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There are many estimation techniques, which are used in Thermal Response Test (TRT) data analysis. The commonly used 
models, Line Source Model, Cylindrical Source Model, numerical models do not take into account the nonlinear system effects like 
for example the phase change. The present work suggests the use of the input/output black box identification technique for TRT data 
analysis. A nonlinear autoregressive exogenous (ARX) model structure and stochastic search algorithms are used to estimate model 
parameters. Artificial intelligence techniques, Genetic Algorithm and Particle Swarm Optimization Algorithm are employed to avoid 
local maxima problems. The study is based on data sets obtained during real TRT tests without phase change effects. All analyses are 
performed in MATLAB environment. The purpose of this paper is to verify that the proposed algorithms are suitable for processing 
of TRT data with the aim of future identification of thermal parameters of boreholes with phase change effects. The given solution is 
also useful when common techniques fail in search for the global optimum if the search space is not differentiable or linear in the 
parameters. 
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INTRODUCTION 

Thermal Response Test (TRT) is an 
internationally approved technique to identify 
geothermal underground parameters like effective 
ground thermal conductivity and borehole thermal 
resistance. It is considered to be the method which 
gives the highest accuracy of evaluation. Generally, 
these tests are performed with heat injection, using 
the same assumed power level as the one planned 
by the Borehole Heat Exchanger (BHE) system. 
For first time TRT was presented by Mogensen – 
his installation was designed as an immobile system 
[1]. Later, TRT was developed as a mobile 
measurement installation at the Oklahoma State 
University (USA) by Austin [2] and at the 
Technical University Lulea, Sweden [3]. Now, this 
type of measurement is used also in Germany [4], 
Canada, Norway, Netherlands, England, Turkey [5] 
and Chile [6]. Several TRTs are done in Bulgaria, 
too. Some activities in Bulgaria preceded the first 
official TRT [7]. 

Algorithm Overview 
The genetic algorithm (GA), first proposed in 

[8], is a method for solving optimization problems 
which are not easy manageable by standard 
optimization   methods,  e.g.   when   the   objective 
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function is discontinuous, non-differentiable, 
stochastic, or highly nonlinear. It is used for both 
constrained and unconstrained optimization 
problems. 

GA concept is taken from the principles of the 
evolution of the species by survival of the fittest. 
Like in a population of organisms [9] the solutions 
are created by reproduction of solutions and 
compete for survival in the next iteration. At each 
step the randomly selected individuals of the 
current population become parents and produce the 
children of the next generation. Over successive 
generations, the population improves to the optimal 
solution. 

In the initial population P(0), encoded randomly 
by strings [10], the more fit elements of each 
generation (t) are selected and processed by the 
basic genetic operators, crossover, and mutation, to 
create the next generation. On the basis of the 
evolution principles the best chromosome of a 
candidate solution is preserved. Thus the GA uses 
three main types of rules at each step towards the 
next generation of the current population: Selection 
rules select the individuals, called parents, which 
contribute to the population at the next generation; 
Crossover rules combine two parents to form 
children for the next generation; Mutation rules 
apply random changes to individual parents to form 
children. 
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The computational procedure is illustrated by 
the following GA pseudo code [11]: 

Procedure GA 
begin 

t=0 
initialize P(t) 
evaluate P(t) 
while not satisfy stopping rule do 

begin 
t= t+1 
select P(t) from P(t1) 
alter P(t) 
evaluate P(t) 

end 
end 

 
In the present work, the GA is employed for 

model identification in Autoregressive integrated 
moving average (ARIMA) models because of the 
following very powerful characteristic: 
simultaneous searching of a population of points, 
not a single one, which results in finding the 
approximate optimum quickly and without falling 
into a local optimum. Moreover GA is free from the 
limitation of differentiability, unlike other 
mathematical techniques. 

Concepts of the Particle Swarm Optimization 
Approach 

As the neural network is a simplified model of a 
human brain and the genetic algorithm is inspired 
by the biological evolution, an optimization 
approach known as swamp intelligence is inspired 
by the collective behavior of the individuals in a 
social system when interacting with the 
environment and each other. Two of the popular 
swamp inspired methods of computational 
intelligence area are Ant Colony Optimization 
(ACO) and Particle Swarm Optimization (PSO). 

The first is inspired by the behavior of ants and 
has many successful applications in discrete 
optimization problems [12]. 

The PSO concept was originally developed for 
graphical simulation of the choreography in a bird 
flock or a fish school and employed afterwards as 
an optimizer. It was proposed in [13] as a 
population based stochastic optimization technique, 
inspired by social behavior of bird flocking or fish 
schooling. PSO simulates the bird flocking 
according to the following scenario: a group of 
birds are randomly searching only one piece of 
food in an area. They do not know where the food 
is, but do know how far it is in each iteration. The 

best searching strategy is to follow the bird nearest 
to the food. 

