Bulgarian Chemical Communications, Volume 49, Special Edition D, 2017

SUPPLEMENTARY DATA

Hydrogen Bonding Reactivities of Atomic Sites in the Nucleobases

Valia Nikolova, Diana Cheshmedzhieva, Sonia Ilieva, Boris Galabov*

Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria

e-mail: galabov@chem.uni-sofia.bg

Table of contents

Table S1. Proton affinities (PA), shifts of electrostatic potential at nuclei (ΔV_N), and atomic charges [$q_N(NBO)$ and $q_N(Hirsh)$] for nitrogen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 2) from M06-2X/6-311+G(2d,2p) computations. S2-S4 **Table S2.** Proton affinities (PA), shifts of electrostatic potential at nuclei (ΔV_O), and atomic charges [$q_O(NBO)$ and $q_O(Hirsh)$] for carbonyl oxygen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 3) from M06-2X/6-311+G(2d,2p) computations. S4-S5

Figure S1. Plot of theoretically evaluated proton affinities vs. shifts of electrostatic potential at the nuclei for nitrogen atomic sites in model compounds (Scheme 2) and in the nucleobases. **S**5 **Figure S2.** Plot of proton affinities vs. shifts of electrostatic potential at the nuclei for oxygen atomic sites in model compounds (Scheme 2) and in the primary nucleobases. **S**6 Table S3. Theoretical parameters for N-H proton donating sites in the set of model nitrogen compounds (Scheme 3) and in the nucleobases from M06-2X/6-311+G(2d,2p). S6-S7 Table S4. Hydrogen bonding energies and reactivity descriptors for nitrogen proton accepting centers in model molecules (Scheme 2) from M06-2X/6-311+G(2d,2p) computations. **S8-S9** Table S5. Hydrogen bonding energies and reactivity descriptors for oxygen proton accepting centers in model molecules (Scheme 3) from M06-2X/6-311+G(2d,2p) computations. **S**9 **Table S6.** Hydrogen bonding energies, electrostatic potential at nuclei, NBO and Hirshfeld charges, and deprotonation energies for N-H hydrogen in 1,6-dihydropyrimidine and aniline S10 derivatives from M06-2X/6-311+G(2d,2p).

Table S7. Cartesian Coordinates, Total Energies (in *hartree*), and Number of Imaginary Frequencies for the Optimized Structures of Model Sets of Molecules, Used for Calculations The Shifts of EPN from M06-2X/6-311+G(2d,2p) Computations. S11 Table S8. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures of Model Sets of Molecules, Containing Nitrogen Atoms from M06-2X/6-311+G(2d,2p) Computations. S11-S17 Table S9. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Nucleobases from M06-2X/6-311+G(2d,2p) Computations. S17-S18 Table S10. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Carbonyl Oxygen Proton Accepting Sites from M06-2X/6-311+G(2d,2p) Computations. S18-S19 **Table S11.** Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Base Pairs from M06-2X/6-311+G(2d,2p) Computations. S20

Table S1. Proton affinities (PA), shifts of electrostatic potential at nuclei (ΔV_N), and atomic charges [q_N(NBO) and q_N(Hirsh)] for nitrogen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 2) from M06-2X/6-311+G(2d,2p) computations.

Molecule, Substituent	PA [kcal/mol]	ΔV _N ^b [kcal/mol]	q _N (NBO) [e]	q _N (Hirsh) [e]
Pyridine	219.0	2.6	-0.4594	-0.1613
Pyrimidines				
Н	208.6	10.5	-0.4837	-0.1640
4-CH ₃	214.6	6.1	-0.4932	-0.1714
4-NH ₂	224.0	-2.2	-0.5268	-0.1909
4-F	204.2	15.7	-0.4941	-0.1676
4-CHO	203.4	20.2	-0.4657	-0.1528
4-CN	197.1	27.1	-0.4631	-0.1482
4-NO ₂	193.9	30.1	-0.4588	-0.1453
Purines (sp ² N)				
Н	210.9	10.3	-0.4885	-0.1971
2-CH ₃	214.3	7.7	-0.4877	-0.1987

2-NH₂	219.2	4.2	-0.4828	-0.2000
2-F	206.5	15.4	-0.4806	-0.1930
2-CHO	206.0	17.4	-0.4887	-0.1933
2-CN	201.1	22.7	-0.4832	-0.1889
2-NO ₂	199.1	24.8	-0.4823	-0.1876
Purines (NH)				
Н	170.2	67.7	-0.5840	0.1018
2- CH₃	174.0	65.0	-0.5834	0.0988
2-NH ₂	179.8	60.7	-0.5894	0.0928
2-F	165.2	73.3	-0.5832	0.1076
2-CHO	165.6	74.6	-0.5798	0.1116
2-CN	159.7	81.0	-0.5774	0.1155
2-NO ₂	157.5	83.2	-0.5764	0.1194
Anilines				
Н	207.3	24.3	-0.8213	0.0720
4-CH ₃	210.0	18.9	-0.8156	0.0419
4-NH ₂	214.9	15.3	-0.8196	0.0290
4-F	204.6	23.9	-0.8151	0.0460
4-CHO	199.0	34.5	-0.8004	0.0806
4-CN	195.0	37.7	-0.8008	0.0826
4-NO ₂	193.0	40.8	-0.7967	0.0917
Pyridin-2(1H)-ones				
Н	176.0	57.0	-0.5898	0.1009
5-NH ₂	186.8	52.7	-0.5852	0.0922
5-NO ₂	158.8	80.0	-0.5734	0.1267
5-CH₃	180.9	53.9	-0.5881	0.0956
5-F	173.3	63.4	-0.5844	0.1039
5-CN	161.4	76.2	-0.5796	0.1208
5-Cl	172.6	64.9	-0.5819	0.1075
Imides				
Imide 1	186.4	49.9	-0.6913	0.0544
Imide 2	174.3	63.7	-0.6923	0.0685
Nucleobases				
Adenine				
N1	222.0	7.4	-0.5720	-0.2066
N3	220.2	1.9	-0.5434	-0.2110
N7	213.6	6.9	-0.5011	-0.2040
N9	177.6	52.5	-0.5772	0.1004
N10	200.0	33.9	-0.7865	0.1173
Guanine				
N3	209.4	9.8	-0.6013	-0.2333
N/	225.0	0.8	-0.4537	-0.1867
N9	179.6	60.9	-0.5702	0.0985

N11	186.5	45.1	-0.8132	0.0929
Thymine				
N1	174.4	64.4	-0.6335	0.0812
N3	174.8	54.4	-0.6648	0.0777
Uracil				
N1	172.4	55.9	-0.6704	0.0783
N3	169.0	68.1	-0.63696	0.0863
Cytosine				
N1	185.3	53.9	-0.6192	0.0840
N3	224.5	-6.7	-0.6165	-0.2182
N7	192.9	29.5	-0.7867	0.1195
Correlation coefficient ^a		0.986	0.167	0.817

^aCorrelation coefficients for the correlations with proton affinities

 ${}^{b}\Delta V_{N}$ is defined in Eqns. 2 and 3 in the main text.

Table S2. Proton affinities (PA), shifts of electrostatic potential at nuclei (ΔV_0), and atomic charges [q₀(NBO) and q₀(Hirsh)] for carbonyl oxygen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

Dorivativa	ΡΑ	ΔVo ^b	q _o (NBO)	q _o (Hirsh)
Derivative	[kcal/mol]	[kcal/mol]	[e]	[e]
Cyclohexa-2,4-dienones				
Н	209.0	-22.4	-0.5735	-0.2803
4-CH3	211.1	-23.5	-0.5739	-0.2810
4-NH2	211.8	-23.1	-0.5713	-0.2785
4-F	202.5	-15.36	-0.5626	-0.2709
4-Cl	203.3	-14.9	-0.5618	-0.2707
4-Br	203.6	-14.7	-0.5616	-0.2705
4-CHO	202.0	-13.6	-0.5616	-0.2700
4-CN	196.8	-8.36	-0.5544	-0.2645
4-NO	200.2	-11.9	-0.5602	-0.2689
4-NO2	195.6	-6.9	-0.5525	-0.2629
Benzoquinone	188.6	1.3	-0.5110	-0.2370
Pyridin-2(1H)-ones				
Н	217.4	-36.9	-0.6543	-0.3450
5-CH₃	220.9	-39.4	-0.6587	-0.3493
5-NH ₂	224.7	-42.0	-0.6659	-0.3555
5-F	213.5	-32.8	-0.6519	-0.3430
5-Cl	213.3	-30.4	-0.6453	-0.3376
5-CN	203.9	-18.5	-0.6230	-0.3189
5-NO ₂	201.8	-15.0	-0.6156	-0.3127

Nucleobases Guanine

010	213.2	-29.6	-0.6093	-0.3120
Tymine				
07	204.9	-20.2	-0.6130	-0.3006
08	206.1	-20.0	-0.6424	-0.3324
Uracil				
07	208.5	-19.76	-0.6047	-0.3059
08	203.2	-16.7	-0.6362	-0.3270
Cytosine				
08	226.6	-41.9	-0.6445	-0.3438
Correlation coefficient ^a		0.985	0.769	0.794

^aCorrelation coefficients for the correlations with proton affinities and molecular parameters ${}^{b}\Delta V_{0}$ is defined in eq 4 in the main text.

Figure S1. Plot of theoretically evaluated proton affinities vs. shifts of electrostatic potential at the nuclei

for nitrogen atomic sites in model compounds (Scheme 2) and in the nucleobases.

Figure S2. Plot of proton affinities vs. shifts of electrostatic potential at the nuclei for oxygen atomic sites in model compounds (Scheme 2) and in the primary nucleobases.

Table S3. Theoretical parameters for N-H proton donating sites in the set of model nitrogen compounds (Scheme 3) and in the nucleobases from M06-2X/6-311+G(2d,2p).

