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In this investigation two new modifications of the standard multi-population genetic algorithm have been developed. 

Modifications differ from each other in the sequence of implementation of main genetic operators selection, crossover 

and mutation. The main idea of newly developed modifications is the operator selection to be executed between the 

operators crossover and mutation, no matter their order. Both modifications, together with the standard one multi-

population genetic algorithm, have been investigated for parameter identification of yeast fed-batch cultivation. The 

obtained results have been compared and the newly proposed modifications have been shown to be as accurate as the 

standard multi-population genetic algorithms and proven to be even faster. 
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INTRODUCTION 

Fermentation processes (FP) as representatives 

of biotechnological processes attract sustained 

interest due to the fact that they are an indigenous 

part of many industries such as industrial 

biotechnology, microbiology and the 

pharmaceutical industry. FP combine the dynamics 

of both biological and non-biological processes but 

their specific peculiarities are predominantly 

determined by the characteristics of live 

microorganisms. Since FP are complex dynamic 

systems with interdependent and time-varying 

process variables, their modeling, optimization and 

future high quality control is a real challenge. 

Adequate modeling of the non-linear FP 

significantly depends on the choice of a certain 

optimization procedure for model parameter 

identification. Conventional optimization methods 

usually fail in leading to a satisfactory solution [1]. 

This fact provokes the idea to apply stochastic 

algorithms, i.e. genetic algorithms (GA). GA are 

known as a quite promising stochastic global 

optimization method and have been widely applied 

to solve different complicated engineering problems 

[2-5]. Among a number of searching techniques, 

GA are representatives of the methods inspired by 

biological evolution and the principle of Darwin’s 

theory of “survival of the fittest”. GA are a feature 

of hard problem solving, tolerant to noise, easy to 

interface and hybridize. All these properties make 

GA convenient and more workable for different 

optimization problems, among them parameter 

identification and optimization of fermentation 

processes [6-9]. 

The standard simple genetic algorithm (SGA) 

[10] imitates the processes that occur in nature and 

searches for a global optimum solution using three 

main genetic operators implementing them in a 

sequence selection, crossover and mutation. SGA 

works with “chromosomes” (coded parameters) and 

starts with a selection of such chromosomes that 

represent better possible solutions according to 

their objective function values. Then a new 

offspring is formed applying the crossover operator. 

Finally, mutation is applied with deterministic 

probability, aiming to prevent the failing of all the 

solutions into a local optimum of the solved 

problem. 

If there are many populations (called 

subpopulations), that evolve independently from 

each other, the single-population GA is converted 

to a multi-population GA (MpGA) [10]. This 

feature presents MpGA as more similar to nature 

than SGA. After the isolation time (a certain 

number of generations), part of the individuals 

“migrate”  they are distributed between the 

subpopulations. Similar to SGA, the standard 

MpGA as originally presented in [10], implements 

the three main genetic operators in a sequence 

selection, crossover and mutation. In this 

investigation this algorithm will be denoted as 

MpGA_SCM, coming from selection, crossover 

and mutation. According to [10, 11] the working 

principle of MpGA_SCM can be shortly presented 

as shown in Fig. 1. 

To imitate the mechanics of natural selection 

and genetics is enshrined in the “philosophy” of 

GA. Thus one can make an analogy with the 

processes occurring in nature and to speculate that 
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for the probability mutation to come first and then 

crossover it is comparable that both processes occur 

in reverse order; or perform selection after 

crossover and mutation, no matter their order. 

Following this idea altogether five modifications of 

MpGA_SCM, differing in the sequence of 

implementation of the main genetic operators, have 

been developed [12, 13]. They all aim to improve 

the model accuracy and the algorithm convergence 

time for the purposes of parameter identification of 

fed-batch cultivation of S. cerevisiae. Table 1 lists 

the order of the steps to create a new population for 

five of the developed up to the moment 

modifications of MpGA_SCM.  