In solving optimization problems by using this 
scenario, each solution in the search space is “bird”, 
called “particle”. All the particles have fitness 
values, which are evaluated by the fitness function 
to be optimized. The particles have flying velocities 
and fly through the problem space by following the 
current optimum particles.  

PSO shares many similarities with evolutionary 
computation techniques. Like in the GA, the system 
is initialized with a population of random solutions 
and searches for optima over successive 
generations. However, unlike the GA, the PSO has 
no evolution operators such as crossover and 
mutation. The potential solutions, called particles, 
fly through the problem space by following the 
current optimum particles. 

At the first step in PSO the position and velocity 
of the particles are randomly initialized. In every 
iteration, each particle is updated by following two 
"best" values. The first one is the best position 
(fitness) it has achieved so far denoted by pbest. (The 
fitness value is also stored). The second one is the 
best position, obtained so far by any particle in the 
population, called global best value and denoted by 
gbest. Each particle communicates with its 
topological neighbors and knows the best position 
found so far by any of them. If a particle takes part 
of the population as its neighbors, the best value is 
a local best and is called lbest. 

After finding the two best values, the particle 
updates its velocity and position by the following 
equations (1) and (2) 

v[ ] = v[ ] + c1 * rand( )*(pbest[ ] - present[ ]) + 
+ c2*rand( )*(gbest[ ] - present[ ])   (1) 

present[ ] = present[ ] + v[ ],   (2) 

where v[ ] is the particle velocity, present[ ] is 
the current particle (solution). pbest[ ] and gbest[ ] 
are defined as stated before. rand ( ) is a random 
number between (0,1). c1, c2 are learning factors. 
Usually c1 = c2 = 2. 

The pseudo code of the procedure is as follows: 
 
for each particle  
   Initialize particle 
end 
do 

for each particle  
 Calculate fitness value 
if the fitness value is better than the best 

fitness value (pbest) in history 
set current value as the new pbest 
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end 
Choose the particle with the best fitness value 

of all the particles as the gbest 
for each particle  
    Calculate particle velocity according 

equation (1) 
    Update particle position according 

equation (2) 
end 

while maximum iterations or minimum error 
criteria is not attained 
On each dimension a maximum velocity Vmax is 

specified by the user as a limit of the particles’ 
velocities. 

INSTALLATION FOR IMPLEMENTING OF 
THERMAL RESPONSE TEST  

An original construction of a Thermal Response 
Test rig has been built recently at the Technical 
University of Sofia, branch Plovdiv. The equipment 
for implementing of TRT is situated on a mobile 
trailer consisting of two parts. The first one 
contains the working installation. The second part 
is formed as a living room for the investigators, 
who will implement the in-situ tests. The scheme of 
the installation is shown in Fig.1. It consists of the 
following parts: electrical boiler 1, calorimeter 2, 
pressure watch 3, expansion tank 4, thermo – 
manometer 5, filter 6, circulation pump 7, de-
aeration pipe 8, quick couplings 9, valves 10 and 
electrical unit 11. A 41,10m deep hole was drilled 
on the territory of the Technical University – Sofia, 
branch Plovdiv. The borehole has a diameter of 
0.18 m and has been backfilled with 11% bentonite 
and 2% cement solution. There are two temperature 
sensors Pt 100 for measuring the inlet and outlet 
borehole temperatures. There are five other 
temperature sensors placed at different depths 
inside the borehole. 

 

 
 

Fig.1. Installation setup 

THERMAL RESPONSE TEST - EXPERIMENT 
AND EVALUATION 

The tests were implemented in January, March 
and April 2009. The following parameters were 
measured: the inlet and outlet fluid temperatures of 
the borehole, the ambient air temperature and five 
temperatures in the borehole body. The electrical 
power (about 1500 W) was controlled and 
maintained constant during the whole test. The flow 
rate of water was 4.06 l/min. 

There are different methods to evaluate the 
experimental data and to calculate the unknown 
thermal conductivity λ and borehole thermal 
resistance. The Line Source Model (LSM) is the 
widely used and simplest method [3]. The delivered 
heat is considered as coming from an infinite line 
source (the borehole). The following equation 
represents the heating process: 
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where 2/)( ,,, ofifmf TTT  - mean fluid inlet/ 

outlet temperature, K; 
Q – delivered heat power, W; 
λ – thermal conductivity, W/mK; 
H – borehole depth, m; 
t – time from start, s; 
a – thermal diffusivity, m2/s; 
rb – radius  of the borehole, m; 
γ = 0.5772 – Euler’s constant; 
Rb – borehole thermal resistance, mK/W; 
Ts – initial soil temperature, K. 