Derivative	Edep [kcal/mol]	ΔV _H ^b [kcal/mol]	q _н (NBO) [e]	q _H (Hirsh) [e]
1,6-dihydropyrimidines				
Н	-363.4998	31.89	0.3914	0.1302
4-0CH ₃	-361.0473	33.33	0.3930	0.1322
4-NH ₂	-363.0383	31.32	0.3911	0.1298
4-F	-354.9421	41.67	0.3920	0.1314
4-Cl	-352.1474	41.99	0.3968	0.1367
4-Br	-350.2850	41.67	0.3970	0.1366
4-CHO	-353.2339	41.24	0.3972	0.1368
4-CN	-347.5278	41.57	0.3989	0.1384
4-NO ₂	-345.2926	50.27	0.4008	0.1400
Anilines				
Н	-374.3994	17.14	0.3747	0.1142
4-OCH3	-377.2192	13.31	0.3700	0.1108
4-NH2	-377.8860	11.05	0.3697	0.1093

4-F	-372.4906	19.77	0.3742	0.1143
4-Cl	-367.6720	22.91	0.3766	0.1167
4-Br	-366.3538	27.37	0.3771	0.1172
4-CHO	-355.4729	30.57	0.3824	0.1227
4-CN	-354.9064	33.77	0.3834	0.1235
4-NO2	-348.7905	36.91	0.3856	0.1258
Nucleobases				
Adenine				
N9-H	-342.0567	57.56	0.4258	0.1587
N10-H	-361.6756	31.44	0.4043	0.1320
Guanine				
N1-H	-344.4985	50.95	0.4127	0.1424
N9-H	-341.8752	56.85	0.4236	0.1566
N11-H	-350.0580	40.91	0.3860	0.1287
Tymine				
N1-H	-341.5219	56.43	0.4232	0.1533
N3-H	-352.8951	4782	0.4273	0.1526
Uracil				
N1-H	-339.6191	59.86	0.4247	0.1551
N3-H	-352.4227	49.32	0.4284	0.1532
Cytosine				
N1-H	-351.4197	44.93	0.4182	0.1478
N7-H	-360.1006	39.22	0.3914	0.1309
correlation coefficient ^a		0.956	0.781	0.854

^a Correlation coefficients for the relationships of E_{dep} with ΔV_H , q_H (NBO) and q_H (Hirsh). ^b ΔV_H is defined in eq 5 in the main text.

Table S4. Hydrogen bonding energies and reactivity descriptors for nitrogen proton accepting centers in model molecules (Scheme 2) from M06-2X/6-311+G(2d,2p) computations.

Molecule	ΔE _{corr} [kcal/mol]	ΔV_N^a [kcal/mol.]	q _N (NBO) [e]	q _N (Hirsh) [e]	PA [kcal/mol]
sp ² - Hybridized nitrogen atoms					
Pyridine	-9.43	2.64	-0.4594	-0.1613	219.0
Pyrimidines					
Н	-8.27	10.47	-0.4837	-0.1640	208.6
4-CH ₃	-8.78	6.14	-0.4932	-0.1714	214.6
4-NH2	-9.66	-2.18	-0.5268	-0.1909	224.0
4-F	-7.82	15.71	-0.4941	-0.1676	204.2
4-CHO	-7.33	20.17	-0.4657	-0.1528	203.4
4-CN	-6.91	27.08	-0.4631	-0.1482	197.1

4-NO ₂	-6.57	30.09	-0.4588	-0.1453	193.9
Purines					
Н	-8.31	10.31	-0.4885	-0.1971	210.9
2-CH ₃	-8.57	7.71	-0.4877	-0.1987	214.3
2-NH2	-8.99	4.16	-0.4828	-0.2	219.2
2-F	-7.83	15.44	-0.4806	-0.193	206.5
2-СНО	-7.52	17.42	-0.4887	-0.1933	206.0
2-CN	-7.14	22.69	-0.4832	-0.1889	201.1
2-NO ₂	-7.16	24.78	-0.4823	-0.1876	199.1
sp³- Hybridized nitrogen atoms					
Anilines					
Н	-6.83	24.20	-0.8213	0.0720	207.3
4-CH ₃	-6.90	18.96	-0.8156	0.0419	210.0
4-OCH3	-7.92	17.61	-0.8181	0.0339	212.0
4-NH2	-7.47	15.30	-0.8196	0.0290	214.9
4-F	-6.77	23.90	-0.8151	0.0460	204.6
4-Cl	-6.19	26.98	-0.8113	0.0559	203.3
4-Br	-6.06	27.72	-0.8106	0.0579	203.1
4-CHO	-4.93	34.54	-0.8004	0.0806	199.0
4-CN	-4.84	37.74	-0.8008	0.0826	195.0
5-Amino-pyrimidines					
Н	-5.15	35.71	-0.8105	0.0704	193.1
2-CH ₃	-5.36	32.50	-0.8131	0.0621	197.3
2-NH ₂	-6.31	26.90	-0.8185	0.0438	204.7
2-F	-4.90	39.23	-0.8117	0.0694	189.9
2-СНО	-3.92	46.42	-0.8002	0.0957	186.8
2-CN	-3.32	51.23	-0.7988	0.1025	
2-NO ₂	-3.16	53.60	-0.7974	0.1072	
Correlation coefficients ^b		0.991	0.516	0.387	0.985
Correlation coefficients ^c		0.987	0.897	0.937	0.958

 $^{a}\Delta V_{N}$ is defined in Eqns. 2 and 3 in the main text. b Correlation coefficient for the relationship between hydrogen bonding energies and molecular parameters for sp²-hybridized nitrogen atoms.

^c Correlation coefficient for the relationship between hydrogen bonding energies and molecular parameters for sp³-hybridized nitrogen atoms.

Malacula	ΔE _{corr}	ΔVo ^b	q _o (NBO)	q _o (Hirsh)	РА
wolecule	[kcal/mol]	[kcal/mol.]	[e]	[e]	[kcal/mol]
Cyclohexa-2,4-dienones					
Н	-9.72	-22.41	-0.5735	-0.2803	209.0
4-CH ₃	-10.11	-23.54	-0.5739	-0.2810	211.1
4-NH ₂	-10.00	-23.10	-0.5713	-0.2785	211.8
4-F	-9.14	-15.26	-0.5626	-0.2709	202.5
4-Cl	-8.91	-14.69	-0.5616	-0.2705	203.6
4-Br	-9.21	-14.88	-0.5618	-0.2707	203.3
4-CHO	-8.48	-13.63	-0.5616	-0.2700	202.0
4-CN	-8.56	-8.36	-0.5544	-0.2645	196.8
4-NO	-8.81	-11.87	-0.5602	-0.2689	200.2
4-NO ₂	-8.34	-6.91	-0.5525	-0.2629	195.6
Benzoquinone	-6.92	1.31	-0.5110	-0.2370	188.6
Pyridin-2(1H)-ones					
Н	-11.38	-36.91	-0.6543	-0.3450	217.4
5-CH3	-11.61	-39.42	-0.6587	-0.3493	220.9
5-NH ₂	-12.18	-41.99	-0.6659	-0.3555	224.7
5-F	-10.80	-30.38	-0.6453	-0.3376	213.3
5-Cl	-11.15	-32.83	-0.6519	-0.3430	213.5
5-CN	-9.53	-18.46	-0.6230	-0.3189	203.9
5-NO ₂	-9.22	-15.01	-0.6156	-0.3127	201.8
Correlation coefficients ^a		0.991	0.911	0.910	0.979

Table S5. Hydrogen bonding energies and reactivity descriptors for oxygen proton accepting centers in model molecules (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

^a Correlation coefficients for the relationships between ΔE_{cor} and molecular parameters. ^b ΔV_0 is defined in eq 4 in the main text.

Table S6. Hydrogen bonding energies, electrostatic potential at nuclei, NBO and Hirshfeld charges, and deprotonation energies for N-H hydrogen in 1,6-dihydropyrimidine and aniline derivatives from M06-2X/6-311+G(2d,2p).

Derivative	ΔE _{corr} [kcal/mol]	ΔV _H ^b [kcal/mol]	q _н (NBO) [e]	q _H (Hirsh) [e]	E _{dep} [kcal/mol]
1,6-Dihydropyrimidines					
Н	-4.57	31.89	0.3914	0.1302	-363.50
4-0CH₃	-4.69	33.33	0.3930	0.1322	-361.05
4-NH ₂	-4.72	31.32	0.3911	0.1298	-363.05
4-Br	-5.41	41.67	0.3970	0.1366	-350.29
4-CHO	-5.42	41.24	0.3972	0.1368	-353.23

4-NO ₂	-5.85	50.27	0.4008	0.1400	-345.29
Anilines					
Н	-3.64	17.14	0.3747	0.1142	-374.40
4-OCH₃	-3.54	13.31	0.3700	0.1108	-377.22
4-Br	-4.04	27.37	0.3771	0.1172	-366.35
4-CHO	-4.49	30.57	0.3824	0.1227	-355.47
4-CN	-4.84	33.77	0.3834	0.1235	-354.91
4-NO ₂	-5.18	36.91	0.3856	0.1258	-348.79
Correlation coefficient ^a		0.988	0.930	0.942	0.964
Nucleobases					
Adenine					
N9-H		57.56	0.4258	0.1587	
N10-H		31.44	0.4043	0.1320	
Guanine					
N1-H		50.95	0.4127	0.1424	-344.4985
N9-H		56.85	0.4236	0.1566	-341.8752
N11-H		40.91	0.3860	0.1287	-350.0580
Tymine					
N1-H		56.43	0.4232	0.1533	-341.5219
N3-H		47.82	0.4273	0.1526	-352.8951
Uracil					
N1-H		59.86	0.4247	0.1551	-339.6191
N3-H		49.32	0.4284	0.1532	-352.4227
Cytosine					
N1-H		44.93	0.4182	0.1478	-351.4197
N7-H		39.22	0.3914	0.1309	-360.1006

 a Correlation coefficients for the relationships between ΔE_{corr} and ΔV_{H}

 $^{\text{b}}\,\Delta V_{\text{H}}$ is defined in eq 5 in the main text.

S7. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures of Model Sets of Molecules, Used for Calculations the Shifts of EPN from M06-2X/6-311+G(2d,2p) Computations.

