SUPPLEMENTARY DATA

Hydrogen Bonding Reactivities of Atomic Sites in the Nucleobases

Valia Nikolova, Diana Cheshmedzhieva, Sonia Ilieva, Boris Galabov*
Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria
e-mail: galabov@chem.uni-sofia.bg

Table of contents

Table S1. Proton affinities (PA), shifts of electrostatic potential at nuclei $\left(\Delta \mathrm{V}_{\mathrm{N}}\right)$, and atomic charges $\left[\mathrm{q}_{\mathrm{N}}(\mathrm{NBO})\right.$ and $\mathrm{q}_{\mathrm{N}}($ Hirsh $\left.)\right]$ for nitrogen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 2) from M06-2X/6-311+G(2d,2p) computations. S2-S4 Table S2. Proton affinities (PA), shifts of electrostatic potential at nuclei $\left(\Delta V_{O}\right)$, and atomic charges $\left[q_{0}(N B O)\right.$ and $\left.q_{o}(H i r s h)\right]$ for carbonyl oxygen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

Figure S1. Plot of theoretically evaluated proton affinities vs. shifts of electrostatic potential at the nuclei for nitrogen atomic sites in model compounds (Scheme 2) and in the nucleobases.S5

Figure S2. Plot of proton affinities vs. shifts of electrostatic potential at the nuclei for oxygen atomic sites in model compounds (Scheme 2) and in the primary nucleobases.

Table S3. Theoretical parameters for $\mathrm{N}-\mathrm{H}$ proton donating sites in the set of model nitrogen compounds (Scheme 3) and in the nucleobases from M06-2X/6-311+G(2d,2p).

Table S4. Hydrogen bonding energies and reactivity descriptors for nitrogen proton accepting centers in model molecules (Scheme 2) from M06-2X/6-311+G(2d,2p) computations. S8-S9
Table S5. Hydrogen bonding energies and reactivity descriptors for oxygen proton accepting centers in model molecules (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

Table S6. Hydrogen bonding energies, electrostatic potential at nuclei, NBO and Hirshfeld charges, and deprotonation energies for $\mathrm{N}-\mathrm{H}$ hydrogen in 1,6-dihydropyrimidine and aniline derivatives from M06-2X/6-311+G(2d,2p).

Table S7. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary
Frequencies for the Optimized Structures of Model Sets of Molecules, Used for Calculations The Shifts of EPN from M06-2X/6-311+G(2d,2p) Computations.

Table S8. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary
Frequencies for the Optimized Structures of Model Sets of Molecules, Containing Nitrogen
Atoms from M06-2X/6-311+G(2d,2p) Computations.
S11-S17
Table S9. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary
Frequencies for the Optimized Structures for Nucleobases from M06-2X/6-311+G(2d,2p)
Computations.
S17-S18
Table S10. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary
Frequencies for the Optimized Structures for Carbonyl Oxygen Proton Accepting Sites from
M06-2X/6-311+G(2d,2p) Computations.
S18-S19
Table S11. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Base Pairs from M06-2X/6-311+G(2d,2p) Computations.

Table S1. Proton affinities (PA), shifts of electrostatic potential at nuclei ($\Delta \mathrm{V}_{N}$), and atomic charges [$\mathrm{q}_{N}(\mathrm{NBO})$ and $\mathrm{q}_{N}($ Hirsh $\left.)\right]$ for nitrogen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 2) from M06-2X/6-311+G(2d,2p) computations.

Molecule, Substituent	PA [kcal/mol]	$\begin{gathered} \left.\Delta \mathrm{V}_{\mathrm{N}}{ }^{2} \mathrm{~mol}\right] \\ {[\mathrm{kcal} /} \end{gathered}$	$\begin{gathered} \hline \mathrm{q}_{\mathrm{N}}(\mathrm{NBO}) \\ {[\mathrm{e}]} \\ \hline \end{gathered}$	$\mathrm{q}_{\mathrm{N}} \text { (Hirsh) }$ [e]
Pyridine	219.0	2.6	-0.4594	-0.1613
Pyrimidines				
H	208.6	10.5	-0.4837	-0.1640
$4-\mathrm{CH}_{3}$	214.6	6.1	-0.4932	-0.1714
$4-\mathrm{NH}_{2}$	224.0	-2.2	-0.5268	-0.1909
4-F	204.2	15.7	-0.4941	-0.1676
$4-\mathrm{CHO}$	203.4	20.2	-0.4657	-0.1528
4-CN	197.1	27.1	-0.4631	-0.1482
$4-\mathrm{NO}_{2}$	193.9	30.1	-0.4588	-0.1453
Purines ($s p^{2} N$)				
H	210.9	10.3	-0.4885	-0.1971
$2-\mathrm{CH}_{3}$	214.3	7.7	-0.4877	-0.1987

$2-\mathrm{NH}_{2}$	219.2	4.2	-0.4828	-0.2000
$2-\mathrm{F}$	206.5	15.4	-0.4806	-0.1930
$2-\mathrm{CHO}$	206.0	17.4	-0.4887	-0.1933
$2-\mathrm{CN}$	201.1	22.7	-0.4832	-0.1889
$2-\mathrm{NO}_{2}$	199.1	24.8	-0.4823	-0.1876

Purines (NH)

H	170.2
$2-\mathrm{CH}_{3}$	174.0
$2-\mathrm{NH}_{2}$	179.8
$2-\mathrm{F}$	165.2
$2-\mathrm{CHO}$	165.6
$2-\mathrm{CN}$	159.7
$2-\mathrm{NO}_{2}$	157.5

Anilines

H
$4-\mathrm{CH}_{3}$
$4-\mathrm{NH}_{2}$
4-F
4-CHO
4-CN
$4-\mathrm{NO}_{2}$
207.3
210.0
214.9
204.6
199.0
195.0
193.0

24.3	-0.8213	0.0720
18.9	-0.8156	0.0419
15.3	-0.8196	0.0290
23.9	-0.8151	0.0460
34.5	-0.8004	0.0806
37.7	-0.8008	0.0826
40.8	-0.7967	0.0917

Pyridin-2(1H)-ones
H
$5-\mathrm{NH}_{2}$
$5-\mathrm{NO}_{2}$
$5-\mathrm{CH}_{3}$
$5-\mathrm{F}$
$5-\mathrm{CN}$
$5-\mathrm{Cl}$

176.0	57.0	-0.5898	0.1009
186.8	52.7	-0.5852	0.0922
158.8	80.0	-0.5734	0.1267
180.9	53.9	-0.5881	0.0956
173.3	63.4	-0.5844	0.1039
161.4	76.2	-0.5796	0.1208
172.6	64.9	-0.5819	0.1075

Imides

Imide 1	186.4	49.9	-0.6913	0.0544
Imide 2	174.3	63.7	-0.6923	0.0685

Nucleobases

Adenine

N1	222.0	7.4	-0.5720	-0.2066
N3	220.2	1.9	-0.5434	-0.2110
N7	213.6	6.9	-0.5011	-0.2040
N9	177.6	52.5	-0.5772	0.1004
N10	200.0	33.9	-0.7865	0.1173
Guanine				
N3	209.4	9.8	-0.6013	-0.2333
N7	225.0	0.8	-0.4537	-0.1867
NG	179.6	60.9	-0.5702	0.0985

N11	186.5	45.1	-0.8132	0.0929
Thymine				
N1	174.4	64.4	-0.6335	0.0812
N3	174.8	54.4	-0.6648	0.0777
Uracil	172.4	55.9	-0.6704	0.0783
N1	169.0	68.1	-0.63696	0.0863
N3				
Cytosine	185.3	53.9	-0.6192	0.0840
N1	224.5	-6.7	-0.6165	-0.2182
N3	192.9	29.5	-0.7867	0.1195
N7		$\mathbf{0 . 9 8 6}$	$\mathbf{0 . 1 6 7}$	$\mathbf{0 . 8 1 7}$
Correlation coefficient ${ }^{\text {a }}$				

${ }^{\text {a }}$ Correlation coefficients for the correlations with proton affinities
${ }^{\mathrm{b}} \Delta \mathrm{V}_{\mathrm{N}}$ is defined in Eqns. 2 and 3 in the main text.