Test Evaluation 

The average undisturbed ground temperature Ts 
is a key parameter in Eq. (3) and should be 
measured prior to the test start before switching on 
the electrical heaters, when the borehole is at 
thermal equilibrium with its surroundings. Ts was 
determined by pumping the heat carrier fluid out of 
the borehole pipes and measuring its outlet 
temperature over a time of 10s. Ts was then 
calculated as the average of the measurement data. 
In the presented experiments, Ts was found to be 
about 16.3°C. As soon as Ts is measured the electric 
heaters are switched on and a constant heat starts to 
be injected in the BHE. 

The flow rate was fixed at a constant value 
during the tests. The electrical heater power and the 
electrical power of the circulating pump were 
maintained constant automatically. For the 
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experiment purpose the installation was filled with 
water and a pressure of 2.2 bars was established. 
Most of the main characteristics of the performed 
Bulgarian TRTs in 2009 are shown in Table 1. 

Table 1. Main characteristics of the Bulgarian TRTs 
carried out in 2009 

Properties January March April 

Date 11-21 16-24 13-17 
Duration, days 10 8 4.3 
Flow rate, l/ min 4.06 3.83 4.6 
Electrical heater power, W 1500 2000 1500 
Circulating pump power, W 100 100 100 
Water pressure, bar 2.2 2.2 2.2 
Undisturbed soil temperature, °C 16.3 16.3 16.35 
Measuring interval step, s 60 60 60 

 

The control of the test rig is the most 
challenging part of the system. All data are 
automatically controlled by a specially designed 
system for the laboratory trailer needs, installed on 
the control board. The system is fully automatic and 
writes down all measured data in text files. If 
appropriate software is available, the data collecting 
process could be visualized in real time or after 
finishing the experiment. In the experiments the 
aim of a constant heat flow was realized by a 
constant frequency control of the circulation pump 
and boiler. 

The application of equation (3) to the real 
problem is connected with a systematic error, 
which diminishes with time and increases with 
borehole radius. Eq. (3) can be rewritten for 
evaluation purposes in the form of: 

21, )ln()( ktktT mf    (4) 

Further on the test evaluation is based on Eq. 
(4), which is fitted to the experimental data, and the 
curve constants k1 and k2 are determined. Usually a 
Least Squares Method (LSM) is used to calculate k1 
and k2. The thermal ground conductivity λ and the 
borehole resistance Rb can be adequately calculated, 
by comparing Eqs. (3) and (4) when the curve 
parameters k1 and k2 are known. In this article 
instead of LMS method, the GA and PSO search 
approaches are employed to fit the data and to 
compare the agreement. 

Test Results 

The mean fluid temperature in the borehole 
(average temperature of the inlet and outlet fluid 
temperature of the borehole) and the ambient 
temperature are shown for the test done in January 
in Fig.2. The figure shows that the experimental 
fluid temperature rises slow and with small 
deviations. 

 

Fig.2. Profile of the mean fluid temperature in the 
borehole and the ambient temperature in January 2009 

The number of the data points is very large 
(about 14400). In order to decrease the processing 
time of the GA and PSO stochastic search 
algorithms the number of the points was reduced by 
a factor of 30, using averaged values. The averaged 
trends of the same temperatures are showed in 
Fig.3. 

Test Data Evaluation, Using Standard LSM 
Regression Method 

The Line Source Model gives more exact 
temperature estimations for longer terms of time. It 
takes some hours to the real BHE to behave as an 
ideal line source. Therefore, usually the data 
correspondent to the first 7 to 30 hours of 
experiment is not taken into account in the analysis. 

 

Fig.3. The reduced number of values of fluid mean 
temperature in the borehole and the ambient temperature 
in January 2009 

In the present work, this period is accepted to be 
20 hours, as it depends on the estimated data. Fig.4 
shows the logarithmic time dependence of the 
temperature and the slope of the associated 
regression line. As stated previously, the thermal 
conductivity λ is related to the slope of the resulting 
line by Eq. (4). The resulting value calculated 

0 1 2 3 4 5 6 7 8 9

x 10
5

-10

-5

0

5

10

15

20

25

30

35

40
Ambient and mean borehole temperature during TRT test

Time, s

T
a
 a

n
d
 T

m
, 

C
 

 

 

Tmean

Tambient

91



R.Popov et al.: Parameter estimation of borehole thermal properties using artificial intelligence methods 

  

during the test for λ is 0.83 W/mK and for Rb – 
0.532 mK/W. 