NH3 N,0,-1.6758727194,-0.811738200 H,0,-1.2975135118,-1.750837126 H,0,-1.2974965372,-0.342195676 H,0,-1.2974965372,-0.342195477 HF=-56.5492627	6,-0.01062624 3,-0.0106263553 9,0.8026533954 1,-0.8239057601 Nimag=0	HCHO C,0,-1.0437002383,0.147944190 H,0,-1.6218085078,1.087047012 H,0,-1.621829146,-0.791145928 O,0,0.152204772,0.1479309884, HF=-114.4907506	03,-0.0079707831 28,-0.0079608214 31,-0.0079831801 ,-0.0079615754 Nimag=0
CH₂NH			
C,0,0.5661033495,0.0364230069,	0.	H ₂	
H, 0, 0.9979024625, 1.0391081601, 0. N, 0, -0.6723737983, -0.2042463602, 0.		H,0,-0.3691560705,0.,0. H.0.0.3691560705.00.	
		HF= -1.1687457	Nimag=0
HF=-94.6151324	, U. Nimag=0		

Table S8. Cartesian Coordinates, Total Energies (in *hartree*), and Number of Imaginary Frequencies for the Optimized Structures of Model Sets of Molecules, Containing Nitrogen Atoms from M06-2X/6-311+G(2d,2p) Computations.

Pyridine

Pyrimidines

н

C,0,-2.5792178472,-0.7439168363,0.128727094 N,0,-3.0059499288,0.4906321407,-0.1244530826 C,0,-2.061353049,1.4116590905,-0.2892346328 N,0,-0.7459331259,1.2283713671,-0.2277561018 C,0,-0.3411460734,-0.0133435347,0.0264276682 C,0,-1.232349266,-1.0571136701,0.2165932189 H,0,-3.3419648055,-1.5017666678,0.264592401 H,0,-2.3998578557,2.4197255091,-0.4957795911 H,0,0.7295913385,-0.1726866619,0.0784860631 H,0,-0.8950623868,-2.0615607366,0.4223969631 HF=-264.2918383

4-CH₃

C, 0, 0.862319417, 0.013442206, 0.0062468555

4-NH₂

C,0,0.166583532,1.2066660991,0.0150187755 C,0,0.8909707529,0.0059667985,0.0380274884 N,0,0.2694736938,-1.1737811168,0.0358732267 C,0,-1.0589907252,-1.1454555972,0.0055819927 N,0,-1.8449964581,-0.0783955557,-0.0167148738 C,0,-1.2034274931,1.0964805739,-0.0101152109 N,0,2.2573291671,-0.0154166784,0.022110771 H,0,0.6607218085,2.1669664559,0.0115842926 H,0,-1.5521484509,-2.1107979192,0.0022269552 H,0,-1.8247561796,1.9841233933,-0.0272537786 H,0,2.6778259068,-0.899897693,0.2534014009 H,0,2.7498197358,0.8060229957,0.3243050803 HF=-319.6641017

4-F

C,0,-1.1300337659,0.1889627746,0.0328119507 C,0,-1.0720117106,-1.194765247,0.0198861204 N,0,0.0318581198,-1.8900651326,-0.0132851111 C,0,1.1571714673,-1.1719781768,-0.0349418588 N,0,1.2534915339,0.1487573409,-0.0256134604 C,0,0.0989456026,0.8188339234,0.0083564436 F,0,-2.2065143027,-1.8830133714,0.0409865547 H,0,-2.068551018,0.7182930293,0.0601037149 H,0,2.0827760615,-1.7328507499,-0.061900115 H,0,0.1655500122,1.8995896096,0.015962761 HF=-363.544721 Nimag=0

4-CHO

C, 0, -0.53647031, 0.7184528072, 0.024215086 C, 0, -0.5068928348, -0.6662510763, 0.0115431227 N, 0, 0.627074717, -1.362117013, -0.015676758 C, 0, 1.7481399907, -0.6481834872, -0.0298976146 N, 0, 1.8419619768, 0.6782456493, -0.020547651 C, 0, 0.694748011, 1.3534324793, 0.0069939804 C, 0, -1.7710606562, -1.4725204985, 0.0276836273 O, 0, -2.8594700306, -0.9712757671, 0.0522728599 H, 0, -1.4754817081, 1.2508274585, 0.0461080273 H, 0, 2.6783179406, -1.2018070433, -0.0532054934 H, 0, -1.6147661098, -2.5634927823, 0.0148706025 HF=-377.6096452 Nimag=0

4-CN

 $\begin{array}{l} C,0,-0.6179969206,0.4348955074,0.0271556338\\ C,0,-0.5757179001,-0.9510338515,0.0136051076\\ N,0,0.5625383272,-1.6407833231,-0.0137848468\\ C,0,1.6741711836,-0.9150503936,-0.0271341303\\ N,0,1.7600881206,0.4135367565,-0.0163697546\\ C,0,0.6105403186,1.0782622765,0.0109265802\\ C,0,-1.8102940068,-1.7098463462,0.02849992\\ N,0,-2.8105489245,-2.2683866562,0.0412534632\\ H,0,-1.5533873123,0.972064953,0.0490529359\\ H,0,2.6070927122,-1.4638299036,-0.049753348\\ H,0,0.6719384019,2.1595699808,0.019649439\\ HF=-356.5252833 \\ \end{array}$

4-NO₂

Purines

н

N,0,1.0184670902,-1.9347938115,0.0760436206 C,0,2.148941418,-1.2670769244,0.2864762016 N,0,2.3051118353,0.0553948798,0.4324531693 C,0,1.2268868766,0.8291520975,0.3657500356 C,0,-0.0193544667,0.2594051089,0.1495145511 C,0,-0.0339829209,-1.1353573603,0.015128153 N,0,-1.2995577063,0.7728376486,0.0317955669 C,0,-2.0450363679,-0.2721875226,-0.1644634551 N,0,-1.349822423,-1.4587792353,-0.186824872 H,0,3.0510212436,-1.8618656928,0.3473130187 H,0,1.3606945601,1.8975475709,0.4846319394 H, 0, -3.1142000474, -0.250350114, -0.3014385238 H, 0, -1.7216642722, -2.3828436447, -0.3226724055 HF= -411.9126643 Nimag=0

2-CH₃

C, 0, 0.862319417, 0.013442206, 0.0062468555 C, 0, 0.1394635242, 1.1981866775, -0.0737095077 C, 0, -1.2414306175, 1.1022114706, -0.0628883164 N, 0, -1.8759469194, -0.0641723115, 0.0194410946 C, 0, -1.0929077908, -1.1372448947, 0.0912676989 N, 0, 0.2341255085, -1.1626021918, 0.0892296786 C, 0, 2.3604309135, -0.0175078312, 0.0082275399 H, 0, 0.6354943308, 2.1551660363, -0.142102052 H, 0, -1.8622561537, 1.9886460256, -0.122650238 H, 0, -1.593166723, -2.0963133515, 0.1581719501 H, 0, 2.713323007, -0.672129263, -0.7873428741 H, 0, 2.7160042075, -0.4321267255, 0.9511544741 H, 0, 2.7832275059, 0.975137153, -0.1265640335 HF=-303.6057028 Nimag=0

2-NH₂

N,0,1.0918093965,-1.0694490839,0.9059088981 C, 0, 2.0363492265, -0.6470492626, 0.0626423496 N, 0, 1.952396687, 0.3793606977, -0.8104716967 C, 0, 0.8159757999, 1.0549258478, -0.8741857724 C, 0, -0.2537183582, 0.7091326804, -0.060511869 C, 0, -0.024955518, -0.3677872949, 0.803953313 N, 0, -1.5369118648, 1.2077819638, 0.1078275658 C, 0, -2.0522775936, 0.4592475097, 1.031253366 N, 0, -1.1922044569, -0.514627856, 1.5017330995 H, 0, 0.7618555813, 1.8785282062, -1.5763371929 H, 0, -3.051759789, 0.5559299412, 1.4233835501 H, 0, -1.3783782443, -1.2036614526, 2.2090043179 N, 0, 3.2138412571, -1.3458469601, 0.0484341001 H, 0, 3.9941317555, -0.8705872848, -0.3696349139 H,0,3.4020947409,-1.9095104819,0.8585828048 HF=-467.2849791 Nimag=0

2-F

N, 0, 0.8933772444, -1.4143395019, 0.0000721809 C, 0, 1.978244702, -0.6734511367, 0.0001452192 N, 0, 2.1113859565, 0.6432066539, 0.0000244023 C, 0, 0.9956560572, 1.3672759328, -0.000012956 C, 0, -0.2382308093, 0.7352787522, 0.0000093862 C, 0, -0.2003745488, -0.6659913448, 0.0000329724 N, 0, -1.5481155359, 1.1841025835, -0.0000047932 C, 0, -2.2575891431, 0.0984814538, 0.0000152633 N, 0, -1.5078718205, -1.0593214754, -0.0000153301 H, 0, 1.0969377649, 2.4451210496, -0.0000605141 H, 0, -3.33511308, 0.0633696908, 0.000046744 H, 0, -1.8447505093, -2.0066884246, 0.000188128 F, 0, 3.1170525619, -1.3488528431, -0.0001347231 HF=-511.1658356 Nimag=0

2-CHO

$$\begin{split} &\mathsf{N}, 0, -0.6879677885, -0.8760530915, -0.0248107546\\ &\mathsf{C}, 0, -1.4612291759, 0.2060158926, -0.0072463101\\ &\mathsf{N}, 0, -1.0753418121, 1.4890024133, 0.0274888522\\ &\mathsf{C}, 0, 0.2245649048, 1.7628889968, 0.0479718973\\ &\mathsf{C}, 0, 1.1408913478, 0.7219395483, 0.0330128198\\ &\mathsf{C}, 0, 0.5939550303, -0.573185618, -0.0037830759\\ &\mathsf{N}, 0, 2.5205570879, 0.6653325637, 0.0463108426\\ &\mathsf{C}, 0, 2.7877168678, -0.6069278392, 0.018285543\\ &\mathsf{N}, 0, 1.6764424921, -1.4129007135, -0.0129507883\\ &\mathsf{C}, 0, -2.950552112, 0.0053958831, -0.0281615453\\ &\mathsf{O}, 0, -3.4774072472, -1.0680912133, -0.0593434696\\ &\mathsf{H}, 0, 0.5269792346, 2.8024003105, 0.0761638115\\ &\mathsf{H}, 0, 3.780930368, -1.0268954349, 0.0188977828\\ &\mathsf{H}, 0, 1.6483840703, -2.4179478144, -0.0366933258 \end{split}$$

