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Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large 
deformations 
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In this work, in analytical form, are derived instantaneous stress-strain and vice-versa relations using the Neo-Hookean and the 
Mooney-Rivlin models. These relations are obtained resolving algebraic equations of third and fourth degree respectively. The above 
mentioned analytical solutions are incorporated in the hereditary integral equations of Volterra to predict the creep and relaxation of 
such as materials at large deformations. One takes into account the non-linearity of the viscous behaviour in the presence of 
similarity in the isochrone stress-strain curves. Our theoretical results are compared with experimental data for two kinds of rubbers 
and demonstrate very good coincidence.  
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INTRODUCTION 

Rubbers are increasingly used in modern 
industry [1-4]. Resinous materials and rubbers are 
elastoviscous solids. They are very deformable and 
possess non-linear behaviour. Their creep is also 
non-linear according to the applied stresses. The 
last non-linearity can be observed excluding the 
time from the creep curves (the so-called isochro-
nes). Thus, rubbers require identification and 
description of two different kinds of nonlinearities. 
Here we examine two compositions: the first one is 
the Butadiennitril rubber (BN) and the other one - 
the Polyisoprene rubber (PI) [5]. In the first rubber 
composition is used rubber with 40% acrylonitril in 
the macromolecule [5]. In the second composition 
is used polyisoprene rubber - an analogue of the 
natural rubber. The microstructure conciste of 1,4 
cispolyisoprene with content of these units almost 
98% [5].  Both elastomeric compositions include 
fillers (cinders) with a developed surface 
respectively 75 and 50 m²/ g. 

THEORETICAL 

Nonlinear elasto-viscosity at small deformations 

The hereditary linear equations can be 
generalized to account the nonlinear mechanical 
behaviour using the Rabotnov-Rzanitzin approach 
[6, 7]. This approach requires similarity in the 
stress -  strain    curves    for    different    moments 
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where ( )t  is the strain, - the applied stress, ( )f   

- the nonlinearity function, ( - )K t   - the creep 

kernel, t - the current time and 0 t  . 
Concerning the creep kernel we can say the 
following. It is the resolving kernel of the 
relaxation one. As kernels in the integral equations 
of Volterra like eq. (1) it is recommended to take 
singular kernels which better describe the enhanced 
creep and relaxation rate at the beginning. In this 
work we assume the singular relaxation kernel of 
Koltunov [7] 
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whose resolving kernel (the creep kernel) looks like 
[7]. 
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The function of the nonlinearity ( )f  is 

determined from the isochrone curves. This 
presentation of the nonlinearity involves a 
coincidence of the initial points at the strain scale 
and requires a similarity of the isochrones. If at low 
stresses (up to the limit axial stress of the 

linearity o ) the behaviour is linear, equation (1) 

can be generalized as follows: 
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In equation (3) n is the potency which can be 
determined from the isochrones. Eq. (3) remains 

valid if o   . In the opposite case the behaviour 

is linear and / 1o   . Such a presentation of the 

viscous nonlinearity is used in many practical 
problems [8]. 
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Nonlinear elasticity at large deformations 

Rubbers are very deformable and their elastic 
behaviour cannot be described by the Hooke’s  law. 
Here as elastic behaviour it is mean the 
instantaneous elasticity of equation (3) given by the 
ratio before the brackets. This expression should be 
changed to be able to account the large elastic 
deformations of the rubbers.  

Here it is used the theory of the large 
deformations described in [9]. The material is 
considered as isotropic and incompressible. To 
describe the mechanical behaviour of rubbers and 
other resinous materials as successful models are 
accepted the neo-Hookean and the Mooney-Rivlin 
ones [9]. According to the above models the 
following thermodynamic potentials are introduced 
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where G  is the second module of Young,  ζ  and  
χ  are experimentally determined parameters based 

on the instantaneous force-extension curves and i   

are the large relative extensions in the main 
directions 

1i i   .     (5a) 

Here 1, 2, 3i   and  i   are the main Cauchy’s 

strains (the classic ones in the case of small dis-
placements).  
In the case of incompressible materials  