 

Fig.4. Logarithmic time plot of the mean temperature 
for the entire test length in January 2009 (excluding the 
first 20 hours) 

Test data evaluation, using artificial intelligence 
methods 

First we have to choose the input factors, which 
are to be varied. In GA algorithm they are: 

 Crossover_p – Crossover probability 
parameter; 

 Mutation_r – Mutation rate. 
Output parameter is AvSAE variable (error) end 

value. It is the average value of the sum of absolute 
errors between data and model outputs at the end of 
the estimation process. If 50 generations are 
performed in GA search, then last column in 
variable AvSAE (50) is used. In the next step 
central composite experiment design is performed. 
Only one central point is used in case of obtaining 
uniform value distribution in the parameter space. 
The Matlab function “ccdesign” have been used for 
this purpose. After that factor variance bounds are 
chosen: 

 Crossover_p = 0 … 1; 
 Mutation_r = 0.05 … 0.5 

Then matrix table is multiplied by factor n=10 in 
case of running not only 9 but 90 tests, because 
output value AvSAE ( ) is statistically dependent on 
the run. Now parameters are bounded to parameter 
space, using Matlab function “coded2real”. Next 
step is to randomize runs’ order in the test matrix. 
The positions of the input variables in the 
parameter space are shown in Fig.5. 

The varied factors in the PSO algorithm are 
chosen to be: 

 correction_factor; 
 inertia. 

The bonds chosen in this task are 1.6 to 2.4 for 
the Correction factor and 0.4 to 0.8 for the Inertia 
parameter. The central composite design for the 
PSO – test and the factors’ variation in a Monte 
Carlo simulation are presented respectively in 
Fig.6. 

 

 

Fig.5. Positions of the input variables in the parameter 
space in GA tests 

 

 

Fig.6. Positions of the input variables in the parameter 
space in PSO tests 

Genetic algorithm-based search function developed 
in Matlab 

The Genetic Algorithm-based search procedure 
is coded as a Matlab – function with the next 
syntax: 

[A B AvSAE] = ga_proc(err, popsize, crossover_p, 
mutation_r, n_generations),  
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where:   
A is a vector, containing evaluated 'a' 
parameters; 
B is a vector, containing evaluated 'b' 
parameters; 
AvSAE is a vector of average sum of absolute 
error of the model for all passed generations;  
err is an error tolerance; 
popsize is the size of population; 
crossover_p is the crossover probability 
parameter; 
mutation_r is the mutation rate; 
n_generations is the number of generations. 

 Particle Swarm Optimization algorithm function 
developed in MATLAB 

The Particle Swarm Optimization -based search 
algorithm is written as a MATLAB – function with 
the following syntax: 
[A B AvSAE] = pso_proc (swarm_size, 
correction_factor, inertia, iterations, err);, where:  

A is a vector, containing evaluated 'a' parameters; 
B is a vector, containing evaluated 'b' parameters; 
AvSAE is a vector of average sum of absolute 
error of the model for all passed generations;  

err is an error tolerance; 
swarm_size is the size of the swarm; 
correction_factor  is the particle velocity 
correction factor; 

inertia is the inertia factor 
iterations is the number of iterations. number of 
generations. 

Data evaluation using statistical search 
approaches: GA and PSO 

The 90 data fitting experiments were performed 
using GA and the same number of tests was carried 
out for the PSO approach. The results for the first 
10 tests in each case are listed in the Table 2 (GA) 
and Table 3 (PSO). 

 

Table 2. Monte Carlo simulation test results using GA  

Run 
Number 

Cross- 
over_p 

Mutation 
_r 

AvSAE_ 
fin_value 

Rb Lambda 

1 1 0.050 0.91366 0.19607 0.88152 
2 0.2 0.050 1.03060 0.10000 0.50000 
3 1 0.275 0.22162 0.47185 0.87500 
4 1 0.275 0.43971 0.10000 0.67388 
5 0.6 0.275 0.94431 0.68193 2.44960 
6 0.6 0.500 0.82120 0.60871 1.46410 
7 0.2 0.050 1.22590 0.78088 5.48230 
8 1 0.275 0.28684 0.10000 0.74713 
9 0.2 0.500 0.40257 0.27394 0.68405 
10 0.2 0.050 1.04250 0.10000 0.50000 

 