H,0,-3.5192911375,0.9496137264,-0.0120189897 HF=-525.2276826 Nimag=0

2-CN

N, 0, 0.8959853236, -1.4223142203, 0.000454086 C, 0, 2.0046199824, -0.6882744919, 0.000619604 N, 0, 2.1191742752, 0.6446191857, 0.0000118003 C, 0, 1.0042111326, 1.366305532, -0.0000097233 C, 0, -0.2283365078, 0.7295721862, 0.0000011415 C, 0, -0.1925483278, -0.6738420948, 0.0000228123 N, 0, -1.533052458, 1.179580256, -0.0000095884 C, 0, -2.2457380212, 0.0925827374, 0.00001243 N, 0, -1.503005081, -1.0642705815, -0.0000070678 H, 0, 1.1018785937, 2.4445011814, -0.0000385741 H, 0, -3.3235020655, 0.0622186503, 0.0000062792 H, 0, -1.8430050938, -2.0109703391, 0.0001402607 C, 0, 3.2545881111, -1.4293295726, 0.0000102804 N, 0, 4.2374048964, -2.0177343785, -0.0000280597 HF=-504.1458213

2-NO₂

N,0,0.2442463872,-0.9489564368,0. C,0,1.0446901812,0.0917873777,0. N,0,0.7715446782,1.3815244013,0. C, 0, -0.5107415032, 1.7339431644, 0. C,0,-1.4902516938,0.7506692799,0. C, 0, -1.0231945532, -0.5748295742, 0. N,0,-2.8692324614,0.7754831258,0. C, 0, -3.2113291774, -0.4787140912, 0. N, 0, -2.1487262112, -1.3502282111, 0. н,0,-0.74388674,2.7908703129,0. H, 0, -4.2271632218, -0.8400952976, 0. H, 0, -2.1808124633, -2.3558974617, 0. N, 0, 2.5152687845, -0.2492992009, 0. 0,0,2.7981884452,-1.4234558329,0. 0,0,3.289588789,0.6748577745,0. HF=-616.3999032

Nimag=0

Anilines

Н

C, 0, -1.1567914664, -1.1965922871, 0.0013822866 C, 0, -1.8619530566, 0.0000005434, -0.0127316443 C, 0, -1.1567914049, 1.1965927428, 0.0014339125 C, 0, 0.2290066438, 1.2013843813, 0.029316356 C, 0, 0.9389518045, -0.0000007722, 0.0453068969 C, 0, 0.229006593, -1.2013851808, 0.0292645594 N,0,2.3371220112,-0.000000882,0.0139251015 H, 0, -1.6890861248, -2.1379199481, -0.0091627676 H, 0, -2.9417589644, 0.0000010515, -0.0343988133 H, 0, -1.6890860373, 2.1379208716, -0.0090705737 H, 0, 0.7707474648, 2.1386563764, 0.034366209 H, 0, 0.7707473576, -2.1386574295, 0.0342739595 H, 0, 2.7606530194, -0.8315936625, 0.3936840748 H, 0, 2.7606530702, 0.8315767034, 0.3937207525 HF=-287.5667192 Nimag=0

4-CH₃

C,0,0.0.6687283684,1.18803449,-0.0013626827 C,0,1.3917807714,-0.0021167096,-0.0105609845 C,0,0.668927894,-1.1910250854,-0.0224096536 C,0,-0.717788593,-1.1986386896,-0.0197193421 C,0,-1.4315657113,-0.0017390717,-0.0046562346 C,0,-0.7168299143,1.1959424599,0.0013787447 N,0,-2.8313568552,-0.0000160731,-0.0663265225 C,0,2.8975251911,0.0008472517,0.0163731566 H,0,1.2005957013,2.1315931555,0.0011356562 H,0,1.2002151467,-2.1346288892,-0.0366357962 H, 0, -1.2546309258, -2.1386890235, -0.0383645843 H, 0, -1.2537638093, 2.1361446414, -0.0008663192 H, 0, -3.2574484913, 0.8261507413, 0.3232169343 H, 0, -3.25862705, -0.8337659235, 0.3053543105 H, 0, 3.2983176334, -0.926232354, -0.3909393212 H, 0, 3.2741486085, 0.1043837053, 1.0355116186 H, 0, 3.2995096153, 0.8280925846, -0.5675942499 HF=-326.8743802 Nimag=0

4-OCH₃

C, 0, 2.030017081, -0.2003252115, -0.0048787843 C, 0, 1.4894372518, 1.0883645499, -0.0006923855 C, 0, 0.123054444, 1.2841395996, 0.0151710663 C, 0, -0.7489493855, 0.1974275445, 0.0234636166 C, 0, -0.2253518098, -1.0882174673, 0.0160312583 C,0,1.154347566,-1.2773015997,0.00147505 N, 0, 3.4209013381, -0.393210333, -0.0840234871 0,0,-2.0804927758,0.4973104039,0.0393634947 C, 0, -2.9825238267, -0.5845335011, 0.0385605068 H, 0, 2.1522263527, 1.944299957, -0.0144363184 H, 0, -0.2948070822, 2.2809393506, 0.0206802977 H, 0, -0.8697755744, -1.9539060967, 0.0216375515 H, 0, 1.5487119521, -2.2853727126, -0.0100289237 H, 0, 3.7254303156, -1.2744072255, 0.3003944468 H,0,3.9527721464,0.3629778929,0.3188161906 H, 0, -2.8642680887, -1.198472353, -0.8579137288 H, 0, -2.8511667795, -1.2113372954, 0.9242816096 H, 0, -3.9780991249, -0.1511775025, 0.049270539 HF=-402.0805518 Nimag=0

4-NH₂

C, 0, -1.3750324781, 0.7065962653, 0.0070831847 C, 0, -1.4022345173, -0.6840603735, 0.0739922032 C, 0, -0.1864087732, -1.3588681849, 0.1494850984 C, 0, 1.0148038896, -0.667351195, 0.1530828343 C,0,1.042101343,0.7230776001,0.0810918386 C, 0, -0.1737836114, 1.3981053278, 0.0104254606 N,0,2.2593966216,1.4284066447,0.1492947676 N, 0, -2.6235673466, -1.3826534091, 0.1349900123 H, 0, -2.3067846242, 1.2557299509, -0.0434825634 H, 0, -0.1801620171, -2.4397964216, 0.2113600076 H, 0, 1.9461437596, -1.2157377641, 0.217588792 H, 0, -0.1805405218, 2.4797443977, -0.037342412 H, 0, 2.222114211, 2.3293833333, -0.3026044149 H, 0, 3.0442743753, 0.900491434, -0.2008809841 H, 0, -2.559838771, -2.3251957169, -0.2183180868 H, 0, -3.3821665394, -0.8963928887, -0.318180738 HF=-342.9198605 Nimag=0

4-F

C, 0, 0.7166176337, 1.2043819458, 0.0018923988 C, 0, 1.3899273959, 0.0000020648, -0.000197192 C, 0, 0.7165677682, -1.204354573, 0.0020737052 C, 0, -0.6700901963, -1.1999837218, 0.006395309 C, 0, -1.3811163313, 0.0000579354, 0.0105113716 C, 0, -0.6700454392, 1.2000666366, 0.006234578 N, 0, -2.7822005532, 0.0000574506, -0.0479258571 F,0,2.7379169816,-0.0000275216,-0.0031916635 H, 0, 1.2764026377, 2.1283092349, 0.0002048078 H, 0, 1.2763178948, -2.1283033694, 0.0005229299 H, 0, -1.2082760034, -2.1387796664, 0.0018796626 H, 0, -1.2081865165, 2.1388882947, 0.0016222684 H, 0, -3.2065849421, 0.8301530418, 0.3344912521 H, 0, -3.2066133901, -0.8297681025, 0.3350477793 HF=-386.8087841 Nimag=0

4-Cl

C,0,0.869684175,-1.2017191427,-0.130492779 C,0,1.5385632693,-0.0000437945,0.0291796386 C,0,0.8699597605,1.2020359052,-0.1285809355

4-Br

C, 0, -0.1856154945, 1.2020821601, -0.2279248447 C, 0, -0.8602915623, 0.0000155904, -0.0976002313 C, 0, -0.1855922425, -1.2020106136, -0.2281769642 C, 0, 1.1746141005, -1.1998231571, -0.4913287093 C, 0, 1.8739239819, 0.0000977166, -0.6285178063 C,0,1.1745908676,1.1999762272,-0.4910773859 N, 0, 3.2539920427, 0.0001324195, -0.8347923472 H, 0, -0.7175360669, 2.1363949846, -0.12517294 H, 0, -0.7174946947, -2.1363552796, -0.1256209628 H, 0, 1.7021402434, -2.1397933934, -0.5875739684 H, 0, 1.7020985776, 2.1399769176, -0.5871261045 H, 0, 3.6126869022, -0.8322955696, -1.2743405841 H, 0, 3.6126716924, 0.8326616468, -1.2741612253 Br, 0, -2.7262873473, -0.0000400964, 0.2614210742 HF=-2861.1361665 Nimag=0

4-CHO

C, 0, -1.1583567231, 0.7353298225, 0.0125449065 C, 0, -1.1735086672, -0.6610216206, -0.0045369995 C, 0, 0.0352112365, -1.3516356832, 0.0152337009 C, 0, 1.2390424094, -0.6738730576, 0.0501141558 C, 0, 1.2538777985, 0.7243390654, 0.0651366686 C, 0, 0.0352922703, 1.4208883488, 0.0482773009 N,0,2.4498201528,1.4149036524,0.1532251108 C, 0, -2.44404638, -1.4005352817, -0.0448626237 0,0,-3.5356278841,-0.8891132501,-0.0691663784 H, 0, -2.1026058447, 1.262780998, -0.0034537218 H,0,0.0297042153,-2.4349846078,0.001944006 H, 0, 2.1746796873, -1.2170731015, 0.0693779572 H, 0, 0.0447800673, 2.5029553721, 0.0667005162 H,0,2.4303005013,2.3724472475,-0.1561653695 H,0,3.2702006449,0.9189949042,-0.1530326173 H, 0, -2.3409204846, -2.5025508086, -0.0523256127 HF=-400.8907636 Nimag=0

