Bulgarian Chemical Communications, Volume 49, Special Edition B, 2017

SUPPLEMENTARY DATA

Solution and solid state characterization of "sparteine surrogate" (+)-(1R,5S,11aS)-tetrahydrodeoxocytisine

S. P. Simeonov¹, S. D. Simova¹, B. L. Shivachev², R. P. Nikolova², V. B. Kurteva¹*

¹ Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev street, bl. 9, 1113 Sofia, Bulgaria

² Institute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev street, bl. 107, 1113 Sofia, Bulgaria

e-mail: vkurteva@orgchm.bas.bg

Table of contents

Fig. S1. Proton NMR spectra of 2.HCl at different temperatures.

Fig. S2. HSQC spectrum of 2.HCl.

Fig. S3. NOESY ZF spectrum of 2.HCl.

Fig. S4. COSYDF spectrum of 2.2HCl.

Fig. S5. HSQC spectrum of 2.2HCl.

Fig. S6. NOESY ZF spectrum of 2.2HCl.

Fig. S7. COSYDF spectrum of 3.HCl.

Fig. S8. NOESY ZF spectrum of 3.HCl.

Fig. S9. HSQC spectrum of 3.HCl.

Fig. S10. HMBC spectrum of 3.HCl.

Table S1. Most important data collection and refinement indicators for 2.2HCl, 2.HCl, and 3.HCl

Table S2. Bond lengths for 2.2HCl, 2.HCl, and 3.HCl

Table S3. Hydrogen Bonds geometry for 2.2HCl, 2.HCl, and 3.HCl

Fig. S11. FTIR spectrum of 2.2HCl and 2.HCl (KBr).

Fig. S12. Representation of a) DTA and TGA curves and b) gas mass evolving detection of 18 u

(water) and 35 u (chlorine); detection of 17 u (OH⁻) and 36 u (HCl) was not observed.

Fig. S1. Proton NMR spectra of 2.HCl at different temperatures.

Fig. S2. HSQC spectrum of 2.HCl.

Fig. S3. NOESY ZF spectrum of 2.HCl.

Fig. S4. COSYDF spectrum of 2.2HCl.

Fig. S5. HSQC spectrum of 2.2HCl.

Fig. S6. NOESY ZF spectrum of 2.2HCl.

Fig. S7. COSYDF spectrum of 3.HCl.

Fig. S8. NOESY ZF spectrum of 3.HCl.

Fig. S9. HSQC spectrum of 3.HCl.

Fig. S10. HMBC spectrum of 3.HCl.

	2 .2HCl	2 .HCl	3 .HCl
Chemical formula	$2(Cl) \cdot C_{11}H_{22}N_2 \cdot 0.28(H_2O)$	$Cl \cdot C_{11}H_{21}N_2 \cdot 0.41(H_2O)$	$C_{11}H_{19}N_2O\cdot H_2O\cdot Cl$
$M_{ m r}$	258.25	224.13	248.75
Crystal system, space group	Orthorhombic, $P2_12_12_1$	Monoclinic, C2	Orthorhombic, $P2_12_12_1$
Temperature (K)	290	290	290
a, b, c (Å)	7.7173(11), 9.3085(12), 18.737(3)	11.794(2), 7.7031(9), 13.9152(19)	7.602(3), 11.840(5), 13.840(3)
α, β, γ (°)	90, 90, 90	90, 97.170(15), 90	90, 90, 90
$V(\text{\AA}^3)$	1346.0 (3)	1254.3 (3)	1245.8 (8)
Ζ	4	4	4
Radiation type	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο <i>Κ</i> α
μ (mm ⁻¹)	0.46	0.28	0.30
Crystal size (mm)	$0.3\times0.2\times0.15$	$0.28 \times 0.16 \times 0.14$	$0.3 \times 0.25 \times 0.22$
Data collection			
Diffractometer	SuperNova, Dual, Cu at zero, Atlas	SuperNova, Dual, Cu at zero, Atlas	CAD4 Enraf nonius
Absorption correction	Multi-scan	Multi-scan	None
T_{\min} , T_{\max} or decay	0.513, 1.000	0.592, 1.000	0.935
No. of measured, independent and observed [$I > 2\sigma(I)$] reflections	4492, 2807, 1717	3752, 2578, 1912	2815, 2644, 1782
$R_{\rm int}$	0.076	0.032	0.056
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.691	0.690	0.660
Refinement			
$R[F^2 > 2\sigma(F^2)],$ wR(F ²), S	0.075, 0.195, 1.03	0.057, 0.180, 1.05	0.063, 0.175, 1.01
No. of reflections	2807	2578	2644
No. of parameters	170	157	168
No. of restraints	0	1	0
H-atom treatment	H atoms treated by	a mixture of independent and co	nstrained refinement
$\Delta \rho_{max}, \Delta \rho_{min} (e \text{ Å}^{-3})$	0.53, -0.41	0.29, -0.30	0.36, -0.34
Absolute structure	Flack x determined using 371 quotients [(I+)-(I-)]/[(I+)+(I-)][1]	Flack x determined using 604 quotients [(I+)-(I-)]/[(I+)+(I-)][1]	Flack x determined using 528 quotients [(I+)-(I-)]/[(I+)+(I-)] [1]
Absolute structure parameter	-0.29 (17)	0.02 (14)	-0.23 (14)

