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Efficient parameter estimation for spectral sensor data by a linear transformation 
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In this contribution we introduce and evaluate a new approach for solving inverse problems in proximity of a 

working point with very low computational effort. The non-linear, multi-parametric, complex function will be 

approximated and inverted by a set of decoupled single parametric, linear equations originating from a sensitivity 

analysis. The used linear projection condenses the knowledge of the transfer characteristic of the system and provides 

an alternative to model based and look-up table approaches. The fast estimation of multiple parameters in a limited 

parameter range is suitable for control applications or investigation of aging and other degeneration processes. 
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INTRODUCTION 

To increase the amount of information that can 

be obtained in a single measurement, multi-spectral 

measurement techniques have been introduced in 

the recent decades. Multiple influences on a sensor 

signal can be separated on a frequency scale due to 

the fact that different effects or mechanisms that 

sum up to the sensor signal act in different 

frequency ranges. Common approaches for data 

analysis of such multispectral data involve a model 

for regression and a nonlinear optimization process 

[1]. In many cases the optimization is done by an 

iterative algorithm [2]. The repeated calculation of 

the model and the evaluation of some loss functions 

consume a large amount of computational resources 

and time. For embedded system solutions, high 

demands on the dynamics of the measurement and 

data evaluation speed or models that require high 

computational effort in the nonlinear regression 

make the classical approaches unsuitable [3]. 

The introduced approach is inspired by the 

Tasselled-Cap-algorithm [4], which is projecting 

spectral information into a new subspace where 

quantities of interest are linear independent. The 

Gram-Schmidt orthogonalization within the 

Tasseled-Cap-algorithm performs a compensation 

of independent components in the data set to 

project the data in subspace. This projection is 

decoupling the influence by compensation of cross-

sensitivities of desired quantities [5].The 

orthogonalization uses a pre-defined set of vectors 

as basis for the new subspace. The possibility to 

choose these basis vectors based on the sensitivity 

of the different quantities of interest, is a useful 

property in the applications with inverse problems. 

In the decoupled subspace the desired quantity is 

then obtained by solving the resulting linear 

system. The projection formula condenses the 

knowledge on the systems transfer characteristic in 

a certain working point and is used to estimate the 

quantity of interest instead of using models or look 

up tables. Instead of using the full spectral data the 

projection uses only two data points selected in a 

way that they contain maximum information on the 

quantity of interest. With the presented conditions 

for these points, they can be chosen in an 

automated and objective way. The limitation of the 

measurement to these selected frequency points 

reduces the measurement time and hardware 

requirements. 

LINEAR PROJECTION 

Usually the transfer characteristics of a sensor 

are described by some model. This model is defined 

by a set of parameters x. The goal now is to derive 

the model parameters based only on the 

measurements performed with the sensor. This is 

called an inverse problem and usually the 

calculation of the parameters is challenging as noise 

in the measurement makes the inversion process ill-

posed. With a sensor application in mind one of 

these parameters is usually of interest and is 

therefore called a measurement quantity or 

measurand. 

Let us consider that the measurement is 

performed in some working point (WP) of the 

sensor. In the proximity of a WP any continuously 

differentiable function Z characterized by a 

parameter set x1 to xm can be expressed as linear 

approximation �̃�: 
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�̃� = ∑
𝜕𝑍

𝜕𝑥𝑘
∆𝑥𝑘

𝑚
𝑘=1 + 𝑍𝑊𝑃 ,        (1) 

This approximation consists of m products of 

the sensitivity with respect to the parameters and 

their corresponding distance from the working 

point ∆𝑥𝑘 and one constant term as working point 

offset 𝑍𝑊𝑃.In the next step a weighted sum of n of 

these approximations with weighting factors from 

a1 to ap can be made and rearranged to obtain 

equation (2). The expression on the right side 

consists now of m weighted sums of (1). In the case 

of spectral data each of the p used approximations 

represents one measurement at a certain frequency: 

∑ 𝑎𝑛�̃�𝑛
𝑝
𝑛=1 = ∑ ([∑

𝑎𝑛𝜕𝑍𝑛

𝜕𝑥𝑘

𝑝
𝑛=1 ] ∆𝑥𝑘) +𝑚

𝑘=1

∑ 𝑎𝑛𝑍𝑊𝑃,𝑛
𝑝
𝑛=1  ,                  (2) 

The sensitivity of the entire sum of linear 

approximations is defined by a suitable set of 

weighting factors an. To obtain the weights an we 

have to introduce a constraint on the sensitivity. In 

most sensor applications it is useful to set the 

sensitivity of the wanted parameter xn (e.g. x1) to the 

non-zero value S1 and all other to zero: 

∑ an

∂Zn

∂x1

p

n=1

= S1 

∑ an
∂Zn

∂x2

p
n=1 = 0 ⋮,                     (3) 

            ∑ 𝑎𝑛
𝜕𝑍𝑛

𝜕𝑥𝑚

𝑝
𝑛=1 = 0.            