4-CN

C, 0, -1.2205255403, 0.7157681054, 0.0079519867 C, 0, -1.23093141, -0.6795080428, -0.0104343433 C, 0, -0.0202068027, -1.3731068584, 0.0103123951 C, 0, 1.1759730094, -0.6861117512, 0.0480497149 C, 0, 1.1922453203, 0.7129788735, 0.0643865001 C, 0, -0.0246937211, 1.403419801, 0.0457567561 N,0,2.3895749733,1.4011756344,0.1565911307 C, 0, -2.4735212721, -1.39334937, -0.0521986311 N, 0, -3.4690939664, -1.965098135, -0.0863495433 H, 0, -2.1566487124, 1.2552840534, -0.0082808877 H, 0, -0.0255457698, -2.4535815734, -0.0041214363 H, 0, 2.1109948294, -1.2297999786, 0.0685993569 H, 0, -0.0236298237, 2.4850376494, 0.0647584019 H, 0, 2.3733504991, 2.3582067789, -0.1542006765 H, 0, 3.2089933869, 0.9034898134, -0.1494167243 HF=-379.8113149 Nimag=0

4-NO₂

C, 0, -1.1616260646, 0.7564646523, -0.0918987577

C, 0, -1.1446948065, -0.6296573276, -0.113059042 C, 0, 0.0465810137, -1.3388709669, -0.1213294998 C, 0, 1.2406588961, -0.648440607, -0.1082895897 C, 0, 1.2529990161, 0.7525267371, -0.0889491837 C, 0, 0.0343113104, 1.4437567816, -0.0789665848 N, 0, 2.4477426277, 1.4403961679, -0.0243742801 N, 0, -2.4101257414, -1.3590751016, -0.1292334567 0,0,-2.3631701606,-2.5735516909,-0.1493970457 0,0,-3.4377364632,-0.7098265921,-0.1218404057 H, 0, -2.1074669518, 1.2757361745, -0.0864460103 H, 0, 0.0220603232, -2.4174811184, -0.1383312936 H,0,2.1773687422,-1.189137944,-0.1098945836 H, 0, 0.0356619748, 2.5251187167, -0.0580396248 H, 0, 2.4272785125, 2.4040853664, -0.3122525655 H, 0, 3.2675387715, 0.946732752, -0.334442076 HF=-492.0682745 Nimag=0

Pyridin-2(1H)-ones

н

5-CH₃

C,0,0.7640407962,-1.2456283183,0.0012074195 C, 0, 1.5351375613, -0.0161441873, 0.0009025747 C, 0, -0.6264031457, 1.1388175904, -0.0010585739 C, 0, -1.3408116241, -0.0098410504, -0.0007442771 C, 0, -0.5888828528, -1.2279497043, 0.0005159014 0,0,2.7496595181,0.0766273926,0.0013630892 C, 0, -2.8421548358, -0.0259516969, -0.0018947889 H,0,1.3303772913,-2.1643897154,0.0020976891 H, 0, -1.0893043032, 2.1155208336, -0.0019444852 H, 0, -1.1328600162, -2.165663578, 0.0008151961 H, 0, -3.244248116, 0.9855290295, -0.0005772739 H, 0, -3.229838957, -0.5431439444, 0.8765750713 H, 0, -3.2285977002, -0.5403734674, -0.8825399048 N, 0, 0.7381339472, 1.1270553006, -0.0000305507 H,0,1.2512993169,1.9955099358,-0.0004550698 HF=-362.7955676 Nimag=0

5-NH₂

C, 0, -0.3115178476, 1.236734734, 0.0042281169 C, 0, -1.0478372216, -0.0160863701, 0.0146844704 C, 0, 1.1499227121, -1.1070607111, -0.0526204035 C,0,1.8212267345,0.067281459,-0.0519830994 C, 0, 1.0393718008, 1.2650947777, -0.0154902208 0,0,-2.2616194481,-0.135693262,0.0401710339 H, 0, -0.9034205751, 2.1388834616, 0.0265574636 H,0,1.6421283586,-2.06810267,-0.0789996557 H, 0, 1.5616737524, 2.2143628281, 0.001414646 N, 0, -0.2209837851, -1.1292696957, -0.0028983295 H, 0, -0.7062979499, -2.0130597945, 0.0059709135 N, 0, 3.2298084817, 0.1654916002, -0.0038126787 H, 0, 3.6871528804, -0.7229435987, -0.1495054415 H,0,3.5898513867,0.8323719715,-0.6725581852 HF=-378.8363014 Nimag=0

5-F

C, 0, -0.3051598037, 1.2418365746, 0.0001898004

C,0,-1.0424988803,-0.011769876,-0.0000838113 C,0,1.1454412287,-1.1246785685,-0.0005491841 C,0,1.7830355993,0.0601097808,-0.0003315565 C,0,1.0476668975,1.2716043827,0.0000909484 O,0,-2.2532057132,-0.1309105875,-0.0001303119 H,0,-0.8981514383,2.1431001828,0.0004042521 H,0,1.6644563626,-2.0701418994,-0.0007802074 H,0,1.5930858952,2.2059197304,0.0002485303 N,0,-0.2199708022,-1.1387611012,-0.0001536401 H,0,-0.7127578937,-2.0189291146,0.0008305177 F,0,3.1252610981,0.1099735058,-0.0004501978 HF=-422.7220493

5-Cl

C,0,-0.3066832937,1.2420896004,0.0001798922 C,0,-1.0427352222,-0.0102304268,0.0002659532 C,0,1.1459516299,-1.1171102206,-0.0002234734 C,0,1.7984080523,0.0644630308,-0.0002646059 C,0,1.0455844094,1.2725214916,-0.0000738739 O,0,-2.2512899874,-0.1368483204,0.0004641886 H,0,-0.8985760701,2.1442662919,0.0003471538 H,0,1.653547912,-2.0693168969,-0.00031156 H,0,1.5770072219,2.2144386894,-0.0001176409 N,0,-0.2145267293,-1.136472667,-0.0000561252 H,0,-0.7044849588,-2.0186980977,-0.0004458583 C1,0,3.534079926,0.1156958053,-0.005783645 HF=-783.0845354

5-CN

C,0,-0.2996111469,1.2508671635,0.0001948042 C,0,-1.0258069838,-0.0068228108,0.000429069 C,0,1.1615847963,-1.1082714273,-0.0002256846 C,0,1.8229880821,0.0813407263,-0.0003671943 C,0,1.0499501233,1.2883330283,-0.0001568935 O,0,-2.2280594824,-0.1508015017,0.0006116525 H,0,-0.8993812475,2.1477034423,0.000364249 H,0,1.6741750157,-2.0588923196,-0.0004264661 H,0,1.5729254559,2.234851918,-0.0002855174 N,0,-0.1860146246,-1.1369177931,0.0000227586 H,0,-0.6747130896,-2.0207518655,-0.0007038189 C,0,3.2511584643,0.1094798814,-0.007509708 N,0,4.3988847073,0.143112882,-0.0010548976 HF=-415.7273753 Nimag=0

5-NO2

C, 0, -0.3097127882, 1.2539798434, 0.00018116 C, 0, -1.0319879936, -0.0069963122, 0.0002202875 C,0,1.1543701052,-1.1100480452,-0.0004123414 C,0,1.7880169492,0.089196193,-0.000449431 C,0,1.0401635622,1.2986595021,-0.0001754201 0,0,-2.2322176915,-0.1566804318,0.0005623931 H, 0, -0.9139545216, 2.147604636, 0.0004474875 H,0,1.6928497081,-2.045433113,-0.0006176258 H,0,1.5773703535,2.235754195,-0.0001998337 N, 0, -0.1891290828, -1.1408905531, -0.0001881195 H, 0, -0.6768021986, -2.0255737943, -0.0001335772 N,0,3.2372754911,0.1133171172,-0.0007583507 0,0,3.7727946161,1.2028170142,-0.000771536 0,0,3.8240774509,-0.9523269813,-0.0009972428 HF=-378.8363014 Nimag=0

Imides

Imide1

 $\begin{array}{c} \text{C}, 0, -1.2929599168, -0.208297881, 0.0977681575\\ \text{O}, 0, -2.2121785431, -0.9836601297, 0.193173517\\ \text{N}, 0, -0.0005272443, -0.7298440311, 0.0464776984\\ \text{H}, 0, 0.001279098, -1.7419757857, 0.0844798431\\ \text{C}, 0, 1.290251112, -0.2090080805, -0.0425325935\\ \text{O}, 0, 2.2121683727, -0.9861216403, -0.0789186914\\ \text{C}, 0, 1.5139758031, 1.279808914, -0.0764373\\ \text{H}, 0, 1.1955869977, 1.7385603478, 0.857889458\\ \text{H}, 0, 2.5797733268, 1.43412128, -0.2053723224\\ \text{H}, 0, 0.9745291069, 1.7523853177, -0.8930742476\\ \end{array}$

C,0,-1.5219705184,1.2781126267,0.0199792763 H,0,-0.984411518,1.8125966431,0.7988370603 H,0,-1.2048583666,1.6664956287,-0.9461683389 H,0,-2.5883813801,1.4377300602,0.1367188731 HF=-361.8329325 Nimag=0

Imide2

C, 0, -3.2338851332, 2.0721172912, 0.1387987155 0,0,-3.6317815665,0.9721818721,0.3941045236 N, 0, -1.8542685014, 2.2990082905, 0.0603901567 H, 0, -1.3266080539, 1.4340719085, 0.06341537 C, 0, -1.0605357784, 3.4113372463, -0.167006266 0,0,0.0773776511,3.2816692691,-0.5381507478 C, 0, -1.6095789647, 4.7984933745, 0.1195459502 H, 0, -2.2794985425, 5.1366288773, -0.6721995142 H, 0, -0.7555194999, 5.4660913668, 0.1874018826 C, 0, -4.183794867, 3.2100832063, -0.2004658671 H, 0, -4.1464173791, 3.9872424724, 0.5597119852 H, 0, -3.9185688081, 3.627090171, -1.1746470006 F, 0, -2.2924349669, 4.8160830256, 1.3178427119 F,0,-5.4511466494,2.7157586085,-0.2687296701 HF=-560.292206 Nimag=0