Table S1. Most important data collection and refinement indicators for 2.2HCl, 2.HCl, and 3.HCl

	2 .2HCl	2 .HCl	3.HCl	
N7A-C11A	1.526(8)	1.456(5)	1.483(7)	
N7A—C7	1.494(9)	1.471(6)	1.487(7)	
N7A—C8	1.506(9)	1.459(6)	1.365(8)	
N7A—H7A	0.93(6)	-	-	
N3—H3A	1.00(7)	0.89(7)	0.94 (7)	
N3—H3B	1.09 (7)	0.79 (6)	0.82 (8)	
N3—C4	1.480 (8)	1.484 (7)	1.490 (8)	
N3—C2	1.473 (8)	1.479 (6)	1.492 (8)	
C11A—C1	1.500 (9)	1.525 (6)	1.545 (8)	
C11A-C11	1.514 (9)	1.510(6)	1.508 (8)	
C11A—H11A	1.05 (7)	0.96 (4)	1.05 (5)	
C1—C2	1.520 (9)	1.523 (6)	1.517 (8)	
C1—C6	1.516 (10)	1.509(7)	1.527 (7)	
C1—H1	1.02 (6)	0.96(7)	1.047 (7)	
C9-C10	1.512 (11)	1.508 (7)	1.510 (9)	
C9—C8	1.492 (11)	1.500(7)	1.504 (8)	
C5—H5	0.93 (6)	0.94 (6)	1.06 (6)	
C11-C10	1.534 (11)	1.514(7)	1.509 (9)	
C6—C5	1.521 (10)	1.501(8)	1.520 (9)	
C7—C5	1.511 (10)	1.510 (8)	1.519 (8)	
C5—C4	1.544 (10)	1.525(8)	1.517 (9)	
O8—C8	-	-	1.216 (7)	
O10W—H10C	0.9321	0.93	0.8496	
O10W—H10D	0.9265	0.9291	0.8498	