For the case of spectral data solving the linear 

system of equations (3) will result in a sum of one 

quantity at different frequencies, which is now 

depending on only one parameter: 

∑ 𝑎𝑛𝑍𝑛
𝑝
𝑛=1 = 𝑆1(𝑥1 − 𝑥𝑊𝑃) +

∑ 𝑎𝑛𝑍𝑊𝑃,𝑛
𝑝
𝑛=1  ,                   (4) 

Rearranging equation (4) and solving for the 

desired parameter gives: 

𝑥1,𝑒𝑠𝑡 = ∑
𝑎𝑛𝑍𝑛

𝑆1
+ 𝑥𝑜𝑓𝑓𝑠𝑒𝑡

𝑝
𝑛=1  ,         (5) 

The additional constant 𝑥𝑜𝑓𝑓𝑠𝑒𝑡 is calculated 

with the parameter value at the working point xWP: 

𝑥𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑥𝑊𝑃 − ∑
𝑎𝑛𝑍𝑊𝑃,𝑛

𝑆1

𝑝
𝑛=1  .           (6)   (6) 

The defined sensitivity of the weighted sum to 

the wanted parameter S1 in equation (3) results in a 

linear scaling of the weighting factors that are 

removed by inverting equation (4). For the reason 

of numerical simplicity it is recommended to 

choose 1 for the sensitivity. 

𝑆1 = 1,                                  (7) 

To successfully perform this procedure, the 

sensitivity of the desired quantity must be high and 

the difference to the sensitivity of other system 

parameters must be maximal. In the simplest case 

of p=m the parameter vector of all used frequencies 

needs to be linear independent. This property has to 

be ensured by the selection of used frequency 

points like it will be demonstrated. The analyzed 

transfer characteristic can be any frequency 

dependent transfer parameter like gain, phase, real 

or imaginary part. Also a mixed support of those 

quantities, as two linked real quantities, may be 

possible if it is required by the application [5]. A 

generalization for complex transfer functions by the 

use of complex weighting factors might be a future 

improvement of the approach. The used quantity as 

base for the algorithm in the example is the 

imaginary part of the impedance as real scalar 

value. For the estimation of other parameters 

similar formulas like equation (5) can be obtained 

by adjusting non-zero sensitivity on the right hand 

side of the system of equations (3). 

DEMOSTATION FOR ONE ESTIMATED 

PRAMETER 

Generic model 

In this section, the introduced algorithm is tested 

and evaluated using generic data to avoid 

uncertainties of the measurement process. The data 

is generated from a model for the complex 

impedance of a solid state electrolyte including 

electrode effects. The electrodes are represented by 

the serial resistance Rs, the parallel resistance Rp 

and the electrode capacitance C1. The ionic 

contribution is represented by the Warburg-

impedance Zw with reflecting boundary condition 

[6]: 

𝑍 = 𝑅𝑠 +
1

𝑗𝜔𝐶1+
1

𝑅𝑝
+

1

𝑍𝑤

 ,                (8) 

𝑍𝑤 =
𝑅𝑇

𝐼2𝐹2𝑐𝑥𝐴√2𝜔𝐷
(1 − 𝑗) coth (𝛿(1 +

𝑗)√
𝜔

2𝐷
) ,                     (9) 

The aim of the data analysis is to estimate the ion 

concentration cx while the diffusion coefficient D is 

unknown. The structure of equation (9) ensures that 

parts of the impedance spectra have different 

sensitivity with respect to both unknown 

parameters. The working point is chosen according 

table I but it does not refer to a special application. 

The model represents a general problem in 
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impedance spectroscopy, when a systematic 

behavior to the parameters like in figure 1is 

observed and a multi parametric interpretation is 

needed. 