1 2 3 1   and by traction it follows 

1 ,  1/2
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Therefore, to the potentials (4a) and (4b) follows  
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In the theory of large deformations [9] the axial 
tensile force is given by the expression  
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where  oS    is the initial section of the sample 

associated with the current section ( )S    as 
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So, based on equations (6a), (6b) and (7) to the 
axial tensile force of highly deformable materials 
are obtained the following expressions (depending 
on the relative extension) concerning both models 
respectively 
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Relations (9) must be expressed through the 
deformations of Cauchy and replaced in (3) in order 
to take into account the large deformations. This 
can be done as follows. Based on eq.(9)  is deduced 
the relationships instantaneous stress-strain 
concerning both models which give the non-
linearity in the elastic part of the hereditary 
equation (3). In the case of incompressible 
materials between the instantaneous Young 
modules one has the following relation 
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This is because the Poisson ratio is 0.5  . 
Moreover, from equations (7), (8) there is the 
relationship 
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Then from equations (9), (10) and (11) it is 
obtained the following relations stress-elongation  
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Equations (12) may also be represented as a 
relation stress-strain according to eq. (5a). These 
expressions have the form 
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Equations (13) should be resolved about the 
strains in order to obtain the non-linear stress-strain 
relation for highly deformable materials. These 
equations are of third and fourth degree 
respectively and can be represented in the following 
form using equations (12)  
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The solution of equation (14a) using the 
Cardano’s formula [10] taking into account (5a) 
looks like  
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The solution of equation (14b) using the 
Ferrari’s formula [10] taking into account (5a) 
looks like 

( ) (3 ( ) 2 ( ) 2 ( )/ ( ))0.5
( ) 1

4( ) 2

W y W      
  

 

   
   


, 

(15b) 
where: 

2

2

3(0.5 ) 3 /
( )

8( )

E 
 

   


 

 
,  

3

3 2

(0.5 ) 3 /
( ) 1

8( ) 4( )

E 
 

   


  

 
4 2

4 3

3(0.5 ) 3 (0.5 ) / 3
( )

256( ) 16( ) 8( )

E   
 

     


  

  
 

3 21 1 1
( ) ( ) ( ) ( ) ( )

108 3 8
Q             ,   

1
( ) ( ) ( )

12
P       

2 31 ( ) ( )
( ) ( )

2 4 27

Q P
R Q

 
     ,  

3

3

5 ( )
( ) ( ) ( )

6 3 ( )

P
y R

R


   


   , 

( ) ( ) 2 ( )W y     . 

Nonlinear elastoviscosity at large deformations 

The relationship of the Cauchy’s deformations 
with the stresses in the form (15) is used as 
instantaneous nonlinearity in the hereditary 
equation (2). Equation (2) based on (15) looks like                                       
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The creep law (16) contains parameters that 
need to be experimentally identified. The necessary 
experimentations are as follows: 
- Instantaneous (with constant strain rate or 
otherwise) identified from (15). Note that eq. (15a) 
is a very successful equation containing only one 
parameter to describe the complex nonlinear 
elasticity and this is the elastic module E.  
-  Tests based on the curves of stress relaxation (or 
creep) in the linear region at small imposed strains. 

These parameters are identifiable from (3) at low 
stresses  ≤ 0. 
-  Tests based on the isochrone curves of creep (or 
relaxation). These parameters are identifiable from 
equation (3) at high stresses > 0.  

EXPERIMENTAL 

Fig.1 and Fig.2 show the instantaneous 
nonlinearity of the butadienenitril (BN) and 
polyizoprene (PI) rubbers. 

 

Fig.1. Relative tensile force - relative elongation 
according to the Neo-Hookean and according to the 
Mooney-Rivlin law for both rubbers 

Both rubbers are produced on open mixer with 
dimensions 400x150 [mm] at T=500C. Time of 
vulcanization is determined on oscillating 
rheometer type “Moncanto”. Vulcanization of 
tested specimens is done at hydraulic press with 
automatic control of pressure and temperature.  

 
Fig.2. Tensile stress - strain according to the Neo-

Hookean - equation (14a) and to the Mooney-Rivlin law 
- equation (14 b) for both rubbers. Solid lines - the Neo-
Hookean, dashed lines - the M. Rivlin model, above - PI 
rubber, below - BN rubber 
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Fig.3 and Fig.4 illustrate the identification of the 
above parameters concerning both rubbers. Figure 3 
shows the stress relaxation of the BN by constant 
strain. Fig.4 shows the corresponding creep curve 
for BN at stresses on the limit of the nonlinearity 
(see Table 1a and Table 1b). The same is done in 
Fig.5 and Fig.6 for the PI rubber. 
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 Fig.3. Stress relaxation of BN rubber 
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Fig.4. Creep curve of BN rubber 

Note: In Fig,3 and Fig.4 are shown all the 
experimental points. In the next figures - just the 
averaged values. 