Table S2. Proton affinities (PA), shifts of electrostatic potential at nuclei ($\Delta \mathrm{V}_{\mathrm{o}}$), and atomic charges [$\mathrm{q}_{0}(\mathrm{NBO})$ and $\mathrm{q}_{0}($ Hirsh $)$] for carbonyl oxygen proton accepting sites in the primary nucleobases and in sets of model compounds (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

Derivative	$\mathbf{P A}$ $[\mathbf{k c a l} / \mathrm{mol}]$	$\boldsymbol{\Delta \mathbf { V } _ { 0 } { } ^ { \mathbf { b } }}$ $[\mathbf{k c a l} / \mathrm{mol}]$	$\mathbf{q}_{0}(\mathbf{N B O})$ $[\mathbf{e}]$	$\mathbf{q}_{\mathbf{o}}($ Hirsh $)$ $[\mathbf{e}]$
Cyclohexa-2,4-dienones				
H	209.0	-22.4	-0.5735	-0.2803
4-CH3	211.1	-23.5	-0.5739	-0.2810
4-NH2	211.8	-23.1	-0.5713	-0.2785
4-F	202.5	-15.36	-0.5626	-0.2709
4-Cl	203.3	-14.9	-0.5618	-0.2707
4-Br	203.6	-14.7	-0.5616	-0.2705
4-CHO	202.0	-13.6	-0.5616	-0.2700
4-CN	196.8	-8.36	-0.5544	-0.2645
4-NO	200.2	-11.9	-0.5602	-0.2689
4-NO2	195.6	-6.9	-0.5525	-0.2629
Benzoquinone	188.6		1.3	-0.5110
			-0.2370	
Pyridin-2(1H)-ones	217.4	-36.9	-0.6543	-0.3450
H	220.9	-39.4	-0.6587	-0.3493
5-CH	224.7	-42.0	-0.6659	-0.3555
5-NH2	213.5	-32.8	-0.6519	-0.3430
5-F	213.3	-30.4	-0.6453	-0.3376
5-Cl	203.9	-18.5	-0.6230	-0.3189
5-CN	201.8	-15.0	-0.6156	-0.3127
5-NO				

Nucleobases

Guanine

O10	213.2	-29.6	-0.6093	-0.3120
Tymine O7 204.9 -20.2 -0.6130 O8 206.1 -20.0 -0.6424 Uracil 208.5 -19.76 -0.3006 O7 203.2 -16.7 -0.6362 O8 226.6 -41.9 -0.6445 Cytosine $\mathbf{0 . 9 8 5}$ $\mathbf{0 . 7 6 9}$ O8 -0.3059 Correlation coefficient $^{\mathbf{a}}$ $\mathbf{0 . 7 9 4}$				

${ }^{\text {a }}$ Correlation coefficients for the correlations with proton affinities and molecular parameters
${ }^{\mathrm{b}} \Delta \mathrm{V}_{\mathrm{O}}$ is defined in eq 4 in the main text.

Figure S1. Plot of theoretically evaluated proton affinities vs. shifts of electrostatic potential at the nuclei for nitrogen atomic sites in model compounds (Scheme 2) and in the nucleobases.

Figure S2. Plot of proton affinities vs. shifts of electrostatic potential at the nuclei for oxygen atomic sites in model compounds (Scheme 2) and in the primary nucleobases.

Table S3. Theoretical parameters for $\mathrm{N}-\mathrm{H}$ proton donating sites in the set of model nitrogen compounds (Scheme 3) and in the nucleobases from M06-2X/6-311+G(2d,2p).

Derivative	Edep $[\mathrm{kcal} / \mathrm{mol}]$	$\Delta \mathbf{V}_{\mathrm{H}}{ }^{\mathbf{b}}$ $[\mathrm{kcal} / \mathrm{mol}]$	$\mathbf{q}_{\mathrm{H}}(\mathrm{NBO})$ $[\mathrm{e}]$	$\mathbf{q}_{\mathrm{H}}(\mathrm{Hirsh})$ $[\mathrm{e}]$
1,6-dihydropyrimidines				
H	-363.4998	31.89	0.3914	0.1302
$4-\mathrm{OCH}_{3}$	-361.0473	33.33	0.3930	0.1322
$4-\mathrm{NH}_{2}$	-363.0383	31.32	0.3911	0.1298
$4-\mathrm{F}$	-354.9421	41.67	0.3920	0.1314
4-Cl	-352.1474	41.99	0.3968	0.1367
4-Br	-350.2850	41.67	0.3970	0.1366
4-CHO	-353.2339	41.24	0.3972	0.1368
4-CN	-347.5278	41.57	0.3989	0.1384
4-NO2	-345.2926	50.27	0.4008	0.1400
Anilines				
H				
4-OCH3	-374.3994	17.14	0.3747	0.1142
4-NH2	-377.2192	13.31	0.3700	0.1108
	-377.8860	11.05	0.3697	0.1093

$4-F$	-372.4906	19.77	0.3742	0.1143
$4-C l$	-367.6720	22.91	0.3766	0.1167
$4-B r$	-366.3538	27.37	0.3771	0.1172
$4-C H O$	-355.4729	30.57	0.3824	0.1227
$4-C N$	-354.9064	33.77	0.3834	0.1235
$4-\mathrm{NO} 2$	-348.7905	36.91	0.3856	0.1258

Nucleobases

Adenine				
N9-H	-342.0567	57.56	0.4258	0.1587
N10-H	-361.6756	31.44	0.4043	0.1320
Guanine	-344.4985	50.95	0.4127	0.1424
N1-H	-341.8752	56.85	0.4236	0.1566
N9-H	-350.0580	40.91	0.3860	0.1287
N11-H	-341.5219	56.43	0.4232	0.1533
Tymine	-352.8951	4782	0.4273	0.1526
N1-H	-339.6191	59.86	0.4247	0.1551
N3-H	-352.4227	49.32	0.4284	0.1532
Uracil	-351.4197	44.93	0.4182	0.1478
N1-H	-360.1006	39.22	0.3914	0.1309
N3-H		0.956	0.781	$\mathbf{0 . 8 5 4}$
Cytosine				
N1-H				
N7-H				
correlation coefficient ${ }^{\text {a }}$				

${ }^{\text {a }}$ Correlation coefficients for the relationships of $E_{\text {dep }}$ with $\Delta V_{H}, q_{H}(N B O)$ and $q_{H}($ Hirsh $)$.
${ }^{\mathrm{b}} \Delta \mathrm{V}_{\mathrm{H}}$ is defined in eq 5 in the main text.

Table S4. Hydrogen bonding energies and reactivity descriptors for nitrogen proton accepting centers in model molecules (Scheme 2) from M06-2X/6-311+G(2d,2p) computations.

Molecule	$\begin{gathered} \Delta \mathrm{E}_{\text {corr }} \\ {[\mathrm{kcal} / \mathrm{mol}]} \end{gathered}$	$\begin{gathered} \left.\Delta \mathrm{V}_{\mathrm{N}}{ }^{\mathrm{a}} \text {] }\right] \\ {[\mathrm{kcal} / \mathrm{mol}} \end{gathered}$	$q_{N}(\text { NBO })$ [e]	$\begin{gathered} \hline \mathrm{q}_{\mathrm{N}}(\mathrm{Hirsh}) \\ {[\mathrm{e}]} \\ \hline \end{gathered}$	PA [kcal/mol]
$s p^{2}$ - Hybridized nitrogen atoms					
Pyridine	-9.43	2.64	-0.4594	-0.1613	219.0
Pyrimidines					
H	-8.27	10.47	-0.4837	-0.1640	208.6
$4-\mathrm{CH}_{3}$	-8.78	6.14	-0.4932	-0.1714	214.6
4-NH2	-9.66	-2.18	-0.5268	-0.1909	224.0
4-F	-7.82	15.71	-0.4941	-0.1676	204.2
$4-\mathrm{CHO}$	-7.33	20.17	-0.4657	-0.1528	203.4
4-CN	-6.91	27.08	-0.4631	-0.1482	197.1

$4-\mathrm{NO}_{2}$	-6.57	30.09	-0.4588	-0.1453	193.9

Purines

H	-8.31	10.31	-0.4885	-0.1971	210.9
$2-\mathrm{CH}_{3}$	-8.57	7.71	-0.4877	-0.1987	214.3
$2-\mathrm{NH} 2$	-8.99	4.16	-0.4828	-0.2	219.2
$2-\mathrm{F}$	-7.83	15.44	-0.4806	-0.193	206.5
$2-\mathrm{CHO}$	-7.52	17.42	-0.4887	-0.1933	206.0
$2-\mathrm{CN}$	-7.14	22.69	-0.4832	-0.1889	201.1
$2-\mathrm{NO}_{2}$	-7.16	24.78	-0.4823	-0.1876	199.1