 

Fig. 1. Transfer characteristic of the generic model 

due to 10% variation of the two non-constant 

parameters. 

Table 1. Working Point Model Paramters  

Name Symbol Value 

Serial Resistor Rs 100Ω 

Capacitance of the 

Electrodes 
C1 500 ∗ 10−9F 

Paralel Resistance Rp 5 kΩ 

Universal Gas 

Constant 
R 8,31447

J

mol K
 

Faraday Constant F 96485,34
C

mol 
 

Distance of 

Electrodes 
𝛅 10−6m 

Elecrtrode Area A 10−4m2 

Charge per Ion I 1 

Temperature T 298 K 

Ion Concentration 

WP 
cx 10−3

mol

m3
 

Diffusion Coefficient 

WP 
D 10−9

m2

𝑠
 

Selection of data support 

The first step is the selection of a suitable 

spectral representation of the system response. Since 

some representations are more sensitive to certain 

physical effects this selection is based on the 

knowledge of the investigated physical system. In 

this example the targeted effect is the frequency 

dependent capacitance of the double layer which is 

represented by the imaginary part of the impedance 

in equation (8). Due to the reduced influence of the 

resistive effects caused by the serial and parallel 

resistance, the entire data analysis focuses 

exclusively on the imaginary part of the impedance 

of the entire system. 

To estimate the ion concentration in a set of two 

unknown parameters at least two points in the 

spectrum of the imaginary part are needed as data 

support. These points must have a strong sensitivity 

to the parameter of interest and a linear independent 

sensitivity vector to solve (3). The presence of a 

high absolute value of sensitivity is represented by 

the first criterion KI for each possible combination 

of the spectral data at frequencies index d and e: 

𝐾𝐼 =  |
𝜕𝑍𝑑

𝜕𝑥1
| + |

𝜕𝑍𝑒

𝜕𝑥1
|,                   (10) 

The independence of the sensitivity information 

is checked by the second criterion KII in the form of 

a normalized difference of the sensitivity with 

respect to the other parameter: 

𝐾𝐼𝐼 =
𝜕𝑍𝑑

𝜕𝑥2

𝜕𝑥1

𝜕𝑍𝑑
−

𝜕𝑍𝑒

𝜕𝑥2

𝜕𝑥1

𝜕𝑍𝑒
,                (11) 

Both criteria have a high absolute value for 

suitable combinations and tend to zero for unsuited 

combinations. This numerical property can be used 

to combine both criteria to one common criterion by 

multiplication: 

𝐾𝑔𝑒𝑠 = 𝐾𝐼𝐾𝐼𝐼 = (
𝜕𝑍𝑑

𝜕𝑥2

𝜕𝑥1

𝜕𝑍𝑑
−

𝜕𝑍𝑒

𝜕𝑥2

𝜕𝑥1

𝜕𝑍𝑒
) (|

𝜕𝑍𝑑

𝜕𝑥1
| +

|
𝜕𝑍𝑒

𝜕𝑥1
|),                      (12) 

 

Fig. 2. Selected data support in the spectrum at 

working point conditions 

The common criterion has only a high absolute 

value for combinations of data from different 

frequencies that match both criteria. The 

sensitivities are obtained by numerical derivation 

with a variation of the parameters of ±1% in 

equation (13) and (14): 

𝜕𝑍𝑛

𝜕𝑥1
=  

𝐼𝑚{𝑍𝑛(1,01𝑥1)−𝑍𝑛(0,99𝑥1)}

0,02𝑥1
 ,         (13) 

𝜕𝑍𝑛

𝜕𝑥2
=  

𝐼𝑚{𝑍𝑛(1,01𝑥2)−𝑍𝑛(0,99𝑥2)}

0,02𝑥2
 .          (14) 

The analysis of all possible combinations in the 

spectrum reveals a maximum for the indices 1 and 
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11 at the frequencies f1 at 100 Hz and f2 at 1001 Hz 

illustrated in figure 2. The imaginary part of the 

impedance Z1 and Z2 at those frequencies is used as 

data support for the linear transformation to separate 

and estimate the parameters. 