As seen from Table 1, there are two 

modifications of MpGA_SCM that have not yet 

been considered, namely MpGA_CSM (crossover, 

selection, mutation) and MpGA_MSC (mutation, 

selection, crossover).  

The aim of the present investigation is two 

modifications of MpGA, namely MpGA_CSM and 

MpGA_MSC, to be developed and to be applied for 

parameter identification of S. cerevisiae fed-batch 

cultivation. Moreover, the influence of the most 

important GA parameters, namely the generation 

gap and rates of crossover, mutation, insertion and 

migration are going to be investigated towards 

model accuracy, presented by the optimization 

criterion, and algorithms convergence time. 

MATHEMATICAL MODEL OF S. CEREVISIAE 

FED-BATCH CULTIVATION 

The cultivation of the yeast S. cerevisiae is 

performed in the Institute of Technical Chemistry – 

University of Hannover, Germany. The cultivation 

conditions and full process description details can 

be found in [1]. The fed-batch cultivation of S. 

cerevisiae considered here corresponds to the so 

called mixed oxidative state according to the 

functional state modeling approach [1].  

 

Fig. 1. Structure of the standard MpGA 

Table 1. Sequence of algorithm steps implemented in MpGA 

MpGA Algorithm steps 

MpGA_CMS (crossover, mutation, selection) [12] 1, 2, 3, 4.2, 4.3, 4.1, 5, 6, 7, 8, 9 

MpGA_SMC (selection, mutation, crossover) [12] 1, 2, 3, 4.1, 4.3, 4.2, 5, 6, 7, 8, 9 

MpGA_MCS (mutation, crossover, selection) [12] 1, 2, 3, 4.3, 4.2, 4.1, 5, 6, 7, 8, 9 

MpGA_SC (selection, crossover) [13] 1, 2, 3, 4.1, 4.2, 5, 6, 7, 8, 9 

MpGA_CS (crossover, selection) [13] 1, 2, 3, 4.2, 4.1, 5, 6, 7, 8, 9 

1. [Start]  
Generate k random subpopulations each of them with n chromosomes 

2. [Object function]  
Evaluate the object function of each chromosome n in the 

subpopulations 

3. [Fitness function] 
Evaluate the fitness function of each chromosome n in the 

subpopulations 

4. [New population] 
Create a new population by repeating following steps: 

4.1. [Selection] 
Select parent chromosomes from the subpopulation according to 

their fitness function 

4.2. [Crossover] 
Cross over the parents to form new offspring with a crossover 

probability  

4.3. [Mutation] 
Mutate new offspring at each locus with a mutation probability 

5. [Accepting] 
Place new offspring in a new population 

6. [Replace] 
Use new generated population for a further run of the algorithm 

7. [Migration]  
Migration of individuals between the subpopulations after 

following isolation time 

8. [Test] 
If the end condition is satisfied, stop and return the best 

solution in current population, else move to Loop step 

9. [Loop] 
Go to Fitness step. 
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Particularly for this specific functional state, 

mathematical model of S. cerevisiae fed-batch 

cultivation is described as follows [1]: 
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where X, S, E, O2 are respectively the 

concentrations of biomass, [g/l], substrate (glucose), 

[g/l], ethanol, [g/l], and dissolved oxygen, [%];  

2

*O  – dissolved oxygen saturation concentration, 

[%]; F – feeding rate, [l/h]; V – volume of the 

bioreactor, [l]; 2O

Lk a  – volumetric oxygen transfer 

coefficient, [1/h]; Sin – initial glucose concentration 

in the feeding solution, [g/l]; 2S, 2E – maximum 

growth rates of the substrate and ethanol, [1/h]; kS, 

kE  – saturation constants of the substrate and 

ethanol, [g/l]; Yij – yield coefficients, [g/g]. All the 

functions are continuous and differentiable and all 

the model parameters fulfill the non-zero division 

requirement. 