1,6-dihydropyrimidines

н

4-OCH₃

C, 0, -1.2321362658, -0.7427215303, 0.1765758188 C, 0, -1.0698053263, -2.2290267096, 0.3686260829 C, 0, 0.1243998338, -2.8208678409, 0.1901795432 N,0,1.3009852026,-2.1505043733,-0.1440595305 C, 0, 1.2088756735, -0.8706042801, -0.1993843707 N, 0, 0.0918537197, -0.1351266065, 0.0181816981 H, 0, -1.7332210147, -0.2893061399, 1.0381119261 H, 0, -1.8553920167, -0.5154663679, -0.7001972647 H, 0, -1.9550142565, -2.7863314333, 0.6274133409 H, 0, 2.1001461413, -0.2911034344, -0.4200073467 H,0,0.1521925702,0.8600222803,-0.1037558024 0,0,0.3733489533,-4.1483132704,0.3170401754 C, 0, -0.713901057, -4.9904491838, 0.6602726825 H, 0, -1.1335890958, -4.7189017291, 1.6321473331 H, 0, -1.5014154281, -4.9491295489, -0.0964649835 H, 0, -0.3099548555, -5.9973832779, 0.7084563583 HF=-380.1569468 Nimag=0

4-NH₂

 $\begin{array}{c} \text{C}, 0, 1.2793532987, 1.159234563, 0.0668161567\\ \text{C}, 0, -0.2193959435, 1.197405624, -0.0272879774\\ \text{C}, 0, -0.9492907981, 0.0741639302, 0.0269960992\\ \text{N}, 0, -0.4015559797, -1.2198445928, 0.0927485511\\ \text{C}, 0, 0.8748899524, -1.2732267876, 0.0021963684\\ \text{N}, 0, 1.7174844057, -0.2230585601, -0.1128998375\\ \text{H}, 0, 1.6381143961, 1.5417261786, 1.0313365411\\ \text{H}, 0, 1.7373916913, 1.7776958933, -0.7091473015\\ \text{H}, 0, -0.6984477996, 2.1637965435, -0.0860723501\\ \text{H}, 0, 2.7024820851, -0.416898715, -0.1180834907\\ \text{N}, 0, -2.3390269514, 0.0449830109, 0.0584693696 \end{array}$

H,0,-2.7110777228,-0.8211153817,-0.2994621848 H,0,-2.7921603531,0.8581689198,-0.3250170101 HF=-320.8365101 Nimag=0

4-F

C,0,-1.435840627,-0.0000265346,0.0703114182 C,0,-0.5997104498,1.247839602,0.0089336309 C,0,0.7235103672,1.1604942524,-0.0596589379 N,0,1.4915092266,0.0154787735,-0.0843342657 C,0,0.8044218304,-1.0681222054,-0.0331419419 N,0,-0.5403875375,-1.1577697804,0.0389656619 H,0,-2.1313517855,-0.0506058845,-0.7732944195 H,0,-2.0385577973,-0.0263764057,0.9835539689 H,0,-1.0834021543,2.2113821293,0.02113538 H,0,1.3246729427,-2.0202651433,-0.047419804 H,0,-0.9449727956,-2.0760154299,0.0731298037 F,0,1.4640926131,2.2716064867,-0.1140859366 HF=-364.7230132 Nimag=0

4-Cl

4-Br

4-CHO

C, 0, -1.4125026279, 0.0105483899, 0.101102612 C, 0, -0.5621888153, 1.2401238809, -0.0183775821 C, 0, 0.7731719392, 1.167898871, -0.0508892287 N,0,1.5132295231,-0.0200783949,0.0004903786 C, 0, 0.8035844585, -1.0850486132, -0.0224187698 N, 0, -0.5516977612, -1.1547187278, -0.0719315979 H, 0, -2.1939050096, 0.0083701135, -0.6626955444 H, 0, -1.9175947032, -0.0142069952, 1.0742932514 H, 0, -1.0571189845, 2.201329933, -0.0602882723 H,0,1.3026321433,-2.0493286798,-0.0271555824 H, 0, -0.9724469519, -2.0660344677, -0.0489961535 C, 0, 1.5354101407, 2.4402955141, -0.1572166873 0,0,2.7299074116,2.52169707,-0.1974293539 H, 0, 0.896431157, 3.3436197572, -0.1978101235 HF=-378.7908503 Nimag=0

4-CN

C,0,-1.5274974187,1.2046814426,0.0449547173 C,0,-0.028641497,1.1650353952,-0.0126521449 C,0,0.6276174595,0.0022490545,0.0313381455 N,0,0.0344580623,-1.2681175417,0.1053674614 C,0,-1.2444671112,-1.2524895023,0.0148118778 N,0,-2.0294931058,-0.1572529467,-0.1120811948 H,0,-1.9220668872,1.8356704608,-0.7543398526 H,0,-1.8652421925,1.6381821578,0.9935179191 H,0,0.5105439032,2.0985986865,-0.0716235955 H,0,-1.7775887441,-2.1975595019,0.0146205341 H,0,-3.0229417522,-0.2975143272,-0.1530275902 C,0,2.0721385142,0.006259379,-0.0102402328 N,0,3.2179907695,0.0360066844,-0.0441980444 HF=-357.7128127

4-NO₂

C, 0, 1.86391544, 1.2066500912, 0.0000363546 C, 0, 0.3635916534, 1.1660047011, -0.0000199507 C, 0, -0.2667304695, -0.0024402852, 0.000020087 N, 0, 0.2902674034, -1.2641778875, 0.000099754 C, 0, 1.5733941747, -1.2581324576, 0.0000062575 N, 0, 2.369261882, -0.1649594677, -0.0001266852 H, 0, 2.2284523402, 1.745441121, 0.8797558716 H, 0, 2.2285083159, 1.7456437589, -0.8795305486 H, 0, -0.1919179878, 2.0897648109, -0.0000642626 H, 0, 2.101080138, -2.2059109642, 0.0000041761 H, 0, 3.3629967448, -0.308893501, -0.0001786098 N, 0, -1.7585464219, 0.0070405788, 0.000091464 O, 0, -2.3061626103, 1.0931139272, -0.0001041545 O, 0, -2.319998603, -1.0587284259, 0.0000935643 HF=-469.9690384 Nimag=0

5-aminopyrimidines

H

$2-CH_3$

C, 0, 0.6340439215, 1.1648023054, 0.0924282113 N, 0, -0.689947186, 1.1714554044, 0.0930882898 C, 0, -1.313326109, -0.0043980485, -0.0072587995 N,0,-0.6924093865,-1.1799792977,-0.1060654288 C, 0, 0.6333031876, -1.1750703043, -0.1050431442 C, 0, 1.3812843972, -0.0063459518, -0.0051342447 H,0,1.131484977,2.1273671938,0.1693267315 H, 0, 1.1285782586, -2.137931094, -0.1903443697 N,0,2.7742897389,0.0000370864,-0.0722299022 H,0,3.2078886957,0.7938585799,0.3730022885 H, 0, 3.2079847657, -0.8614322362, 0.2213052258 C, 0, -2.8125572318, 0.0002681734, 0.0172872391 H, 0, -3.1978279679, -0.9111805428, -0.4307833817 H, 0, -3.1670887741, 0.0541142979, 1.0477393939 H, 0, -3.1936680369, 0.8712232141, -0.5102003791 HF=-358.9607667 Nimag=0

$2-NH_2$

C,0,-0.616937073,1.1777483181,-0.0487445367 N,0,0.7077542572,1.1978059092,-0.0636210526 C,0,1.3233386979,0.014576389,-0.0724365706 N,0,0.7184344959,-1.174139401,-0.090432243 C,0,-0.6063211813,-1.1663960737,-0.074950995 C,0,-1.3597816955,0.0021739995,-0.0483855561 H,0,-1.1170481884,2.1417955417,-0.0395501107 H,0,-1.097762858,-2.1348511128,-0.087314088 N,0,-2.7615779152,-0.0054133297,0.0411814784 H,0,-3.1896348489,0.824006311,-0.342255764 H,0,-3.1823156094,-0.8271295507,-0.3662046898 N,0,2.6998811277,0.0201132552,-0.0203433972 H,0,3.1371918338,-0.8263138582,-0.3425279811 H,0,3.1296806971,0.8775197125,-0.3229957436 HF=-358.9607667 Nimag=0

2-F

C, 0, -0.6105982212, 1.1765061847, -0.0300683402 N, 0, 0.7166504715, 1.1813384623, 0.0049673144 C, 0, 1.2872401587, -0.0000688584, 0.0206729695 N, 0, 0.7160000326, -1.1811757191, 0.0034905447 C, 0, -0.6112188177, -1.1755730844, -0.0314240291 C, 0, -1.3568868695, 0.0006963523, -0.0517794196 H, 0, -1.1018801872, 2.1437542006, -0.0400157971 H, 0, -1.1030653242, -2.1425208476, -0.0424301637 N, 0, -2.7507888183, 0.0009307585, -0.0223710249 H, 0, -3.1749191882, 0.8322638514, -0.4034471256 H, 0, -3.1753050014, -0.8289061203, -0.4062696059 F, 0, 2.6138459749, -0.0004690599, 0.0558960275 HF=-418.9005455 Nimag=0

2-CHO

 $\begin{array}{l} C,0,-0.593237304,1.1734340696,-0.0461511465\\ N,0,0.7297356871,1.1566758053,-0.0166308466\\ C,0,1.3221155179,-0.0352980165,-0.0017688297\\ N,0,0.7020347571,-1.2131663303,-0.0159482025\\ C,0,-0.6159955426,-1.1906355986,-0.044562294\\ C,0,-1.3497169356,0.0017904241,-0.0624696648\\ H,0,-1.0793224563,2.1437038506,-0.05638546\\ H,0,-1.1291356177,-2.1475716913,-0.0536921948\\ N,0,-2.7292916138,0.0126628756,-0.0350708369\\ H,0,-3.1725755566,0.8549710633,-0.3635249343\\ \end{array}$

H,0,-3.1851551561,-0.823422102,-0.3624971223 C,0,2.8180583587,-0.0036039232,0.0306734253 O,0,3.5129729337,-0.9784144073,0.0423495251 H,0,3.2311503083,1.0192307409,0.042858862 HF=-432.9641073 Nimag=0