Calculation of the transformation formula 

With two parameters to separate the system of 

equations (3) is reduced to: 

𝑎1
𝜕𝑍1

𝜕𝑥1
+ 𝑎2

𝜕𝑍2

𝜕𝑥1
= 1

𝑚3𝛺

𝑚𝑜𝑙
,                  (15) 

𝑎1
𝜕𝑍1

𝜕𝑥2
+ 𝑎2

𝜕𝑍2

𝜕𝑥2
= 0 

𝑠𝛺

𝑚2.                   (16) 

Similar to equations (13) and (14) the required 

numerical derivative at the working point conditions 

can be obtained as:  

𝜕𝑍1

𝜕𝑥1
= 3,1298 ∙ 10 5

𝑚3𝛺

𝑚𝑜𝑙
 ,             (17) 

𝜕𝑍2

𝜕𝑥1
= 5,6343 ∙ 10 4

𝑚3𝛺

𝑚𝑜𝑙
 ,              (18) 

𝜕𝑍1

𝜕𝑥2
= −1,0913 ∙ 10 3

𝑠𝛺

𝑚2 ,             (19) 

𝜕𝑍2

𝜕𝑥2
= 3,4387 ∙ 10 4

𝑠𝛺

𝑚2 ,                (20) 

Solving the system of equations (15, 16) results 

in the weighting factors 𝑎1 = 3,1769 ∙
10−6and 𝑎2 = 1,0082 ∙ 10−7. 

To estimate the ion concentration cx,est the 

weighting factor a1 has to be multiplied with the 

imaginary part of the impedance at 100 Hz and 

added to the imaginary part of the impedance at 

1001 Hz multiplied with the weighting factor a2. 

The correct offset value can be calculated with 

equation 6. 

𝑥1,𝑒𝑠𝑡 = 𝑐𝑥,𝑒𝑠𝑡 =  3,1769 ∙ 10−6
𝑚𝑜𝑙

𝑚3𝛺
∙ 𝐼𝑚 {𝑍1}

+ ⋯ 

1,0082 ∙ 10−7 𝑚𝑜𝑙

𝑚3𝛺
∙ 𝐼𝑚 {𝑍2} − 1,6973 ∙

10−4 𝑚𝑜𝑙

𝑚3  (21) 

EVALUATION AND DISCUSSION 

The evaluation of the procedure is performed by 

varying the ion concentration as well as diffusion 

coefficient by ±50 % in steps of 1% of the working 

point value and subsequent calculation of one 

spectrum for each combination of those two values. 

Equation 21 was used to estimate the ion 

concentration out of the resulting 10201 spectra. 

The result of all 10201 estimations is plotted in 101 

graphs in figure 3. The red dashed line represents 

the perfect estimation of the ion concentration with 

no systematic error. The strong change in the 

diffusion coefficient is affecting the estimation in a 

very low degree and the 101 graphs nearly overlap 

each other perfectly. For a high variation of the ion 

concentrations the estimation error can reach large 

values due to the nonlinearity of the system and the 

linear approximation. 

 

Fig. 3. Estimated ion concentration versus the true value 

for varying diffusion coefficients (blue graphs). An ideal 

estimation procedure would produce the red dashed line 

(red). 

Fig. 4. Estimation error of the ion concentration relative 

to the actual input value. 

Despite of the large error, figure 4 reveals an 

area with low relative estimation error in the 

proximity of the working point. In this area an 

estimation of the parameters can be performed 

successfully and used in control application or for 

tracking various aging effects. 
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ОЦЕНКА НА ЕФЕКТИВНИ ПАРАМЕТРИ НА СПЕКТРАЛНИ СЕНЗОРНИ ДАННИ ЧРЕЗ 

ЛИНЕЙНА ТРАНСФОРМАЦИЯ 

Ф. Вендлер, П. Бюшел, О. Каноун 

Технически университет Кемниц,09107 Кемниц, Тюрингер Вег 11, Германия 

 (Резюме) 

В тази публикация ние въвеждаме и оценяваме нов подход за решаване на обратими проблеми в близост до 

работна точка при твърде занижени изчислителни усилия. Нелинейната, мулти-параметрична, комплексна 

функция ще се апроксимира и инвертира с помоща на набор от взаимно несвързани монопараметрични 

линейни уравнения,изведени при анализ на чувствителността. Използваната линейна проекция концентрира 

знанието за предавателната характеристика на трансфер и осигурява алтернативен модел, основан на подхода; 

вижте табличните данни. Бързата оценка на множество параметри за ограничен кръг от параметри е подходящ 

способ при управление на приложения или за изследване на процесите на стареене и други дегенеративни 

процеси. 

 