The mean square deviation between the model 

output and the experimental data obtained during 

cultivation has been chosen as an optimization 

criterion: 

 
2

,–J = Y Y * min                     ..           (6) 

where Y is the experimental data, Y* – the model 

predicted data, Y = [X, S, E, O2].  

MODIFIED MPGA FOR PARAMETER 

IDENTIFICATION OF S. CEREVISIAE FED-

BATCH CULTIVATION 

This investigation aims to present the 

development of two modifications of MpGA in 

which the selection operator is performed between 

crossover and mutation, namely MpGA_CSM and 

MpGA_MSC. They are both going to be compared 

to the standard MpGA_SCM. Table 2 lists the order 

of the steps to create a new population only for the 

three kinds of MpGA considered here. 

Many operators, functions, parameters and 

settings in GA can be improved or implemented 

specifically solving various problems [10]. In this 

study five of the main GA parameters, namely 

generation gap (GGAP), and rates of crossover 

(XOVR), mutation (MUTR), insertion (INSR) and 

migration (MIGR) have been investigated. 

Table 2. Sequence of algorithm steps implemented in 

MpGA modifications considered here 

MpGA Algorithm steps 

MpGA-SCM 1, 2, 3, 4.1, 4.2, 4.3, 5, 6, 7, 8, 9 

MpGA-CSM 1, 2, 3, 4.2, 4.1, 4.3, 5, 6, 7, 8, 9 

MpGA-MSC 1, 2, 3, 4.3, 4.1, 4.2, 5, 6, 7, 8, 9 

Higher values of GGAP do not improve the GA 

performance, especially when aiming to find a 

faster solution. Usually mutation is applied 

randomly, with a low probability – typically 

varying between 0.01 and 0.1. Higher XOVR leads 

to quicker introduction of new strings into the 

population, while a low XOVR may cause 

stagnation due to the lower exploration rate. INSR 

determines how many of the produced population 

individuals are inserted into the new generation. 

Each MIGR characterized the number of exchanged 

individuals. According to some statements [14], the 

range of the main GA parameters investigated here 

are as follows: GGAP = {0.5, 0.67, 0.8, 0.9}, 

XOVR = {0.65, 0.75, 0.85, 0.95}, MUTR = {0.02, 

0.04, 0.06, 0.08, 0.1}, INSR = {0.5, 0.6, 0.8, 0.9, 1} 

and MIGR = {0.1, 0.2, 0.4, 0.6, 0.8}. When one of 

the parameters considered here GGAP, XOVR, 

MUTR, INSR or MIGR is investigated according to 

the values mentioned above, the basic values for the 

other four parameters are chosen as follows: GGAP 

= 0.8, XOVR = 0.95, MUTR = 0.05, INSR = 0.95 

and MIGR = 0.2, hereafter termed as referent 

points.  

The values of the rest GA parameters, type of 

genetic operators in considered here and MpGA 

modifications are tuned according to [12]. The 

values of the GA parameters except the ones 

investigated here have been accepted as follows: 

number of variables (NVAR) = 9; precision of 

binary representation (PRECI) = 20; number of 

individuals (NIND) = 20; maximum number of 

generations (MAXGEN) = 100; number of 

subpopulations (SUBPOP) = 5; number of 

generation, after which migration takes place 

between subpopulations (MIGGEN) = 20. The 

following types of genetic operators are chosen: 

encoding – binary; reinsertion – fitness-based; 

crossover – double point; mutation – bit inversion; 

selection – roulette wheel selection; and, fitness 

function – linear ranking. 

Following model (1)-(5) of S. cerevisiae fed-

batch cultivation, nine model parameters have to be 

estimated altogether. All three kinds of MpGA have 

been consequently applied for the purposes of 

parameter identification of S. cerevisiae fed-batch 
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cultivation. All the computations are performed in a 

Matlab 7 environment using the Genetic Algorithm 

Toolbox [15] on a PC Intel Pentium 4 (2.4 GHz) 

platform running Windows XP. All three kinds of 

GA are terminated when a certain number of 

generations (in this case 100) are fulfilled. The 

scalar relative error tolerance RelTol is set to 1e
–4

, 

while the vector of absolute error tolerances (all 

components) AbsTol is set to 1e
–5

.  