2-CN

C,0,-0.5990300439,1.1822112696,-0.0433227971 N,0,0.7225427334,1.186721307,-0.011307222 C,0,1.3199365308,0.0000774957,0.0033989233 N,0,0.7219717968,-1.1862661364,-0.0129316555 C,0,-0.5995925042,-1.1810744565,-0.0449464496 C,0,-1.345210844,0.0007618657,-0.0631142198 H,0,-1.0943060338,2.1475343366,-0.0534269787 H,0,-1.0953386985,-2.1461425414,-0.0563816172 N,0,-2.7231138156,0.001071915,-0.0393809196 H,0,-3.1749969548,0.8413042978,-0.3609090655 H,0,-3.1753858109,-0.8385382922,-0.3619890518 C,0,2.7703815219,-0.000298174,0.0376037383 N,0,3.9157973327,-0.0005971534,0.0639303752 HF=-411.883154 Nimag=0

2-NO₂

C, 0, -1.2660712378, -1.1805181313, -0.0710100309 N, 0, 0.0571510514, -1.1804243833, -0.0620760319 C,0,0.6254167229,0.0000631174,-0.0011264627 N,0,0.057355147,1.1806679301,0.0593198816 C, 0, -1.2659235804, 1.1812736505, 0.0629132644 C, 0, -2.012286428, 0.0004591607, -0.0045408745 H, 0, -1.7586862527, -2.1448572398, -0.1328558467 H, 0, -1.758402578, 2.1459766927, 0.1201679243 N, 0, -3.3875009074, 0.0035958706, -0.0631440158 H, 0, -3.8505218989, -0.8526049175, 0.1930908864 H, 0, -3.850874243, 0.8264865383, 0.2850835235 N,0,2.1257702085,-0.000202545,0.0026692862 0,0,2.6714689369,1.0585295147,-0.1971828229 0,0,2.6701650594,-1.0590912579,0.2054843191 HF==-524.1374885 Nimag=0

Table S9 Cartesian Coordinates, Total Energies (in *hartree*), and Number of Imaginary Frequencies for the Optimized Structures for Nucleobases from M06-2X/6-311+G(2d,2p) Computations.

Adenine

N,0,1.9364904463,0.5208035012,0.1223733951 C,0,1.2845825305,1.6907168186,0.1296718053 N, 0, -0.0218558488, 1.910077563, 0.0801973468 C, 0, -0.7055645787, 0.7666313343, 0.0140921554 C, 0, -0.1754951825, -0.515384302, -0.0001492954 C, 0, 1.2238698441, -0.6042940812, 0.0625713074 N, 0, -2.0626579173, 0.5803945916, -0.0591934504 C, 0, -2.2707231511, -0.7762838696, -0.1149248338 N, 0, -1.1702669595, -1.4700402477, -0.0828904572 N,0,1.8622167759,-1.7957422347,0.0900747091 H, 0, 1.9134758201, 2.570756635, 0.1814166782 H, 0, -2.7583141026, 1.3056410269, -0.0709648856 H, 0, -3.2636013418, -1.1900704759, -0.1792207441 H,0,2.8588559596,-1.794770794,-0.0352520284 H, 0, 1.3409065158, -2.6263447054, -0.1271753824 HF=-467.2886498 Nimag=0

Guanine

N,0,-2.1337892713,0.7657195159,0.0594120844 C,0,-1.2632369381,-0.2845301433,0.0342428885 N,0,0.0208151011,-0.1560178719,-0.1186212705

Thymine

C,0,-1.2147395192,0.338126211,-0.1869869888 N,0,-1.2908210034,-0.8343636741,0.5307163819 C,0,-0.1859855189,-1.5227757249,0.9884642363 N,0,1.0052168334,-0.914888164,0.6528953867

Uracil

N, 0, 1.3559135485, 0.4277898937, 0.0196811375 C, 0, 1.3390137123, -0.9493723975, 0.0275338287 N, 0, 0.0628723445, -1.4804891821, 0.1203235759 C, 0, -1.0707681507, -0.7126656027, 0.1973553915 C, 0, -1.0267288917, 0.6259358784, 0.1879923018 C, 0, 0.2618809542, 1.3021694449, 0.0931562279 O, 0, 0.4345608123, 2.4969025937, 0.0756052089 O, 0, 2.3281915686, -1.6358755042, -0.0391426032 H, 0, 2.2692938755, 0.8540105955, -0.0469220484 H, 0, 0.0183665777, -2.4855287985, 0.1287186566 H, 0, -1.9974179607, -1.2633557132, 0.2657740445 H,0,-1.9154093904,1.2296907921,0.2483662785 HF=-414.7954267 Nimag=0

Cytosine

Table S10. Cartesian Coordinates, Total Energies (in *hartree*), and Number of Imaginary Frequencies for the Optimized Structures for Carbonyl Oxygen Proton Accepting Sites from M06-2X/6-311+G(2d,2p) Computations.

Cyclohexa-2,4-dienones

Η C, 0, -1.4187588306, -0.0069684398, 0.02738463 C, O, -0.7334109777, O.6873011961, -1.0741550219 C, 0, 0.7866355962, 0.672065931, -1.0738623686 C, 0, 1.4436798723, -0.0514464786, 0.055504032 C, 0, 0.7369315816, -0.6531429979, 1.012585761 C, 0, -0.722817619, -0.6262531752, 0.9913613419 0,0,-1.3441363417,1.253367676,-1.9537213454 H, 0, -2.4995824537, 0.0126366653, 0.0124564582 H,0,1.1206158594,1.7136291842,-1.1029755685 H,0,1.1058863708,0.2500737144,-2.0316321207 H, 0, 2.5259208738, -0.0739489669, 0.075251153 H,0,1.2314149967,-1.1718364713,1.821712987 H, 0, -1.2499929279, -1.1302998374, 1.7918820619 HF=-307.4026795 Nimag=0

$4-CH_3$

C, 0, -1.4291466411, 0.0549339035, -0.0391148358 C, 0, -0.7601284487, 0.7698076729, -1.136851257 C, 0, 0.7579937892, 0.75901949, -1.1479004178 C, 0, 1.4278588733, 0.0276244737, -0.0301867217 C, 0, 0.7484993163, -0.5964129175, 0.9346408238 C, 0, -0.7178103842, -0.5694897934, 0.9082575005 0,0,-1.3841390453,1.3455972327,-2.0008348141 C, 0, 1.4061902954, -1.3359047196, 2.0634046208 H, 0, -2.5100771202, 0.0649561495, -0.0415898959 H, 0, 1.0860772157, 1.8023774045, -1.1732102524 H, 0, 1.0672287059, 0.3458063459, -2.1128429295 H,0,2.5114583367,0.0151854372,-0.0227138654 H, 0, -1.2354413429, -1.0885063269, 1.708000372 H, 0, 2.4901801783, -1.295811605, 1.9826497291 H,0,1.099177937,-2.3833073609,2.0693975942 H,0,1.1160033346,-0.9094093865,3.0253163492 HF=-346.7128085 Nimag=0

4-NH₂

C, 0, -1.4379195658, 0.0081837095, -0.2652670812

C, 0, -0.7579684171, 0.6119473181, -1.4247973158 C, 0, 0.756293474, 0.6861434108, -1.3795683113 C,0,1.4238595299,-0.0480384008,-0.2602998088 C,0,0.7269882962,-0.614115185,0.730996741 C, 0, -0.73742921, -0.554702841, 0.7244621117 0,0,-1.3800742953,1.0462833,-2.3686770276 N, 0, 1.2980572893, -1.2168854656, 1.8627902 H, 0, -2.5185592001, 0.0281186297, -0.2703891606 H,0,1.0013848189,1.75372746,-1.3346739661 H, 0, 1.1250113853, 0.3520511152, -2.3516271094 H,0,2.5061218729,-0.0878476111,-0.2552208883 H, 0, -1.2529958541, -0.9970260776, 1.5698447875 H, 0, 2.2819392817, -1.4145302638, 1.7589625129 H,0,0.8055055942,-2.0409960984,2.174440316 HF=-362.7589985 Nimag=0

4-F

4-Cl

C,0,-1.4253773365,-0.1326172111,-0.1148865835 C,0,-0.7368413199,0.5717852867,-1.2107489914 C,0,0.7828973587,0.5641390083,-1.205678806 C,0,1.4451031314,-0.1637421688,-0.0807002965 C,0,0.7228441531,-0.7665194567,0.8573629963 C,0,-0.7365929362,-0.7557868954,0.8480089508 O,0,-1.3488358471,1.1381904106,-2.0866587179 H,0,-2.5057909358,-0.1184110476,-0.1316493808 H,0,1.1104861631,1.6075918544,-1.223581569 H,0,1.1063943397,0.1494810624,-2.1647430009 H,0,2.5251500893,-0.1908809608,-0.044021066 H,0,-1.244892693,-1.2721469814,1.6511593468 C1,0,1.4790688333,-1.6198769008,2.176506118 HF=-767.0041856 Nimag=0

4-Br

C,0,-1.4259697729,-0.090875961,-0.1800605669 C,0,-0.7369915986,0.6130764462,-1.275342234 C,0,0.7822948062,0.6043496974,-1.2685414119 C,0,1.4436896216,-0.1241700438,-0.1423456993 C,0,0.7205076935,-0.7264135819,0.7949934922 C,0,-0.739128674,-0.7148222706,0.784248279 O,0,-1.3477623074,1.1798063808,-2.1518920148 H,0,-2.5064263949,-0.0763754564,-0.1973423776 H,0,1.1120424475,1.6471745273,-1.2855047438 H,0,1.107966552,0.1889001862,-2.2265680473 H,0,2.523852609,-0.1483511079,-0.1101638284 H,0,-1.2532836562,-1.229311179,1.5846005191 Br,0,1.5472600191,-1.6546466985,2.2302206336 HF=-2880.9708155