$s p^{3}$ - Hybridized nitrogen atoms

Anilines

H	-6.83	24.20	-0.8213	0.0720	207.3
$4-\mathrm{CH}_{3}$	-6.90	18.96	-0.8156	0.0419	210.0
$4-\mathrm{OCH3}$	-7.92	17.61	-0.8181	0.0339	212.0
$4-\mathrm{NH} 2$	-7.47	15.30	-0.8196	0.0290	214.9
$4-\mathrm{F}$	-6.77	23.90	-0.8151	0.0460	204.6
$4-\mathrm{Cl}$	-6.19	26.98	-0.8113	0.0559	203.3
$4-\mathrm{Br}$	-6.06	27.72	-0.8106	0.0579	203.1
$4-\mathrm{CHO}$	-4.93	34.54	-0.8004	0.0806	199.0
$4-\mathrm{CN}$	-4.84	37.74	-0.8008	0.0826	195.0

5-Amino-pyrimidines

\mathbf{H}	-5.15	35.71	-0.8105	0.0704	193.1
$2-\mathrm{CH}_{3}$	-5.36	32.50	-0.8131	0.0621	197.3
$2-\mathrm{NH}_{2}$	-6.31	26.90	-0.8185	0.0438	204.7
2-F	-4.90	39.23	-0.8117	0.0694	189.9
2-CHO	-3.92	46.42	-0.8002	0.0957	186.8
$2-\mathrm{CN}$	-3.32	51.23	-0.7988	0.1025	
$2-\mathrm{NO}_{2}$	-3.16	53.60	-0.7974	0.1072	
Correlation coefficients $^{\mathbf{b}}$		$\mathbf{0 . 9 9 1}$	$\mathbf{0 . 5 1 6}$	$\mathbf{0 . 3 8 7}$	$\mathbf{0 . 9 8 5}$
Correlation coefficients $^{\text {c }}$		$\mathbf{0 . 9 8 7}$	$\mathbf{0 . 8 9 7}$	$\mathbf{0 . 9 3 7}$	$\mathbf{0 . 9 5 8}$

${ }^{\mathrm{a}} \Delta \mathrm{V}_{\mathrm{N}}$ is defined in Eqns. 2 and 3 in the main text.
${ }^{\mathrm{b}}$ Correlation coefficient for the relationship between hydrogen bonding energies and molecular parameters for sp^{2}-hybridized nitrogen atoms.
${ }^{c}$ Correlation coefficient for the relationship between hydrogen bonding energies and molecular parameters for sp^{3}-hybridized nitrogen atoms.

Table S5. Hydrogen bonding energies and reactivity descriptors for oxygen proton accepting centers in model molecules (Scheme 3) from M06-2X/6-311+G(2d,2p) computations.

Molecule	$\begin{gathered} \Delta \mathrm{E}_{\text {corr }} \\ {[\mathrm{kcal} / \mathrm{mol}]} \end{gathered}$	$\begin{gathered} \Delta \mathrm{V}_{\mathrm{o}}{ }^{\mathrm{b}} \\ {[\mathrm{kcal} / \mathrm{mol} .]} \end{gathered}$	$q_{0}(N B O)$ [e]	qo(Hirsh) [e]	PA [kcal/mol]
Cyclohexa-2,4-dienones					
H	-9.72	-22.41	-0.5735	-0.2803	209.0
$4-\mathrm{CH}_{3}$	-10.11	-23.54	-0.5739	-0.2810	211.1
$4-\mathrm{NH}_{2}$	-10.00	-23.10	-0.5713	-0.2785	211.8
4-F	-9.14	-15.26	-0.5626	-0.2709	202.5
$4-\mathrm{Cl}$	-8.91	-14.69	-0.5616	-0.2705	203.6
$4-B r$	-9.21	-14.88	-0.5618	-0.2707	203.3
4-CHO	-8.48	-13.63	-0.5616	-0.2700	202.0
4-CN	-8.56	-8.36	-0.5544	-0.2645	196.8
4-NO	-8.81	-11.87	-0.5602	-0.2689	200.2
$4-\mathrm{NO}_{2}$	-8.34	-6.91	-0.5525	-0.2629	195.6
Benzoquinone	-6.92	1.31	-0.5110	-0.2370	188.6
Pyridin-2(1H)-ones					
H	-11.38	-36.91	-0.6543	-0.3450	217.4
5-CH3	-11.61	-39.42	-0.6587	-0.3493	220.9
$5-\mathrm{NH}_{2}$	-12.18	-41.99	-0.6659	-0.3555	224.7
5-F	-10.80	-30.38	-0.6453	-0.3376	213.3
$5-\mathrm{Cl}$	-11.15	-32.83	-0.6519	-0.3430	213.5
5-CN	-9.53	-18.46	-0.6230	-0.3189	203.9
$5-\mathrm{NO}_{2}$	-9.22	-15.01	-0.6156	-0.3127	201.8
Correlation coefficients ${ }^{\text {a }}$		0.991	0.911	0.910	0.979

a Correlation coefficients for the relationships between $\Delta \mathrm{E}_{\text {cor }}$ and molecular parameters.
${ }^{\mathrm{b}} \Delta \mathrm{V}_{0}$ is defined in eq 4 in the main text.

Table S6. Hydrogen bonding energies, electrostatic potential at nuclei, NBO and Hirshfeld charges, and deprotonation energies for $\mathrm{N}-\mathrm{H}$ hydrogen in 1,6-dihydropyrimidine and aniline derivatives from M06$2 X / 6-311+G(2 d, 2 p)$.

Derivative	$\Delta \mathbf{E}_{\text {corr }}$ $[\mathrm{kcal} / \mathrm{mol}]$	$\Delta \mathbf{V}_{\mathrm{H}}{ }^{\mathbf{b}}$ $[\mathrm{kcal} / \mathrm{mol}]$	$\mathbf{q}_{\mathbf{H}}(\mathbf{N B O})$ $[\mathrm{e}]$	$\mathbf{q}_{\mathbf{H}}(\mathrm{Hirsh})$ $[\mathrm{e}]$	$\mathbf{E}_{\text {dep }}$ $[\mathrm{kcal} / \mathrm{mol}]$
1,6-Dihydropyrimidines					
H	-4.57	31.89	0.3914	0.1302	-363.50
$4-\mathrm{OCH}_{3}$	-4.69	33.33	0.3930	0.1322	-361.05
$4-\mathrm{NH}_{2}$	-4.72	31.32	0.3911	0.1298	-363.05
$4-\mathrm{Br}$	-5.41	41.67	0.3970	0.1366	-350.29
$4-\mathrm{CHO}$	-5.42	41.24	0.3972	0.1368	-353.23

$4-\mathrm{NO}_{2}$	-5.85	50.27	0.4008	0.1400	-345.29
Anilines					
H	-3.64	17.14	0.3747	0.1142	-374.40
$4-\mathrm{OCH}_{3}$	-3.54	13.31	0.3700	0.1108	-377.22
$4-\mathrm{Br}$	-4.04	27.37	0.3771	0.1172	-366.35
$4-\mathrm{CHO}$	-4.49	30.57	0.3824	0.1227	-355.47
$4-\mathrm{CN}$	-4.84	33.77	0.3834	0.1235	-354.91
$4-\mathrm{NO}_{2}$	-5.18	36.91	0.3856	0.1258	-348.79
Correlation coefficient ${ }^{\text {a }}$		0.988	0.930	0.942	0.964
Nucleobases					
Adenine					
N9-H		57.56	0.4258	0.1587	
N10-H		31.44	0.4043	0.1320	
Guanine					
N1-H		50.95	0.4127	0.1424	-344.4985
N9-H		56.85	0.4236	0.1566	-341.8752
N11-H		40.91	0.3860	0.1287	-350.0580
Tymine					
N1-H		56.43	0.4232	0.1533	-341.5219
N3-H		47.82	0.4273	0.1526	-352.8951
Uracil					
N1-H		59.86	0.4247	0.1551	-339.6191
N3-H		49.32	0.4284	0.1532	-352.4227
Cytosine					
N1-H		44.93	0.4182	0.1478	-351.4197
N7-H		39.22	0.3914	0.1309	-360.1006

${ }^{\text {a }}$ Correlation coefficients for the relationships between $\Delta \mathrm{E}_{\text {corr }}$ and $\Delta \mathrm{V}_{\mathrm{H}}$
${ }^{\mathrm{b}} \Delta \mathrm{V}_{\mathrm{H}}$ is defined in eq 5 in the main text.

