium, the Coriolis 

force (which is induced due to rotation) has a 

tendency to suppress the main flow i.e. the primary 

flow induces a secondary flow in the flow field. 

Figures 5 and 6 uniquely establish that there is a fall 

in the values of andu w  for increasing values of 

and .R   In other words, the primary and secondary 

velocities for highly radiating and heat absorbing 

fluids are smaller as compared to those of lesser 

radiating and heat absorbing fluids which is justified 

because the fluid temperature is getting reduced on 
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increasing andR   which is clearly evident from 

Figures 10 and 11. It is inferred from Figures 7 and 

8 that there is a significant increase in the values of 

andu w  due to the increase in and .r cG G  Since 

rG  presents the relative strength of the thermal 

buoyancy force to a viscous force and 
cG  is a 

measure of the solution buoyancy force to a viscous 

force, as andr cG G  increase, the thermal and 

solutal buoyancy forces get stronger. This implies 

that the thermal as well as solution buoyancy forces 

tend to accelerate both the primary and secondary 

fluid velocities. It is revealed from Figure 9 that 

there is an increase in andu w  on increasing t . 

This observation suggests that the primary and 

secondary fluid velocities are accelerated with the 

progress of time. 

Figures 10 to 12 exhibit how the fluid 

temperature T is affected by the heat absorption 

parameter ,  radiation parameter R  and time .t  We 

see that, an increase in and R , results in a 

significant fall in the fluid temperature .T  These 

results are in excellent agreement with the results of 

Nandkeolyar et al. [15] and Das et al. [20]. 

 

Fig. 4. Velocity profiles when 0.2, 0.5,a m   

2, 3,3, 10, 00.6 .n .5a d
r c c

R G SG t       

 

Fig 5. Velocity profiles when 0.2, 0.5,a m   
2

3, 10, 0.5.2, 3, 0.6 and
c cr

K G SG t     

 

Fig. 6. Velocity profiles when 0.2, 0.5,a m   

2
2,K  2,R  10

r
G  , 3,

c
G  0.6 and 0.5

c
S t   

 

Fig. 7. Velocity profiles when 0.2, 0.5,a m   

2
2,K  2,R  3,  , 3,

c
G  0.6 and 0.5

c
S t   

 

Fig. 8. Velocity profiles when 0.2, 0.5,a m   

2
2,K  2,R  3,  10,

r
G  0.6 and 0.5

c
S t   

 

Fig. 9. Velocity profiles when 0.2, 0.5,a m   

2
2,K  2,R  3,  10,

r
G  3and 0.6

c c
G S   
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Fig. 10.Temperature profiles when tR 0.52and   

 

Fig. 11. Temperature profiles when t 3and 0.5   

 
Fig. 12. Temperature profiles when R 3and 2  . 

The change in the behavior of the primary shear 

stress at the plate 
x  and secondary shear stress at 

the plate 
z  under the influence of

2 , m, , , , , andr cK G G R a t , are presented in 

Tables 1 to 4. It is inferred from Table 1 that the 

primary shear stress at the plate 
x  increases on 

increasing 2K  and it decreases on increasing m . The 

secondary shear stress at the plate 
z  increases on 

increasing either
2 orK m .  

This implies that the rotation tends to enhance the 

primary as well as secondary shear stress at the plate. 

The Hall current tends to reduce the primary shear 

stress at the plate whereas it has a reverse effect on 

the secondary shear stress at the plate. It is observed 

from Table 2 that 
x  decreases on increasing either

orc rG G . 
z  increases on increasing either 

orc rG G . This implies that the thermal and solution 

buoyancy forces tend to reduce the primary shear 

stress at the plate whereas these agencies have a 

reverse effect on the secondary shear stress at the 

plate. It is evident from Table 3 that 
x increases on 

increasing either or R  whereas 
z  is decreased on 

increasing either or R . This implies that, heat 

absorption and radiation tend to enhance the primary 

shear stress at the plate whereas these agencies have 

a reverse effect on the secondary shear stress at the 

plate. It is clear from Table 4 that, 
x  and 

z both 

increase on increasing a . 
x  decreases on increasing 

t  whereas 
z  increases on increasing t . 

Table 1. Shear stress at the plate when 4,rG  3,cG 

3,  2,R  0.6cS  and 0.5.t   

 2K m 
  

0.5 1 1.5 

 2 3.4336 2.8786 2.4015 

x  
4 3.6436 3.1792 2.7645 

 6 3.8789 3.4874 3.1401 

 2 1.5472 2.0276 2.1685 

z  
4 2.0784 2.5658 2.7408 

 6 2.5528 3.0234 3.1977 

Table 2. Shear stress at the plate when 0.5,m 

2 2,K  3,  2,R  0.6cS  and 0.5t   

 
c rG G 
  

 

10 

 

15 

 