4-CHO

C, 0, -1.4378501911, 0.0438224593, -0.0217689961 C, 0, -0.7487542994, 0.7536666131, -1.113703679 C, 0, 0.773937571, 0.7394570025, -1.1159065872 C, 0, 1.4239128805, 0.0065587225, 0.0042843313 C, 0, 0.7108155335, -0.6085397242, 0.9546206615 C, 0, -0.7516997281, -0.5877146735, 0.9372469195 0,0,-1.3540950514,1.3326957501,-1.9854655976 c,0,1.4086627076,-1.3230748549,2.043613795 0,0,0.8431103732,-1.8991611768,2.9347139971 H, 0, -2.5182929551, 0.0654307592, -0.0425821234 H,0,1.1126230036,1.7795440261,-1.1362844956 H, 0, 1.0956803479, 0.3241491366, -2.0758152535 H, 0, 2.5078208714, -0.0224033035, 0.0388327234 H, 0, -1.2542643003, -1.1099322834, 1.7411863358 H, 0, 2.5124582367, -1.296013453, 1.9889519689 HF=-420.7243725 Nimag=0

4-CN

C, 0, -1.4160287016, 0.0257723868, 0.0046350772 C, 0, -0.7341653741, 0.7395880052, -1.0896579078 C, 0, 0.7862932676, 0.7269792506, -1.097522733 C, 0, 1.4515605156, -0.0035479445, 0.0162187245 C, 0, 0.7424561305, -0.6207592555, 0.9689714107 C, 0, -0.7247834046, -0.6046858116, 0.959540102 0,0,-1.3482543161,1.3169024385,-1.9552353118 C, 0, 1.4042909139, -1.3216220234, 2.0357762928 N, 0, 1.9106525486, -1.8866543154, 2.8965203133 H, 0, -2.4964652267, 0.0420456088, -0.0071807892 H, 0, 1.1250650704, 1.767174575, -1.1169570431 H, 0, 1.1066999007, 0.3119485237, -2.0581141714 H,0,2.5328741849,-0.0285732962,0.0431170184 H, 0, -1.2339475091, -1.1251441423, 1.7598610176 HF=-399.6417814 Nimag=0

4-NO

C,0,-1.4565198191,-0.2380562905,0.0564965441 C,0,-0.7699868785,0.4670155104,-1.0405620364 C,0,0.7538875787,0.4624684654,-1.0403167872 C,0,1.4165603592,-0.2606997819,0.0771489652

4-NO₂

C, 0, -1.467833649, 0.0426178461, -0.3750603098 C, 0, -0.7671222936, 0.7450053621, -1.4658408811 C, 0, 0.7546654671, 0.7071585112, -1.4663582016 C,0,1.4017245457,-0.0455557423,-0.3579817718 C,0,0.6589934301,-0.640856763,0.5704670196 C, 0, -0.7962019726, -0.6085232218, 0.5811372733 0,0,-1.3644802949,1.3338136834,-2.3348386242 N, 0, 1.3324056878, -1.3789425684, 1.656190217 0,0,0.6192485289,-1.9079781804,2.4828160823 0,0,2.5432292484,-1.4117135135,1.6565649214 H, 0, -2.5474194117, 0.0821751283, -0.3912704338 H, 0, 1.1122742444, 1.7411892761, -1.46923296 H,0,1.0766492126,0.2989027736,-2.4289371313 H,0,2.4795549707,-0.1089609981,-0.3063736133 H, 0, -1.303300714, -1.1252535934, 1.3821844132 HF=-511.8978812 Nimag=0

Benzoquinone

C,0,-2.4470396116,-0.1166481848,1.1079214352 C,0,-2.4129653381,-0.7899517296,-0.0395242182 C,0,-1.1370975347,-1.329221696,-0.5767371032 C,0,0.099446326,-1.0904890207,0.2114341417 C,0,0.0653721449,-0.4171856029,1.3588801317 C,0,-1.2105350401,0.12186243,1.8962220591 O,0,-1.1061054097,-1.9409938571,-1.6196404458 O,0,-1.2414731516,0.7339390001,2.9389483715 H,0,-3.2582854029,0.2889054125,1.52671144 H,0,-3.2940198652,-0.9809746846,-0.6374211307 H,0,1.0107152037,-1.4959116605,-0.207432306 H,0,0.9464498191,-0.2260315647,1.9567011351 HF=-381.4171527 Nimag=0 **Table S11.** Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Base Pairs from M06-2X/6-311+G(2d,2p) Computations.

Adenine-Thymine

N, 0, -5.2767795357, -0.1565657614, 0.3501	328297
C, 0, -5.4332996668, -1.4900720558, 0.3169	498285
N, 0, -6.5493062872, -2.1726827237, 0.1289	895295
C, 0, -7.5971016568, -1.3588368492, -0.039	1890888
C, 0, -7.587537213, 0.0272262294, -0.02989	33572
C, 0, -6.3403347437, 0.6436114646, 0.17890	55502
N, 0, -8.9082962886, -1.6935127557, -0.257	0154591
C, 0, -9.603662574, -0.5136594192, -0.3652	994171
N, 0, -8.8519522765, 0.5406192868, -0.2356	320097
N, 0, -6.185132487, 1.9711567886, 0.211191	6369
H, 0, -4.5224028663, -2.0585565807, 0.4640	459229
H, 0, -9.2746454773, -2.6271307397, -0.323	0316641
H, 0, -10.6666896661, -0.5007829658, -0.54	04817147
H, 0, -5.2673616983, 2.3783782118, 0.36602	03918
H, 0, -6.9916354936, 2.5550352147, 0.08283	90425
N, 0, -2.6610393182, 0.8064432008, 0.78890	18694
C, 0, -1.6929114833, -0.1542534034, 0.9423	37435
N, 0, -0.4267046213, 0.3602779893, 1.15334	56143
C, 0, -0.1586698516, 1.7064817658, 1.20501	86707
C, 0, -1.1124064473, 2.6382550207, 1.05341	89049
C, 0, -2.4801902162, 2.1733444996, 0.82580	643
0,0,-3.4279043996,2.9311535816,0.67381	.33395
0,0,-1.9135482669,-1.3437824188,0.8990	818017
C, 0, -0.8694267003, 4.1123045548, 1.10155	37069
H, 0, -3.6321377741, 0.453623837, 0.626335	7324
H, 0, 0.3022024979, -0.3231253532, 1.26930	76602
H,0,0.8767983026,1.9657169968,1.376710	7122
H, 0, -1.1764638881, 4.580629535, 0.166714	0961
H,0,0.18309733,4.3268665001,1.27592676	01
H, 0, -1.4606122327, 4.5710973492, 1.89372	52453
HF=-921.4178597 N	imag=0

Adenine-Uracil

N, 0, -1.6876457474, -0.4223400492, 0.0175485635 C, 0, -1.9987552313, -1.7291081334, 0.0079678507 N, 0, -3.1991402952, -2.2793459254, 0.0518976552 C, 0, -4.1598194113, -1.3504474458, 0.1118714165 C, 0, -3.990908696, 0.0252225081, 0.1292170691 C, 0, -2.6652006207, 0.4948433695, 0.0779981459 N, 0, -5.5165982613, -1.5323917985, 0.1692623662 C, 0, -6.0807802241, -0.2802151351, 0.217171181 N, 0, -5.2034141351, 0.680575865, 0.1952915129 N, 0, -2.3571513892, 1.7956187773, 0.0877203417 H, 0, -1.1473026123, -2.3985718731, -0.0424387937 H, 0, -5.992401006, -2.4178686619, 0.1744362097 H, 0, -7.1487606414, -0.1455932365, 0.267476506 H, 0, -1.3873227226, 2.0949360657, 0.0461706488 H, 0, -3.1014889796, 2.4677026253, 0.1309784359 N,0,1.0520589628,0.2195368798,-0.1054841976 C,0,1.911778381,-0.8467458032,-0.1681507871 N,0,3.2516491427,-0.4893612195,-0.2335200361 C, 0, 3.6791457966, 0.8102362451, -0.2358246495 C, 0, 2.8193609098, 1.8370463966, -0.174107522 C, 0, 1.3924266701, 1.5605631869, -0.1029065499 0,0,0.5269381018,2.4196665887,-0.0440813252 0,0,1.5544247241,-2.002138461,-0.1676969846 H,0,0.0338238428,-0.0185385522,-0.0567078401 H, 0, 3.8996038847, -1.2576152823, -0.2802217663 H, 0, 4.7490566542, 0.948200155, -0.2904452347 H, 0, 3.1465089029, 2.8620499142, -0.1755662162

HF=-882.1066865

Nimag=0

Guanine-Cytosine

N, 0, -5.0634347309, 0.3996896946, 0.1926126616 C, 0, -5.4623190746, -0.8925157366, 0.1102605561 N, 0, -6.8967833709, -1.1588610686, 0.1195666006 C, 0, -7.6030040327, -0.0449660442, 0.1636546056 C, 0, -7.2843015187, 1.1241423528, 0.3251748256 C, 0, -5.8858043957, 1.4502848055, 0.2317784188 N, 0, -5.3937605268, 2.6717970584, 0.2110182095 0,0,-4.7305115926,-1.8576436302,0.0065699033 H, 0, -7.1922289437, -2.0815398624, -0.1594308946 H, 0, -4.3727304194, 2.8151349946, 0.1345310015 H, 0, -6.0233879672, 3.451750332, 0.2609593463 N, 0, -2.1256945976, 0.761515865, 0.0409267178 C, 0, -1.2537929951, -0.2926916477, 0.0077112555 N,0,0.0422355901,-0.1543920673,-0.1382380191 C, 0, 0.4131969559, 1.1379667925, -0.2394428736 C, 0, -0.374002282, 2.2796725311, -0.2137695673 C, 0, -1.7820948297, 2.1132313208, -0.063558752 N,0,1.6875466123,1.5963487833,-0.3969225962 C, 0, 1.6111201019, 2.9733849604, -0.4576601104 N, 0, 0.3967132216, 3.4155630467, -0.3520447598 0,0,-2.6583165778,2.9723063512,-0.0213184976 N, 0, -1.7945568449, -1.5196460901, 0.1680495284 H, 0, -3.1287214267, 0.5747832362, 0.1378883616 H, 0, 2.5113612423, 1.0234621006, -0.4520039642 H, 0, 2.4914231515, 3.5818723301, -0.5800122844 H, 0, -1.1781887691, -2.2934098707, -0.0032742887 H, 0, -2.7949699795, -1.6636085377, 0.0772656158 HF=-936.1296521 Nimag=0