S7. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the

Optimized Structures of Model Sets of Molecules, Used for Calculations the Shifts of EPN from M06-2X/6-

$311+G(2 d, 2 p)$ Computations.

```
NH3
N,0,-1.6758727194,-0.8117382006,-0.01062624
H,0,-1.2975135118,-1.7508371263,-0.0106263553
H,0,-1.2974965372,-0.3421956769,0.8026533954
H,0,-1.2974965372,-0.3421954771,-0.8239057601
HF=-56.5492627 Nimag=0
```


$\mathrm{CH}_{2} \mathrm{NH}$

C, 0, 0. $5661033495,0.0364230069,0$.
H, 0, 1. $2632890317,-0.7991237473,0$.
H, 0, 0. $9979024625,1.0391081601,0$.
N,0,-0.6723737983,-0.2042463602,0.
H, 0, -1. $2097106854,0.6626282305,0$.
$\mathrm{HF}=-94.6151324 \quad$ Nimag=0

HCHO

C, 0, -1.0437002383, 0.1479441903,-0.0079707831 H, 0,-1.6218085078,1.0870470128,-0.0079608214 H, 0, -1. 621829146,-0.7911459281,-0.0079831801 $0,0,0.152204772,0.1479309884,-0.0079615754$ $\mathrm{HF}=-114.4907506$ Nimag=0

H_{2}

H, 0, -0. 3691560705,0., 0.
H, 0, 0.3691560705,0., 0.
$\mathrm{HF}=-1.1687457$
Nimag=0

Table S8. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures of Model Sets of Molecules, Containing Nitrogen Atoms from M06-2X/6-311+G(2d,2p) Computations.

Pyridine

C, 0, -2.301322252, 0.4316858104,0.0605264308
N, 0, -2.2323087403,-0.8967585033,0.1199275199 C, 0, -1.0213102337,-1.4486397625,0.0754759451 C, 0, 0.1535194666,-0.7159064291,-0.0282057755 C, 0, 0.0670546565,0.6668505702,-0.0891820855 C, 0, -1. $1880645358,1.2548962052,-0.0438771878$ H, 0, -3.295923396,0.8593597388,0.0982607513 H, 0, -0.9884511656, -2. 5303091446, 0.1252103053 H, 0, 1. 1073117317,-1.2211210475,-0.0598445942 H, $0,0.9582210771,1.2728459619,-0.1702268755$ H, 0, -1. $3080796358,2.3270935782,-0.0880629$ $\mathrm{HF}=-248.2489657 \quad$ Nimag $=0$

Pyrimidines

H
C, 0, -2. $5792178472,-0.7439168363,0.128727094$ N, 0,-3.0059499288,0.4906321407,-0.1244530826 C, 0, -2.061353049,1.4116590905,-0.2892346328 N, 0,-0.7459331259,1.2283713671,-0.2277561018 C, 0, -0. $3411460734,-0.0133435347,0.0264276682$ C, 0,-1.232349266,-1.0571136701,0.2165932189 H, $0,-3.3419648055,-1.5017666678,0.264592401$ H, 0, -2.3998578557,2.4197255091,-0.4957795911 H, 0, 0.7295913385, -0.1726866619, 0.0784860631 H, 0, -0. $8950623868,-2.0615607366,0.4223969631$ $\mathrm{HF}=-264.2918383 \quad$ Nimag=0

$4-\mathrm{CH}_{3}$

C, 0, 0.862319417,0.013442206,0.0062468555

C, 0, 0.1394635242,1.1981866775,-0.0737095077
C, 0, -1.2414306175,1.1022114706,-0.0628883164
$\mathrm{N}, 0,-1.8759469194,-0.0641723115,0.0194410946$
C, 0, -1.0929077908, -1.1372448947,0.0912676989
$\mathrm{N}, 0,0.2341255085,-1.1626021918,0.0892296786$
C, 0, 2. $3604309135,-0.0175078312,0.0082275399$
H, 0, 0.6354943308, 2.1551660363,-0.142102052
H, 0, -1. $8622561537,1.9886460256,-0.122650238$
H, 0,-1.593166723,-2.0963133515,0.1581719501
H, 0, 2. 713323007,-0.672129263,-0.7873428741
H, 0, 2. $7160042075,-0.4321267255,0.9511544741$
H, 0, 2. $7832275059,0.975137153,-0.1265640335$
$\mathrm{HF}=-303.6057028 \quad$ Nimag $=0$

4-NH2

C, 0, 0.166583532,1.2066660991,0.0150187755 C, 0, 0.8909707529,0.0059667985,0.0380274884 N, 0, 0. $2694736938,-1.1737811168,0.0358732267$ C,0,-1.0589907252,-1.1454555972,0.0055819927 $\mathrm{N}, 0,-1.8449964581,-0.0783955557,-0.0167148738$ C, 0, -1.2034274931, 1.0964805739,-0.0101152109 $\mathrm{N}, 0,2.2573291671,-0.0154166784,0.022110771$ H, 0, 0.6607218085,2.1669664559,0.0115842926 H, 0, -1. $5521484509,-2.1107979192,0.0022269552$ H, 0, -1. $8247561796,1.9841233933,-0.0272537786$ H, 0, 2. $6778259068,-0.8999897693,0.2534014009$ H, 0, 2. $7498197358,0.8060229957,0.3243050803$ $\mathrm{HF}=-319.6641017 \quad$ Nimag=0

4-F

C, 0, -1.1300337659, 0.1889627746, 0.0328119507 C, 0, -1. $0720117106,-1.194765247,0.0198861204$
$\mathrm{N}, 0,0.0318581198,-1.8900651326,-0.0132851111$ C, 0,1.1571714673,-1.1719781768,-0.0349418588 $\mathrm{N}, 0,1.2534915339,0.1487573409,-0.0256134604$ C, 0, 0.0989456026,0.8188339234,0.0083564436 F, 0, -2. $2065143027,-1.8830133714,0.0409865547$ H, 0, -2.068551018,0.7182930293,0.0601037149 H, 0, 2. $0827760615,-1.7328507499,-0.061900115$ H, 0,0.1655500122,1.8995896096,0.015962761 $H F=-363.544721$

Nimag=0

4-CHO

C, 0, -0. $53647031,0.7184528072,0.024215086$ C, 0, -0. $5068928348,-0.6662510763,0.0115431227$ $\mathrm{N}, 0,0.627074717,-1.362117013,-0.015676758$ C,0,1.7481399907,-0.6481834872,-0.0298976146 $\mathrm{N}, 0,1.8419619768,0.6782456493,-0.020547651$ C, 0, 0. $694748011,1.3534324793,0.0069939804$ C, 0, -1. $7710606562,-1.4725204985,0.0276836273$ $0,0,-2.8594700306,-0.9712757671,0.0522728599$ H, 0,-1.4754817081,1.2508274585,0.0461080273 H, 0, 2. $6783179406,-1.2018070433,-0.0532054934$ H, 0, 0.7696740134,2.4341582734,0.014489211 H, 0, -1. $6147661098,-2.5634927823,0.0148706025$ $\mathrm{HF}=-377.6096452$

Nimag=0

4-CN

C, 0, -0. $6179969206,0.4348955074,0.0271556338$ C, 0, -0. $5757179001,-0.9510338515,0.0136051076$ $\mathrm{N}, 0,0.5625383272,-1.6407833231,-0.0137848468$ C, 0, 1. $6741711836,-0.9150503936,-0.0271341303$ $\mathrm{N}, 0,1.7600881206,0.4135367565,-0.0163697546$ C, 0, 0.6105403186,1.0782622765,0.0109265802 C, 0, -1. $8102940068,-1.7098463462,0.02849992$ N, 0, -2. $8105489245,-2.2683866562,0.0412534632$ H, 0,-1.5533873123,0.972064953,0.0490529359 H, 0, 2. $6070927122,-1.4638299036,-0.049753348$ H, 0, 0. $6719384019,2.1595699808,0.019649439$ $H F=-356.5252833$

Nimag=0

$4-\mathrm{NO}_{2}$

C, 0, -0. $5482154176,0.7958446572,-0.1045325824$ C, 0, -0. $4744244598,-0.5802923995,-0.121190931$ $\mathrm{N}, 0,0.6297266119,-1.2765568796,-0.1810336031$ C, 0, 1. $7498404196,-0.5581350317,-0.2281731485$ $\mathrm{N}, 0,1.8325396137,0.7678942216,-0.2196007003$ C, 0, 0.6834161253,1.4344547498,-0.157892003 $\mathrm{N}, 0,-1.750143999,-1.3738046311,-0.0672796597$ $0,0,-1.6642617684,-2.5718432367,-0.0834309874$ $0,0,-2.7734099396,-0.7236358521,-0.0112113153$ H, 0, -1.4882258008,1.3190726161,-0.0542060497 H, 0, 2. 6787336952,-1.1109862548,-0. 2782135754 H, 0, 0. $7470059194,2.5152670409,-0.1507494443$ $\mathrm{HF}=-468.7815566$