The influence of the main GA parameters, 

namely GGAP, XOVR, MUTR, INSR and MIGR 

has been investigated for all three kinds of MpGA – 

two newly developed modifications MpGA_CSM 

and MpGA_MSC, as well as for the standard 

MpGA_SCM as a referent point. The investigation 

is performed in relation to model accuracy and 

convergence time. Tables 3 and 4 demonstrate the 

results obtained with respect to GGAP, XOVR, 

MUTR, INSR and MIGR. Because of the stochastic 

nature of GA, thirty runs have been performed for 

each GA parameter value and each algorithm in 

order for representative results to be achieved. 

Presented here are the average values obtained. 

None of the three MpGA algorithms considered 

here are preferred towards time convergence. When 

investigating different GA operators, different 

MpGA modifications perform the best: i.e. 

MpGA_CSM is the fastest one at GGAP, XOVR 

and INSR, while MpGA_MSC is the “winner” at 

MUTR, and MpGA_SCM  at MIGR. 

RESULTS AND DISCUSSION 

As seen from Tables 3 and 4, the optimization 

criterion values obtained with three kinds of MpGA 

are very similar, varying between 0.0220 and 

0.0222 which means less then 1% divergence. This 

result is very promising due to the fact that newly 

developed modifications do not cause a loss in 

accuracy. It is worth to note that with very few 

exceptions MpGA_CSM and MpGA_MSC lead to 

a decrease of the convergence time compared to the 

standard MpGA_SCM. As such, it can be 

speculated that processing the selection operator 

between crossover and mutation (no matter their 

order) needs much less computational time. 

Table 3. Influence of GGAP, XOVR and MUTR on the model accuracy and convergence time 

 MpGA_SCM MpGA_CSM MpGA_MSC 

J t, [s] J t, [s] J t, [s] 

G
G

A
P

 0.5 0.0220 100.8910 0.0221 97.6870 0.0220 98.2970 

0.67 0.0221 112.1720 0.0221 128.8750 0.0221 121.8600 

0.8 0.0221 155.4680 0.0221 163.8590 0.0220 145.6710 

0.9 0.0220 170.2660 0.0221 165.6720 0.0220 166.0150 

X
O

V
R

 0.65 0.0221 166.2500 0.0221 143.4060 0.0221 144.6570 

0.75 0.0221 151.1100 0.0222 149.6720 0.0220 153.6870 

0.85 0.0221 154.7660 0.0220 144.8750 0.0220 144.7340 

0.95 0.0221 166.7970 0.0221 149.7810 0.0221 149.7810 

M
U

T
R

 

0.02 0.0221 144.1880 0.0221 140.0000 0.0221 122.0660 

0.04 0.0221 140.4690 0.0220 145.8910 0.0220 150.4680 

0.06 0.0221 162.0940 0.0221 160.6870 0.0221 159.7660 

0.08 0.0221 156.0940 0.0221 155.9370 0.0221 142.4530 

0.1 0.0221 162.2970 0.0221 147.9060 0.0220 156.3280 

Table 4. Influence of INSR and MIGR on the model accuracy and convergence time  

 MpGA_SCM MpGA_CSM MpGA_MSC 

J t, [s] J t, [s] J t, [s] 