Table S2. Bond lengths for 2.2HCl, 2.HCl, and 3.HCl

Table S3. Hydrogen Bonds geometry for 2.2HCl, 2.HCl, and 3.HCl

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H···A
Compound 2.2HCl				
C2—H2 B ···Cl7 ⁱ	0.97	2.82	3.761 (7)	164
C11—H11 <i>B</i> ····O10 <i>W</i> ⁱⁱ	0.97	2.59	3.40 (3)	140
C8—H8A…Cl3 ⁱⁱⁱ	0.97	2.80	3.679 (7)	152
C8—H8B····Cl3 ^{iv}	0.97	2.84	3.766 (8)	159
C4—H4A…Cl7	0.97	2.79	3.494 (6)	130
C4—H4 B ···O10 W^{v}	0.97	2.64	3.43 (3)	139
O10W—H10D····Cl7 ^{vi}	0.93	2.17	3.10 (2)	179
N3—H3A····Cl7 ^{vii}	1.00 (7)	2.14 (7)	3.094 (6)	158 (5)
N7A—H7A····Cl7 ^{vii}	0.93 (6)	2.18 (7)	3.099 (5)	170 (5)
N3—H3 B ···Cl3 ^v	1.09 (7)	1.97 (7)	3.021 (6)	160 (5)
C1—H1…O10 <i>W</i> ⁱⁱ	1.02 (6)	2.32 (7)	3.29 (4)	158 (5)
C11A—H11A····Cl3 ⁱⁱⁱ	1.05 (7)	2.68 (7)	3.666 (7)	156 (5)

Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z; (iii) x-1/2, -y+1/2, -z+1; (iv) x, y+1, z; (v) -x+2, y+1/2, -z+3/2; (vi) x+1, y-1, z; (vii) -x+2, y-1/2, -z+3/2.

<i>D</i> —H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A	
Compound 2.HCl					
C2—H2 A ···Cl 3^{i}	0.97	2.93	3.820 (5)	153	
C4—H4 <i>B</i> ⋯O10 <i>W</i>	0.97	2.53	3.382 (14)	147	
O10 <i>W</i> —H10 <i>C</i> ····Cl3 ⁱ	0.93	2.21	3.137 (17)	179	
O10W—H10D…Cl3 ⁱⁱ	0.93	2.37	3.299 (15)	179	
N3—H3A···Cl3 ⁱⁱⁱ	0.89 (7)	2.21 (7)	3.068 (5)	160 (6)	
N3—H3 B ···Cl3 ^{iv}	0.70 (6)	2.57 (6)	3.217 (5)	156 (6)	
N3—H3 <i>B</i> ⋯N7A	0.70 (6)	2.45 (5)	2.806 (6)	113 (5)	

Symmetry codes: (i) x+1/2, y-1/2, z; (ii) -x+1/2, y-1/2, -z+1; (iii) -x+1, y, -z+1; (iv) x+1/2, y+1/2, z.

<i>D</i> —H···A	D—H	H····A	$D \cdots A$	<i>D</i> —H…A
Compound 3.HCl				
C9—H9A…O10 <i>W</i> ⁱ	0.97	2.57	3.332 (8)	135
C4—H4 A ···O10 W^{ii}	0.97	2.55	3.370 (8)	143
O10 <i>W</i> —H10 <i>C</i> ···Cl3 ⁱⁱⁱ	0.85	2.38	3.230 (5)	174
O10 <i>W</i> —H10 <i>D</i> ⋯O8	0.85	1.92	2.770 (7)	177
N3—H3A…Cl3	0.94 (7)	2.20 (7)	3.090 (6)	157 (6)
N3—H3 B ····Cl3 ^{iv}	0.82 (8)	2.46 (8)	3.178 (6)	147 (6)
C5—H5…O8 ⁱⁱ	1.06 (6)	2.42 (6)	3.427 (7)	157 (5)
$C1$ — $H1$ ···O10 W^v	1.05 (7)	2.65 (7)	3.639 (8)	157 (5)

Symmetry codes: (i) -x, y-1/2, -z-1/2; (ii) x-1/2, -y-3/2, -z; (iii) -x-1/2, -y-2, z-1/2; (iv) x+1/2, -y-5/2, -z; (v) -x-1, y-1/2, -z-1/2.

Fig. S11. FTIR spectrum of 2.2HCl and 2.HCl (KBr).

Fig. S12. Representation of a) DTA and TGA curves and b) gaz mass evolving detection of 18 u (water) and 35 u (chlorine) of **2**.2HCl; detection of 17 u (OH⁻) and 36 u (HCl) was not observed.

References

[1] Parsons, Flack and Wagner, Acta Cryst. B69 249 (2013).