Nimag=0

Purines

H
N, 0,1.0184670902,-1.9347938115,0.0760436206 C, 0, 2. $148941418,-1.2670769244,0.2864762016$ $\mathrm{N}, 0,2.3051118353,0.0553948798,0.4324531693$ C, 0,1.2268868766,0.8291520975,0.3657500356 C, 0, -0.0193544667,0.2594051089,0.1495145511 C, 0,-0.0339829209,-1.1353573603,0.015128153 $\mathrm{N}, 0,-1.2995577063,0.7728376486,0.0317955669$ C, 0, -2.0450363679,-0.2721875226,-0.1644634551 $\mathrm{N}, 0,-1.3499822423,-1.4587792353,-0.186824872$ $\mathrm{H}, 0,3.0510212436,-1.8618656928,0.3473130187$ H, 0,1.3606945601,1.8975475709,0.4846319394

H, 0, -3. $1142000474,-0.250350114,-0.3014385238$ H, 0,-1.7216642722,-2.3828436447,-0.3226724055 $H F=-411.9126643$

Nimag=0

$\mathbf{2 - C H} 3$

C, 0, 0. $862319417,0.013442206,0.0062468555$ C, 0, 0.1394635242,1.1981866775,-0.0737095077 C, 0, -1. $2414306175,1.1022114706,-0.0628883164$ $\mathrm{N}, 0,-1.8759469194,-0.0641723115,0.0194410946$ C, 0, -1. $0929077908,-1.1372448947,0.0912676989$ $\mathrm{N}, 0,0.2341255085,-1.1626021918,0.0892296786$ C, 0, 2. $3604309135,-0.0175078312,0.0082275399$ H, 0, 0. $6354943308,2.1551660363,-0.142102052$ H, 0, -1. $8622561537,1.9886460256,-0.122650238$ H, 0, -1. $593166723,-2.0963133515,0.1581719501$ H, 0, 2.713323007,-0.672129263,-0.7873428741 H, 0, 2. $7160042075,-0.4321267255,0.9511544741$ H, 0, 2. $7832275059,0.975137153,-0.1265640335$ $H F=-303.6057028$

Nimag=0

$\mathbf{2}-\mathrm{NH}_{2}$

N, 0,1.0918093965,-1.0694490839, 0.9059088981 C, 0, 2. $0363492265,-0.6470492626,0.0626423496$ $\mathrm{N}, 0,1.952396687,0.3793606977,-0.8104716967$ C, 0, 0.8159757999,1.0549258478,-0.8741857724 C, 0, -0. $2537183582,0.7091326804,-0.060511869$ C, 0, -0.024955518, -0.3677872949, 0.803953313 $\mathrm{N}, 0,-1.5369118648,1.2077819638,0.1078275658$ C, 0, -2.0522775936,0.4592475097,1.031253366 N, 0, -1. $1922044569,-0.514627856,1.5017330995$ H, 0, 0. $7618555813,1.8785282062,-1.5763371929$ H, 0, -3.051759789,0.5559299412,1.4233835501 H, 0, -1. $3783782443,-1.2036614526,2.2090043179$ $\mathrm{N}, 0,3.2138412571,-1.3458469601,0.0484341001$ H, 0, 3. $9941317555,-0.8705872848,-0.3696349139$ H, 0, 3.4020947409,-1.9095104819,0.8585828048 $\mathrm{HF}=-467.2849791$ Nimag=0

2-F

$\mathrm{N}, 0,0.8933772444,-1.4143395019,0.0000721809$ C, 0, 1. $978244702,-0.6734511367,0.0001452192$ $\mathrm{N}, 0,2.1113859565,0.6432066539,0.0000244023$ C, 0, 0.9956560572,1.3672759328,-0.000012956 C, 0, -0. $2382308093,0.7352787522,0.0000093862$ C, 0, -0. $2003745488,-0.6659913448,0.0000329724$ $\mathrm{N}, 0,-1.5481155359,1.1841025835,-0.0000047932$ C, 0, -2.2575891431, 0.0984814538, 0.0000152633 $\mathrm{N}, 0,-1.5078718205,-1.0593214754,-0.0000153301$ H, 0,1.0969377649,2.4451210496,-0.0000605141 H, 0, -3.33511308, 0.0633696908,0.0000046744 H, 0, -1. $8447505093,-2.0066884246,0.0001188128$ F,0,3.1170525619,-1.3488528431,-0.0001347231 $\mathrm{HF}=-511.1658356$

Nimag=0

2-CHO

N, 0,-0.6879677885,-0.8760530915,-0.0248107546 C, 0, -1.4612291759,0.2060158926,-0.0072463101 $\mathrm{N}, 0,-1.0753418121,1.4890024133,0.0274888522$ C, 0, 0.2245649048,1.7628889968,0.0479718973 C, 0, 1. 1408913478,0.7219395483,0.0330128198 C, 0, 0. 5939550303, -0. $573185618,-0.0037830759$ $\mathrm{N}, 0,2.5205570879,0.6653325637,0.0463108426$ C, 0, 2. $7877168678,-0.6069278392,0.018285543$ N, 0, 1. $6764424921,-1.4129007135,-0.0129507883$ C, 0, -2. $9505552112,0.0053958831,-0.0281615453$ $0,0,-3.4774072472,-1.0680912133,-0.0593434696$ H, 0, 0.5269792346,2.8024003105,0.0761638115 H, 0, 3. 7809303368, -1. $0268954349,0.0188977828$ H, 0, 1. $6483840703,-2.4179478144,-0.0366933258$

H, 0, -3. $5192911375,0.9496137264,-0.0120189897$ $\mathrm{HF}=-525.2276826$ Nimag=0

2-CN

N, 0, 0. $8959853236,-1.4223142203,0.0000454086$ C, 0,2.0046199824,-0.6882744919,0.0000619604 $\mathrm{N}, 0,2.1191742752,0.6446191857,0.0000118003$ C, 0, 1.0042111326,1.366305532,-0.0000097233 C, 0, -0. $2283365078,0.7295721862,0.0000011415$ C, 0, -0. $1925483278,-0.6738420948,0.0000228123$ $\mathrm{N}, 0,-1.533052458,1.179580256,-0.0000095884$ C, 0, -2.2457380212, 0.0925827374,0.00001243 $\mathrm{N}, 0,-1.503005081,-1.0642705815,-0.0000070678$ H, 0,1.1018785937,2.4445011814, -0.0000385741 H, 0, -3. 3235020655,0.0622186503, 0.0000062792 H, 0, -1. $8430050938,-2.0109703391,0.0001402607$ C,0,3.2545881111,-1.4293295726,0.0000102804 $\mathrm{N}, 0,4.2374048964,-2.0177343785,-0.0000280597$ $\mathrm{HF}=-504.1458213$ Nimag=0

2- NO_{2}

N, 0, 0.2442463872,-0.9489564368, 0. C, 0, 1. $0446901812,0.0917873777,0$. $\mathrm{N}, 0,0.7715446782,1.3815244013,0$. C, 0, -0. $5107415032,1.7339431644,0$. C, 0, -1. $4902516938,0.7506692799,0$. C,0,-1.0231945532,-0.5748295742,0. $\mathrm{N}, 0,-2.8692324614,0.7754831258,0$. C, 0, -3.2113291774,-0.4787140912,0. $\mathrm{N}, 0,-2.1487262112,-1.3502282111,0$. H, 0, -0. $74388674,2.7908703129,0$.
H, 0, -4. $2271632218,-0.8400952976,0$. H, 0, -2. $1808124633,-2.3558974617,0$. N, 0, 2. 5152687845,-0.2492992009, 0. $0,0,2.7981884452,-1.4234558329,0$. $0,0,3.289588789,0.6748577745,0$. $\mathrm{HF}=-616.3999032$

Nimag=0

Anilines

H

C, 0, -1. $1567914664,-1.1965922871,0.0013822866$ C, 0, -1. $8619530566,0.0000005434,-0.0127316443$ C, 0,-1.1567914049,1.1965927428, 0.0014339125 C, 0, 0. $2290066438,1.2013843813,0.029316356$ C, 0, 0. 9389518045,-0.0000007722,0.0453068969 C, 0, 0.229006593,-1.2013851808, 0.0292645594 $\mathrm{N}, 0,2.3371220112,-0.0000000882,0.0139251015$ H, 0, -1. $6890861248,-2.1379199481,-0.0091627676$ H, 0, -2.9417589644,0.0000010515,-0.0343988133 H, 0, -1. $6890860373,2.1379208716,-0.0090705737$ H, 0, 0. $7707474648,2.1386563764,0.034366209$ H, 0, $0.7707473576,-2.1386574295,0.0342739595$ H, 0, 2. $7606530194,-0.8315936625,0.3936840748$ H, 0, 2. $7606530702,0.8315767034,0.3937207525$ $H F=-287.5667192$