IN
S

R
 

0.5 0.0221 177.0310 0.0222 159.2970 0.0220 144.9530 

0.6 0.0221 174.2030 0.0221 146.2810 0.0220 149.7650 

0.8 0.0221 185.9530 0.0220 145.5160 0.0220 151.2810 

0.9 0.0221 157.1250 0.0221 142.0310 0.0220 150.4060 

1 0.0220 169.1410 0.0221 146.7820 0.0221 151.4060 

M
IG

R
 

0.1 0.0221 143.7190 0.0221 146.4690 0.0220 147.2500 

0.2 0.0221 163.6880 0.0221 154.4530 0.0221 146.0320 

0.4 0.0221 174.0310 0.0222 149.6250 0.0221 146.6410 

0.6 0.0221 175.6250 0.0222 143.7960 0.0221 155.5310 

0.8 0.0221 181.2970 0.0221 157.4060 0.0220 147.7340 
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It should be noted that in this investigation the 

GGAP is the most sensitive of the five investigated 

parameters toward a convergence time. Considering 

three kinds of MpGA at GGAP = 0.8 (used as a 

referent value), there is no significant decrease of 

the convergence time. But, using GGAP = 0.5 

instead of GGAP = 0.8 leads to the fastest 

performance of all the considered here three kinds 

of MpGA for all the values of the investigated 

parameters. The fastest algorithm is MpGA_CSM, 

while the other two are a bit more accurate. 

Comparing both MpGA modifications implemented 

at GGAP = 0.5 towards the standard one 

MpGA_SCM at GGAP = 0.8 (used as a referent 

value), MpGA_CSM appears as 1.59, while 

MpGA_MCS  as 1.58 times faster than 

MpGA_SCM. Thus, GGAP = 0.5 is chosen as the 

most appropriate one. 

Considering XOVR, the biggest decrease in the 

convergence time is observed when using XOVR = 

0.65 instead of XOVR = 0.95 (used as a referent 

value) in both MpGA modifications, respectively 

14% when applying MpGA_CSM, and 13% for 

MpGA_MCS in a comparison to the standard 

MpGA_SCM at XOVR = 0.95. For these two out of 

three algorithms, XOVR = 0.65 leads to the fastest 

performances and as such this value is chosen as 

the most appropriate one. 

Considering MUTR, using MUTR = 0.02 

instead of MUTR = 0.04 or MUTR = 0.06 (closest 

to the used as a referent value MUTR = 0.05) leads 

to decrease of convergence time, respectively, of 

about 13% towards MUTR = 0.04 and about 25% 

towards MUTR = 0.06, both achieved when newly 

presented modification MpGA_MSC is applied and 

compared to the standard MpGA_SCM. In this case, 

two out of three algorithms lead to the fastest 

performances, and as such MUTR = 0.02 is chosen 

as the most appropriate value. 

Respectively almost 16 and 11% of the 

convergence time can be saved using INSR = 0.9 

instead of INSR = 1 (the closest to the used as a 

referent value INSR = 0.95) when applying 

MpGA_CSM and MpGA_MSC. In this case again 

two out of three algorithms, INSR = 0.9 leads to the 

fastest performances – the standard MpGA_SCM 

and MpGA_CSM, and as such this value is chosen 

as the most appropriate one. 

Some very promising results are obtained when 

MIGR is investigated. Again about 10-11% 

decrease of convergence time is observed when 

using MIGR = 0.1 instead of MIGR = 0.2 (used as 

a referent value) in the case of presented MpGA 

modifications towards the standard MpGA_SCM at 

MIGR = 0.2. As it can be seen from Table 4, in this 

case the standard MpGA_SCM is the fastest one. 

For MIGR the value of 0.1 is chosen, although not 

all of the algorithms perform the best at this value, 

but the obtained results are very close to the best 

results achieved.  

As a summary of the detailed analysis presented 

above, the following values of the GA parameters 

have been chosen as the most promising ones: 

GGAP = 0.5, XOVR = 0.65, MUTR = 0.02, INSR 

= 0.9 and MIGR = 0.1. Developed here are two 

MpGA modifications that lead to a decrease of the 

convergence time: MpGA_CSM is the fastest one 

for three of the GA parameters – GGAP, XOVR 

and INSR, while another modification of 

MpGA_MSC is the fastest one for MUTR. Only 

considering MIGR, the fastest algorithm is the 

standard one – MpGA_SCM, but two modifications 

are with very close results with about a 2% bigger 

convergence time. Finally, if one compares the 

fastest algorithm, which in this investigation is 

MpGA_CSM at GGAP = 0.5, to the slowest one, 

which in this investigation is MpGA_SCM at 

MIGR = 0.8, it is 1.90 times faster, yielding almost 

the highest model accuracy.  