Creep curves are not necessary to predict the 
behaviour and can be used only for verification. In 
practice, the parameters in the Koltunov’s kernel 
can be identified from the relaxation curves, which 
can be obtained much easily than the creep curves. 
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Fig.5. Stress relaxation of PI rubber 
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Fig.6. Creep curve of PI rubber 

In the next two Fig.7 and Fig.8 are shown the 
nonlinear isochrone curves stress-strains at stresses 
greater than the limit of non-linearity. 

Fig.7. Rubber nonlinearity of PI rubber (isochrones at 
20 and 100 hours) 

Fig.9 and Fig.10 show the creep of the PI and 
BN rubbers at two stress levels according to equa-
tion (16). 

362



K. B. Hadjov et al.: Analytic nonlinear elasto-viscosity of two types of BN and PI rubbers at large deformations 

Fig.8. Rubber nonlinearity of BN rubber (isochrones at 
10, 50 and 100 hours) 

Fig.9. Creep at large deformation of PI 

Fig.10. Creep at large deformation of BN 

From both figures we can see that under bigger 
stress for studied time interval creep has 
unidentified character. 

Finally, in Table 1(a and b) are systematized all 
the parameters obtained from the experimental 
curves above.  

Table 1. (a and b) Elastoviscous characteristics of the 
investigated rubbers 

Table 1a. Instantaneous (elastic) characteristics 

Character 
Elastoviscous 

instantaneous (elastic) 

Parameters 
Е o  N χ Ϛ 

Dimension 
[MPa] [MPa] - - - 

PI rubber 
1.820 0.75 1.71 0.124 0.642 

BN rubber 
3.025 0.50 1.55 0.018 0.960 

Table 1b. Hereditary (viscous) characteristics 

Character 
elastoviscous 

hereditary (viscous) 

Parameters A α β 

Dimension 
- - - 

PI rubber 
0.0032 00.97 0.0140 

BN rubber 
0.0029 00.77 0.0089 

RESULTS AND DISCUSSION 

For the BN rubber both models give good 
results. Therefore for BN rubbers it is used the neo-
Hookean model. It has the advantage that it does 
not require the entire force-displacement curve to 
determine the parameters (the elastic module is 
sufficient). The PI rubber however, requires the use 
of the 3-parameter model of Mooney-Rivlin. 

Stress-strain curves according to equations (12a, 
b) or also to (15a, b) appear as shown in Fig.2. The
experimental results in figure 1 show that the neo-
Hookean law well describes the instantaneous 
behaviour of the BN rubber but to the PI rubber 
should be applied the more flexible model of 
Mooney-Rivlin.  

The assumption of incompressibility for the 
rubbers is perfectly acceptable. For our materials 
the Poisson’s ratio values are 0.485 to the BN 
rubber and 0.49 to the PI rubber.  
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The hereditary theory with kernel of Koltunov 
well describes the temporary effects due to the 
viscosity. 

CONCLUSION 

Using the integral equations of Volterra to 
describe the nonlinear elastoviscous behaviour are  
obtained equations predicting the time dependent 
behaviour taking into account the stress-strain 
nonlinearity. On the basis of the Neo-Hookean and 
Mooney-Rivlin models concerning the 
instantaneous nonlinearity at large deformations are 
derived the respective strain-stress constitutive 
relations in analytical form. Both Neo-Hookean and 
Mooney-Rivlin models well describe the instan-
taneous mechanical behaviour at large deformations 
for the BN rubber. Concerning the PI rubber, only 
the Mooney-Rivlin model is able to well predict the 
stress-strain instantaneous constitutive relation. 
These strain-stress constitutive relations are 
incorporated in the hereditary theory of Volterra to 
obtain the complex time dependent mechanical 
behaviour of rubbers at large deformations. The 
theoretical predictions show very good coincidence 
with the experimental data for PI and BN rubbers. 
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