Nimag=0

4 - CH_{3}

C, 0, 0.6687283684,1.18803449,-0.0013626827 C, 0, 1. 3917807714,-0.0021167096,-0.0105609845 C, 0, 0. $668927894,-1.1910250854,-0.0224096536$ C, 0, -0.717788593,-1.1986386896,-0.0197193421 C, 0, -1. $4315657113,-0.0017390717,-0.0046562346$ C, 0, -0.7168299143,1.1959424599,0.0013787447 $\mathrm{N}, 0,-2.8313568552,-0.0000160731,-0.0663265225$ C, 0, 2. $8975251911,0.0008472517,0.0163731566$ H, 0,1.2005957013,2.1315931555,0.0011356562 H, 0,1.2002151467,-2.1346288892,-0.0366357962

H, 0, -1. $2546309258,-2.1386890235,-0.0383645843$ H, 0, -1. $2537638093,2.1361446414,-0.0008663192$ H, 0, -3. $2574484913,0.8261507413,0.3232169343$ $\mathrm{H}, 0,-3.25862705,-0.8337659235,0.3053543105$ $\mathrm{H}, 0,3.2983176334,-0.926232354,-0.3909393212$ H, 0, 3. $2741486085,0.1043837053,1.0355116186$ H, 0, 3. $2995096153,0.8280925846,-0.5675942499$ $\mathrm{HF}=-326.8743802$

Nimag=0

$4-\mathrm{OCH}_{3}$

C, 0,2.030017081,-0.2003252115,-0.0048787843 C, 0,1.4894372518,1.0883645499,-0.0006923855 C, $0,0.123054444,1.2841395996,0.0151710663$ C, 0, -0. $7489493855,0.1974275445,0.0234636166$ C, 0, -0.2253518098, -1.0882174673, 0.0160312583 C, 0, 1.154347566, -1.2773015997,0.00147505 $\mathrm{N}, 0,3.4209013381,-0.393210333,-0.0840234871$ $0,0,-2.0804927758,0.4973104039,0.0393634947$ C, 0, -2.9825238267,-0. $5845335011,0.0385605068$ H, 0, 2. 1522263527,1.944299957,-0.0144363184 H, 0, -0. $2948070822,2.2809393506,0.0206802977$ H, 0, -0. $8697755744,-1.9539060967,0.0216375515$ H, 0,1.5487119521,-2.2853727126,-0.0100289237 H, 0, 3. $7254303156,-1.2744072255,0.3003944468$ $\mathrm{H}, 0,3.9527721464,0.3629778929,0.3188161906$ H, 0, -2.8642680887, -1.198472353, -0. 8579137288 H, 0, -2. $8511667795,-1.2113372954,0.9242816096$ H, 0, -3. $9780991249,-0.1511775025,0.049270539$ $\mathrm{HF}=-402.0805518 \quad$ Nimag $=0$

4-NH2

C, 0, -1. $3750324781,0.7065962653,0.0070831847$ C, 0, -1.4022345173,-0.6840603735, 0.0739922032 C, 0, -0.1864087732,-1.3588681849, 0.1494850984 C, 0, 1.0148038896,-0.667351195,0.1530828343 C, 0, 1.042101343,0.7230776001,0.0810918386 C, 0, -0.1737836114,1.3981053278, 0.0104254606 $\mathrm{N}, 0,2.2593966216,1.4284066447,0.1492947676$ N, 0, -2. $6235673466,-1.3826534091,0.1349900123$ H, 0, -2. $3067846242,1.2557299509,-0.0434825634$ H, 0, -0. $1801620171,-2.4397964216,0.2113600076$ H, 0,1.9461437596,-1.2157377641,0.217588792 H, 0, -0. $1805405218,2.4797443977,-0.037342412$ H, 0, 2. $222114211,2.3293833333,-0.3026044149$ H, 0, 3. $0442743753,0.900491434,-0.2008809841$ H, 0,-2.559838771,-2.3251957169,-0.2183180868 H, 0, -3.3821665394,-0.8963928887,-0.318180738 $\mathrm{HF}=-342.9198605 \quad$ Nimag $=0$

4-F

C, 0, 0. $7166176337,1.2043819458,0.0018923988$ C, 0, 1.3899273959, 0.0000020648, -0.000197192 C, 0, 0.7165677682,-1.204354573,0.0020737052 C, 0, -0.6700901963,-1.1999837218, 0.006395309 C, 0, -1. $3811163313,0.0000579354,0.0105113716$ C, 0, -0. $6700454392,1.2000666366,0.006234578$ $\mathrm{N}, 0,-2.7822005532,0.0000574506,-0.0479258571$ F, 0, 2. $7379169816,-0.0000275216,-0.0031916635$ H, 0, 1. $2764026377,2.1283092349,0.0002048078$ H, 0, 1. $2763178948,-2.1283033694,0.0005229299$ H, 0, -1. $2082760034,-2.1387796664,0.0018796626$ H, 0, -1. $2081865165,2.1388882947,0.0016222684$ $\mathrm{H}, 0,-3.2065849421,0.8301530418,0.3344912521$ $\mathrm{H}, 0,-3.2066133901,-0.8297681025,0.3350477793$ $\mathrm{HF}=-386.8087841$

Nimag=0

$4-\mathrm{Cl}$

C, 0, 0. $869684175,-1.2017191427,-0.130492779$ C, 0, 1. 5385632693,-0.0000437945,0.0291796386 C, 0, 0.8699597605,1.2020359052,-0.1285809355

C, 0, - 0. $4778711454,1.2004534424,-0.4483633399$ C, 0,-1.170916285,0.0007791893,-0.6155559606 C, 0, -0.478146295,-1.1993193492,-0.4502658094 $\mathrm{N}, 0,-2.5422445171,0.0011393832,-0.8789798865$ H, 0, 1.4011283275,-2.1336918795, -0.0053356708 H, 0,1.4016168803,2.1336869755,-0.0019424974 H, 0, -1. $0011049537,2.1403864659,-0.5657383306$ H, 0,-1.0016006277,-2.138943077,-0.5691233831 H, 0, -2.8801939485,0.8335531955, -1. 3348635394 H, 0, -2.8803596096, -0.8304234614,-1.3362914218 Cl,0,3.2384579695,-0.0005588527,0.4314319153 $\mathrm{HF}=-386.8087841$

Nimag=0

4-Br

C, 0, -0.1856154945,1.2020821601,-0.2279248447 C, 0, - $0.8602915623,0.0000155904,-0.0976002313$ C, 0, -0.1855922425,-1.2020106136,-0.2281769642 C, 0, 1. $1746141005,-1.1998231571,-0.4913287093$ C, 0, 1. $8739239819,0.0000977166,-0.6285178063$ C, 0,1.1745908676,1.1999762272,-0.4910773859 $\mathrm{N}, 0,3.2539920427,0.0001324195,-0.8347923472$ H, 0, -0. $7175360669,2.1363949846,-0.12517294$ H, 0, -0. $7174946947,-2.1363552796,-0.1256209628$ H, 0,1.7021402434,-2.1397933934,-0.5875739684 H, 0, 1. $7020985776,2.1399769176,-0.5871261045$ H, 0, 3. 6126869022,-0.8322955696,-1.2743405841 H, 0, 3. 6126716924,0.8326616468,-1. 2741612253 $\mathrm{Br}, 0,-2.7262873473,-0.0000400964,0.2614210742$ $\mathrm{HF}=-2861.1361665$

Nimag=0

4-CHO

C, 0, -1.1583567231, 0.7353298225,0.0125449065 C, 0, -1.1735086672,-0.6610216206,-0.0045369995 C, 0, 0.0352112365,-1.3516356832,0.0152337009 C, 0,1.2390424094,-0.6738730576,0.0501141558 C, 0,1.2538777985,0.7243390654,0.0651366686 C, 0, 0.0352922703,1.4208883488,0.0482773009 $\mathrm{N}, 0,2.4498201528,1.4149036524,0.1532251108$ C, 0, -2. $44404638,-1.4005352817,-0.0448626237$ $0,0,-3.5356278841,-0.8891132501,-0.0691663784$ H, 0, -2. $1026058447,1.262780998,-0.0034537218$ H, 0, 0.0297042153,-2.4349846078,0.001944006 H, 0, 2. $1746796873,-1.2170731015,0.0693779572$ H, 0, 0.0447800673,2.5029553721,0.0667005162 H, 0, 2. $4303005013,2.3724472475,-0.1561653695$ H, 0, 3. $2702006449,0.9189949042,-0.1530326173$ H, 0, -2. $3409204846,-2.5025508086,-0.0523256127$ $\mathrm{HF}=-400.8907636$