Distinguished as the fastest, the newly 

developed and presented algorithm, MpGA_CSM 

is applied for parameter identification of  

S. cerevisiae fed-batch cultivation. The 

identification procedure is performed with the 

values chosen due to five GA parameters 

investigated here and Table 5 lists the evaluated 

model parameters. 

Fig. 2 shows the results from the experimental 

data and the model prediction, respectively, for 

biomass, ethanol, substrate and dissolved oxygen 

when MpGA_CSM is applied.  

The results presented in Fig. 2 demonstrate the 

workability and efficacy of MpGA_CSM as one of 

the two newly elaborated modifications of MpGA 

presented here. 

Table 5. Results from parameter identification when MpGA_CSM is applied. 

Parameter J t 2S 2E kS kE YSX YEX kLa YOS YOE 

Value 0.0221 97.5940 0.90 0.12 0.15 0.80 0.41 1.64 65.20 509.82 360.17 
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Fig. 2. Model prediction compared to experimental data when MpGA_CSM is applied. 

CONCLUSIONS 

In this investigation two newly developed 

modifications of the standard MpGA are presented. 

In both modifications, MpGA_CSM and 

MpGA_MSC, the operator selection is executed 

between crossover and mutation, no matter their 

order. The workability and efficacy of the newly 

elaborated modifications have been demonstrated, 

together with the standard MpGA_SCM, for the 

purposes of parameter identification of fed-batch 

cultivation of S. cerevisiae. The investigation of the 

influence of the most important GA parameters with 

respect to the convergence time and generation gap 

have been recognized as the most sensitive among 

the five parameters examined. About 45% of the 

convergence time can be saved using GGAP = 0.5 

instead of the referent value of GGAP = 0.8 in both 

MpGA_CSM and MpGA_MSC without a loss in 

accuracy.  

As a whole, newly proposed modifications of 

MpGA have been shown to be as accurate and 

effective as the standard one even proved to be 

faster. 

It is noteworthy that the proposed two 

modifications of MpGA, as representatives of the 

global search optimization technique, might be 

considered convenient for model parameter 

identification in different branches of GA 

implementations. 
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МОДИФИЦИРАНИ ГЕНЕТИЧНИ АЛГОРИТМИ ЗА ПАРАМЕТРИЧНА 

ИДЕНТИФИКАЦИЯ НА ПОЛУПЕРИОДИЧНА КУЛТИВАЦИЯ НА ДРОЖДИ 

Т. К. Пенчева, М. К. Ангелова 

Институт по биофизика и биомедицинско инженерство, Българска академия на науките 

ул. Акад. Георги Бончев, бл. 105, София 1113, България 

Получена на 8 февруари 2016, Рецензирана на 12 Март 2016 

(Резюме) 

В настоящото изследване са разработени две нови модификации на стандартните мултипопулационни 

генетични алгоритми. Модификациите се различават една от друга по реда на изпълнение на основните 

генетични оператори селекция, кръстосване и мутация. Основната идея на новоразработените модификации е 

операторът селекция да бъде изпълняван между операторите кръстосване и мутация, без значение от техния 

ред. Двете модификации, заедно със стандартния мултипопулационен генетичен алгоритъм, са изследвани при 

параметрична идентификация на полупериодична култивация на дрожди. Получените резултати са сравнени и 

новопредложените модификации са демонстрирани като също толкова точни, колкото и стандартния 

мултипопулационен генетичен алгоритъм, но с доказана по-добра сходимост.  

 