20 

 3 3.4336 3.0806 2.7275 

x  
5 3.0203 2.6673 2.3143 

 7 2.6070 2.2540 1.9010 

 3 1.6075 1.6836 1.7597 

z  
5 1.7225 1.7986 1.8747 

 7 1.8375 1.9136 1.9897 

Table 3. Shear stress at the plate when 0.5,m   
2 2,K  4,rG  3,cG  0.6cS  and 0.5.t   

 R



 

 

2 

 

4 

 

6 

 1 3.3646 3.4336 3.4727 

x  
3 3.4336 3.4727 3.4986 

 5 3.4727 3.4986 3.5181 
 1 1.5827 1.5472 1.5280 

z  
3 1.5472 1.5280 1.5158 

 5 1.5280 1.5158 1.5069 

Table 4. Shear stress at the plate when 0.5m  ,
2 2K  , 4,rG  3,cG  3  and 2.R   

 a t



 

 

0.3 

 

0.5 

 

0.7 

 0.2 3.5851 3.4336 3.3053 

x  
0.4 3.8923 3.8605 3.7784 

 0.6 4.2198 4.1456 4.0517 
 0.2 1.4357 1.5472 1.6626 

z  
0.4 1.5054 1.6750 1.8556 

 0.6 1.5791 1.8157 2.0766 
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Table 5. Rate of heat transfer at the plate  

R 
 

t  uN  

  

 

     3 

 

0.3 0.8845 

2 0.5 1.1570 

 0.7 1.5122 

 

2 

1  

0.5 
1.0419 

3 1.1570 

5 1.2838 
2  

3 

 

0.5 
1.1570 

4 1.2838 

6 1.4080 

This implies that, both the primary and secondary 

shear stresses at the plate increase on accelerating 

the plate. Primary shear stress at the plate is getting 

reduced whereas secondary shear stress at the plate 

is getting enhanced with the progress of time. It is 

noticed from Table 5 that the rate of heat transfer 
uN  

increases on increasing either of , andR t . This 

implies radiation and heat absorption tend to 

enhance the rate of heat transfer at the plate. The rate 

of heat transfer at the plate is getting enhanced with 

the progress of time. 

CONCLUSION 

The noteworthy results are summarized below 

 Plate acceleration parameter, Hall current, thermal 

and solution buoyancy forces tend to accelerate the 

fluid flow in both the primary and secondary flow 

direction. Thermal radiation and heat absorption 

tend to decelerate the fluid flow in both the 

primary and secondary flow directions. Rotation 

tends to accelerate the primary fluid velocity 

whereas it has a reverse effect on the secondary 

fluid velocity. The primary and secondary fluid 

velocities get accelerated with the progress in time. 

 Heat absorption and thermal radiation tend to 

reduce the fluid temperature. The fluid 

temperature is enhanced with the progress in time. 

 Rotation, heat absorption, thermal radiation and 

the plate acceleration parameter tend to enhance 

the primary shear stress at the plate whereas the 

Hall current, thermal and solution buoyancy forces 

tend to reduce the primary shear stress at the plate. 

The rotation, Hall current, thermal and solution 

buoyancy forces and plate acceleration parameters 

tend to enhance the secondary shear stress at the 

plate whereas the heat absorption and thermal 

radiation tend to reduce the secondary shear stress 

at the plate. The primary shear stress at the plate is 

reduced, whereas the secondary shear stress at the 

plate is enhanced with the progress of time. 

 The rate of heat transfer at the plate is enhanced on 

increasing either the heat absorption or thermal 

radiation with the progress of time. 
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АНАЛИЗ НА ЕСТЕСТВЕНА КОНВЕКЦИЯ ПРИ МАГНИТО-ХИДРОДИНАМИЧЕН 

ПОТОК С ТОПЛО- И МАСОПРЕНАСЯНЕ С ЕФЕКТ НА ХОЛ ПРИ ОТНЕМАНЕ НА 

ТОПЛИНА И ИЗЛЪЧВАНЕ В РОТИРАЩ ФЛУИД НАД ЕКСПОНЕНЦИАЛНО 

УСКОРЯВАНА ПОДВИЖНА ПЛОСКОСТ С НЕРАВНОМЕРНО НАГРЯВАНЕ 
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(Резюме) 

Изследвана е нестационарната естествена конвекция при магнитно-хидродинамичен поток с ефект на Хол, 

придружен с топло- и масопренасяне. Основното течение е ротационно, а флуидът е вискозен, несвиваем, 

електропроводящ и излъчващ. Течението е в близост до плоска, ускоряваща се стена с неравномерно 

разпределение на температурата. Точно решение в затворена форма за разпределението на температурата е 

намерено с помощта на Лапласова трансформация. Изведени са зависимости за срязващото напрежение, 

скоростта на топлопренасяне и скоростта на масопренасяне от плоскостта. Числените стойности на скоростта на 

флуида и на температурата са представени графично, докато тези са срязващото напрежение и скоростта на 

топлопренасяне са в таблична форма за различни управляващи параметри. 
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