Nimag=0

4-CN

C, 0, -1. $2205255403,0.7157681054,0.0079519867$ C, 0, -1. $23093141,-0.6795080428,-0.0104343433$ C, 0, -0.0202068027,-1.3731068584, 0.0103123951 C, 0,1.1759730094,-0.6861117512,0.0480497149 C, 0,1.1922453203,0.7129788735,0.0643865001 C, 0, -0.0246937211,1.403419801,0.0457567561 $\mathrm{N}, 0,2.3895749733,1.4011756344,0.1565911307$ C, 0, -2.4735212721,-1.39334937,-0.0521986311 $\mathrm{N}, 0,-3.4690939664,-1.965098135,-0.0863495433$ H, 0, -2.1566487124,1.2552840534, -0.0082808877 H, 0, -0.0255457698, -2.4535815734,-0.0041214363 H, 0, 2. $1109948294,-1.2297999786,0.0685993569$ H, 0, -0.0236298237,2.4850376494,0.0647584019 H, 0,2.3733504991,2.3582067789,-0. 1542006765 H, 0,3.2089933869,0.9034898134,-0.1494167243 $\mathrm{HF}=-379.8113149$

Nimag=0

$4-\mathrm{NO}_{2}$

C, 0, -1.1616260646, 0.7564646523,-0.0918987577

C, 0, -1. $1446948065,-0.6296573276,-0.113059042$ C, 0, 0.0465810137,-1.3388709669,-0.1213294998 C, 0,1.2406588961,-0.648440607,-0.1082895897 C, 0,1.2529990161,0.7525267371,-0.0889491837 C, 0, 0.0343113104,1.4437567816, -0.0789665848 N, 0, 2. $4477426277,1.4403961679,-0.0243742801$ $\mathrm{N}, 0,-2.4101257414,-1.3590751016,-0.1292334567$ $0,0,-2.3631701606,-2.5735516909,-0.1493970457$ $0,0,-3.4377364632,-0.7098265921,-0.1218404057$ H, 0, -2. $1074669518,1.2757361745,-0.0864460103$ H, 0, 0.0220603232,-2.4174811184,-0.1383312936 H, 0, 2. $1773687422,-1.189137944,-0.1098945836$ H, 0, 0.0356619748,2.5251187167,-0.0580396248 H, 0, 2. $4272785125,2.4040853664,-0.3122525655$ H, 0, 3. $2675387715,0.946732752,-0.334442076$ $\mathrm{HF}=-492.0682745$

Nimag=0

Pyridin-2(1H)-ones

H
C, 0, -0. $307691048,1.2424742154,0.0001725966$ C, 0, -1. $0431962609,-0.0074918693,0.0001376039$ C, 0,1.1435128813,-1.1133406513,-0.0002663195 C, 0,1.8126430159,0.0619876648,-0.0002326163 C, 0, 1. $046772539,1.2644265896,-0.0000061325$ $0,0,-2.2529704283,-0.1378831326,0.0002783002$ H, 0, -0. $9010648807,2.1438482758,0.0003435442$ H, 0, 1. 6339991845,-2.0753953406,-0.0004334022 H, 0, 2. $8895998266,0.0766271912,-0.00037172$ H, 0, 1. $563401478,2.2153521238,0.0000236811$ $\mathrm{N}, 0,-0.2159040238,-1.1358378894,-0.000100747$ H, 0, -0. $7104425836,-2.0154307574,-0.0001421186$ $H F=-323.487398$

Nimag=0

5-CH3

C, 0,0. $0.7640407962,-1.2456283183,0.0012074195$ C, 0, 1. 5351375613, -0.0161441873, 0.0009025747 C, 0, -0.6264031457,1.1388175904,-0.0010585739 C, 0, -1. $3408116241,-0.0098410504,-0.0007442771$ C, 0, -0. 5888828528, -1.2279497043, 0.0005159014 $0,0,2.7496595181,0.0766273926,0.0013630892$ C, 0, -2. $8421548358,-0.0259516969,-0.0018947889$ H, 0, 1. $3303772913,-2.1643897154,0.0020976891$ H, 0, -1. $0893043032,2.1155208336,-0.0019444852$ H, 0, -1. $1328600162,-2.165663578,0.0008151961$ H, 0, -3. $244248116,0.9855290295,-0.0005772739$ H, 0, -3. $229838957,-0.5431439444,0.8765750713$ H, 0, -3. $2285977002,-0.5403734674,-0.8825399048$ $\mathrm{N}, 0,0.7381339472,1.1270553006,-0.0000305507$ H, 0,1.2512993169,1.9955099358,-0.0004550698 $\mathrm{HF}=-362.7955676$

Nimag=0

5-NH2

C, 0, -0. 3115178476,1.236734734,0.0042281169 C, 0, -1.0478372216,-0.0160863701,0.0146844704 C, 0, 1. $1499227121,-1.1070607111,-0.0526204035$ C, 0,1.8212267345,0.067281459,-0.0519830994 C, 0, 1.0393718008,1.2650947777,-0.0154902208 $0,0,-2.2616194481,-0.135693262,0.0401710339$ H, 0, -0. $9034205751,2.1388834616,0.0265574636$ H, 0,1.6421283586,-2.06810267,-0.0789996557 H, 0, 1. $5616737524,2.2143628281,0.001414646$ N, 0, -0. $2209837851,-1.1292696957,-0.0028983295$ H, 0, -0. $7062979499,-2.0130597945,0.0059709135$ $\mathrm{N}, 0,3.2298084817,0.1654916002,-0.0038126787$ $\mathrm{H}, 0,3.6871528804,-0.7229435987,-0.1495054415$ H, 0, 3. $5898513867,0.8323719715,-0.6725581852$ $\mathrm{HF}=-378.8363014$

Nimag=0

5-F

C, 0, - $0.3051598037,1.2418365746,0.0001898004$

C, 0, -1.0424988803,-0.011769876,-0.0000838113 C, 0, 1. $1454412287,-1.1246785685,-0.0005491841$ C, 0, 1. $7830355993,0.0601097808,-0.0003315565$ C, 0, 1.0476668975,1.2716043827,0.0000909484 $0,0,-2.2532057132,-0.1309105875,-0.0001303119$ H, 0, -0. $8981514383,2.1431001828,0.0004042521$ H, 0, 1. $6644563626,-2.0701418994,-0.0007802074$ H, 0, 1. $5930858952,2.2059197304,0.0002485303$ $\mathrm{N}, 0,-0.2199708022,-1.1387611012,-0.0001536401$ H, 0, -0. 7127578937,-2.0189291146,0.0008305177 F, 0, 3. 1252610981,0.1099735058,-0.0004501978 $\mathrm{HF}=-422.7220493$

Nimag=0

5-Cl

C, 0, -0. $3066832937,1.2420896004,0.0001798922$ C, 0, -1.0427352222, -0.0102304268, 0.0002659532 C,0,1.1459516299,-1.1171102206,-0.0002234734 C, 0, 1. $7984080523,0.0644630308,-0.0002646059$ C, 0,1.0455844094,1.2725214916,-0.0000738739 $0,0,-2.2512899874,-0.1368483204,0.0004641886$ H, 0, -0. $8985760701,2.1442662919,0.0003471538$ H, 0, 1. $653547912,-2.0693168969,-0.000391156$ H, 0,1.5770072219,2.2144386894,-0.0001176409 $\mathrm{N}, 0,-0.2145267293,-1.136472667,-0.0000561252$ H, 0, -0. $7044849588,-2.0186980977,-0.0004458583$ Cl,0,3.534079926,0.1156958053,-0.0005783645 $\mathrm{HF}=-783.0845354$

Nimag=0

5-CN

C, 0,-0.2996111469,1.2508671635,0.0001948042 C, 0, -1.0258069838, -0.0068228108, 0.000429069 C, 0, 1. 1615847963,-1.1082714273,-0.0002256846 C, 0, 1. $8229880821,0.0813407263,-0.0003671943$ C, 0,1.0499501233,1.2883330283,-0.0001568935 $0,0,-2.2280594824,-0.1508015017,0.0006116525$ H, 0, -0. $8993812475,2.1477034423,0.000364249$ H, 0, 1. $6741750157,-2.0588923196,-0.0004264661$ H, 0, 1. $5729254559,2.234851918,-0.0002855174$ N, 0, -0.1860146246,-1.1369177931,0.0000227586 H, 0, -0. $6747130896,-2.0207518655,-0.0007038189$ C, 0, 3. $2511584643,0.1094798814,-0.0007509708$ $\mathrm{N}, 0,4.3988847073,0.1431112882,-0.0010548976$ $\mathrm{HF}=-415.7273753$