Table 3. Monte Carlo simulation test results using PSO  

Run 
Number 

Correction 
factor 

Inertia AvSAE_ 
fin_value 

Rb Lambda 

1 2 0.4 0.21792 0.46962 0.90854 
2 2.4 0.4 0.21815 0.65663 1.80560 
3 1.6 0.4 0.63708 0.60304 1.49490 
4 2 0.6 0.21785 0.46567 0.86166 
5 2 0.8 0.21785 0.46085 0.85269 
6 1.6 0.6 0.21785 0.45883 0.84906 
7 2.4 0.6 0.21790 0.46255 0.80732 
8 2.4 0.6 0.21790 0.59181 1.25950 
9 2.4 0.4 0.21786 0.45730 0.84441 
10 1.6 0.6 0.21785 0.45608 0.84335 

 

 

The GA tests duration was measured to be 
24:52,256 min and the duration of the PSO tests 
was 21:05,385 min.  

3D combined scatter plot of AvSAe versus GA 
parameters (factors) during the tests is showed in 
Fig.7 and Fig.8. Best values for the crossover 
parameter and the mutation rate are 1 and 0,5. For 
the correction factor and the inertia (in PSO) the 
combination of the values 2.4 and 0.6 reports lower 
error rate. The scatter plots show that all the factors 
are significant. 

In the next step all test results, reporting AvSAe 
values higher than 0.3, were rejected. The 
calculated average values of the remaining 
estimated parameters are: 

 
 in GA - tests:   
Rb = 0.4181513 mK/W;  λ = 0.874063 W/mK; 
 
 in PSO - tests:  
Rb = 0.49098  mK/W;    λ = 0.92624  W/ mK. 
 
 

 

Fig.7. Positions scatter plot of AvSAE vs. crossover 
parameter and mutation rate in GA tests 
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Fig.8. Scatter plot of AvSAE versus correction factor 
and inertia in PSO tests 

The values of AvSAE (error) for both 
algorithms PSO and GA for the tests with the same 
number are compared in the Fig.9. 

 

Fig.9. Value of AvSAE for both algorithms PSO 
(diamonds) and GA (triangles) 

 

Fig.10. Sorted by values of AvSAE for both algorithms 
PSO (diamonds) and GA (triangles) 

The next Fig.10 shows sorted values of AvSAE 
for both algorithms PSO (in red) and GA (in blue). 
It can be mentioned, that PSO procedure reports 
more accurate estimation of the system parameters. 

CONCLUSIONS 

The estimated values of the thermal properties, 
using different algorithms are presented in Table 4.  

Table 4. Estimated values of the thermal properties, 
using different algorithms 

Algorithm Rb , mK/W λ , W/ mK 

LSM linear regression 0.5320000 0.830000 
GA 0.4181513 0.874063 
PSO 0.4909800   0.926240   

 

The results demonstrate a good accordance in 
estimates and possibility to apply GA and PSO – 
based approaches in TRT data evaluation 
procedure. In the reported case no phase change 
process occurs in the BHE and the main advantages 
of these two artificial intelligence techniques are 
not demonstrated in their full range. So an 
additional experimental investigation should be 
performed to obtain data from the BHE, working 
with CO2, especially in a freezing/melting process. 
That will give the possibility to identify thermal 
parameters of Phase Change Materials (PCM) and 
Slurries, used in thermal storages. 

Based on the results of the parameter estimation 
experiments additionally the next conclusions are to 
be drawn: 
1. PSO algorithm reports better performance than 

GA. The calculation time for the two 
procedures is similar because the time for 
model evaluation is determining, equal in both 
cases. 

2. ARX Model structure (linear or nonlinear) is 
well suited to parameter estimation procedure, 
using usual or Evolutionary algorithms; 

3. Population size of 30 citizens is well enough 
for low order linear ARX model parameter 
estimation procedure, using GA and PSO – 
based approaches; 

4. When using GA and PSO – based approaches a 
number of 30 iterations gives in the linear case 
a good estimation accuracy AvSAE = 0.2 in our 
experiments; 

5. When using GA and PSO – based approaches 
accuracy and efficiency become statistical 
parameters, which depends on the initial 
population generation and mutation variance; 

6. For low order linear ARX model parameter 
estimation procedure the GA – based approach 
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gives a little bit higher performance than PSO – 
based approach; 

7. For low order linear ARX model parameter 
estimation procedure the PSO – based approach 
gives much more higher accuracy than GA – 
based approach; 

8. Significance analysis in all cases has shown 
that all varied parameters are significant; 

9. The best values for the Crossover parameter 
and the Mutation rate in GA algorithm are: 1.0 
and 0.5; 

10. The best values for the Correction factor and 
the Inertia rate in PSO algorithm are: 2.4 and 
0.6. 
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