Nimag=0

5-NO2

C, 0, -0. $3097127882,1.2539798434,0.00018116$ C, 0, -1.0319879936, -0.0069963122, 0.0002202875 C, 0, 1. 1543701052,-1.1100480452,-0.0004123414 C, 0, 1. $7880169492,0.089196193,-0.000449431$ C, 0,1.0401635622,1.2986595021,-0.0001754201 $0,0,-2.2322176915,-0.1566804318,0.0005623931$ H, 0, -0.9139545216,2.147604636,0.0004474875 H, 0,1.6928497081,-2.045433113,-0.0006176258 H, 0, 1. $5773703535,2.235754195,-0.0001998337$ $\mathrm{N}, 0,-0.1891290828,-1.1408905531,-0.0001881195$ H, 0, -0. 6768021986, -2.0255737943,-0.0001335772 $\mathrm{N}, 0,3.2372754911,0.1133171172,-0.0007583507$ $0,0,3.7727946161,1.2028170142,-0.000771536$ $0,0,3.8240774509,-0.9523269813,-0.0009972428$ $\mathrm{HF}=-378.8363014$

Nimag=0

Imides

Imide1
C, 0, -1. $2929599168,-0.208297881,0.0977681575$ $0,0,-2.2121785431,-0.9836601297,0.193173517$ $\mathrm{N}, 0,-0.0005272443,-0.7298440311,0.0464776984$ H, 0, 0.001279098,-1.7419757857,0.0844798431 C, 0, 1.290251112,-0.2090080805,-0.0425325935 $0,0,2.2121683727,-0.9861216403,-0.0789186914$ C, 0, 1. $5139758031,1.279808914,-0.0764373$ H, 0,1.1955869977,1.7385603478,0.857889458 H, 0, 2. $5797733268,1.43412128,-0.2053723224$ H, 0,0.9745291069,1.7523853177,-0.8930742476

C, 0, -1. $5219705184,1.2781126267,0.0199792763$ H, 0, -0. $984411518,1.8125966431,0.7988370603$ H, 0, -1. $2048583666,1.6664956287,-0.9461683389$ H, 0, -2. $5883813801,1.4377300602,0.1367188731$ $\mathrm{HF}=-361.8329325$

Nimag $=0$

Imide2

C, 0, -3.2338851332,2.0721172912,0.1387987155 $0,0,-3.6317815665,0.9721818721,0.3941045236$ $\mathrm{N}, 0,-1.8542685014,2.2990082905,0.0603901567$ H, 0, -1. $3266080539,1.4340719085,0.06341537$ C, 0, -1. $0605357784,3.4113372463,-0.167006266$ 0,0,0.0773776511,3.2816692691,-0.5381507478 C, 0, -1. $6095789647,4.7984933745,0.1195459502$ H, 0, -2. $2794985425,5.1366288773,-0.6721995142$ H, 0, -0. $7555194999,5.4660913668,0.1874018826$ C, 0, -4.183794867,3.2100832063,-0.2004658671 H, 0, -4.1464173791,3.9872424724,0.5597119852 H, 0, -3. $9185688081,3.627090171,-1.1746470006$ F, 0, -2. $2924349669,4.8160830256,1.3178427119$ F, 0, -5.4511466494,2.7157586085,-0.2687296701 HF=-560. 292206

Nimag=0

1,6-dihydropyrimidines

H

C, 0, -1. $4299783115,0.0081361828,0.0803950663$ C, 0, -0. $5854826893,1.2457733968,-0.0489548727$ C, 0, 0. $7440130162,1.1750380788,-0.0145003607$ $\mathrm{N}, 0,1.4821059003,-0.0159870441,0.1067421775$ C, 0, 0. $7816424151,-1.0843589704,0.0206254852$ N, 0, -0. $5660942774,-1.148730184,-0.1407349217$ H, 0, -2.2301005115,0.0039648909,-0.6624197991 H, 0, -1. $9079465458,-0.0426724339,1.067530835$ H, 0, -1.0858861803,2.1983673426,-0.1439080265 H, 0,1.3450583273,2.0710577471,-0.0900353803 H, 0, 1. $2823360329,-2.0479602375,0.0402080342$ $\mathrm{H}, 0,-0.9869191761,-2.0603637691,-0.1412162372$ $\mathrm{HF}=-265.4725004$

Nimag=0

$4-\mathrm{OCH}_{3}$

C, 0, -1. $2321362658,-0.7427215303,0.1765758188$ C, 0, -1. $0698053263,-2.2290267096,0.3686260829$ C, 0, 0.1243998338,-2.8208678409,0.1901795432 N, 0, 1. $3009852026,-2.1505043733,-0.1440595305$ C, 0, 1.2088756735,-0.8706042801,-0.1993843707 $\mathrm{N}, 0,0.0918537197,-0.1351266065,0.0181816981$ H, 0,-1.7332210147,-0.2893061399,1.0381119261 H, 0, -1. $8553920167,-0.5154663679,-0.7001972647$ H, 0,-1.9550142565,-2.7863314333,0.6274133409 H, 0, 2. $1001461413,-0.2911034344,-0.4200073467$ H, 0, 0.1521925702,0.8600222803,-0.1037558024 $0,0,0.3733489533,-4.1483132704,0.3170401754$ C, 0, -0. $713901057,-4.9904491838,0.6602726825$ H, 0, -1.1335890958, -4.7189017291,1.6321473331 H, 0, -1. $5014154281,-4.9491295489,-0.0964649835$ H, 0, -0. $3099548555,-5.9973832779,0.7084563583$ $\mathrm{HF}=-380.1569468$ Nimag=0

$\mathbf{4}-\mathbf{N H}_{\mathbf{2}}$

C, 0, 1.2793532987,1.159234563,0.0668161567 C, 0, - $0.2193959435,1.197405624,-0.0272879774$ C, 0, -0. $9492907981,0.0741639302,0.0269960992$ $\mathrm{N}, 0,-0.4015559797,-1.2198445928,0.0927485511$ C, 0, 0. $8748899524,-1.2732267876,0.0021963684$ $\mathrm{N}, 0,1.7174844057,-0.2230585601,-0.1128998375$ $\mathrm{H}, 0,1.6381143961,1.5417261786,1.0313365411$ H, 0, 1. $7373916913,1.7776958933,-0.7091473015$ H, 0, -0.6984477996,2.1637965435, -0.0860723501 H, 0,1.356815719,-2.246365626,-0.0117319341 H, 0, 2. $7024820851,-0.416898715,-0.1180834907$ N, 0,-2.3390269514,0.0449830109,0.0584693696

H, 0,-2.7110777228,-0.8211153817,-0.2994621848 H, 0, -2. $7921603531,0.8581689198,-0.3250170101$ $H F=-320.8365101$

Nimag=0

4-F

C, 0, -1. $435840627,-0.0000265346,0.0703114182$ C, 0, -0. $5997104498,1.247839602,0.0089336309$ C, 0, 0.7235103672,1.1604942524,-0.0596589379 $\mathrm{N}, 0,1.4915092266,0.0154787735,-0.0843342657$ C, 0, 0. $8044218304,-1.0681222054,-0.0331419419$ N, 0, -0. $5403875375,-1.1577697804,0.0389656619$ H, 0,-2.1313517855,-0.0506058845,-0.7732944195 H, 0, -2.0385577973,-0.0263764057,0.9835539689 H, 0, -1.0834021543,2.2113821293,0.021135338 H, 0, 1. $3246729427,-2.0202651433,-0.047419804$ H, 0, -0.9449727956,-2.0760154299,0.0731298037 F, 0,1.4640926131,2.2716064867,-0.1140859366 $\mathrm{HF}=-364.7230132$

Nimag=0

4-Cl

C, 0, -1.4295136257,-0.0039913746,0.0908287816 C, 0, -0. $5978706491,1.2443687475,-0.0260506045$ C, 0, 0.7293191895,1.1685767012,-0.0441071747 N, 0,1.4913750001,0.0086841872,0.0081326425 C, 0, 0.7994292491,-1.0723113428,-0.0096604703 N, 0,-0.5482220385,-1.1608032074,-0.0498736378 $\mathrm{H}, 0,-2.1928895776,-0.0313319482,-0.6905397408$ H, 0, -1.952987536,-0.038104396,1.0532783509 H, 0, -1. $10189056,2.1963477788,-0.0755619509$ H, 0, 1.3205319786,-2.0241416137,-0.0115679871 $\mathrm{H}, 0,-0.9561435054,-2.0781313659,-0.0369487162$ Cl,0,1.6855818171,2.6237589147,-0.1558122875 $\mathrm{HF}=-725.0769425$

Nimag=0

4-Br

C, 0, -1.4258175327,-0.0036777549, 0.0992652964 C, 0, -0. $5978251453,1.2467242206,-0.0362677469$ C, 0, 0. 7288258575,1.1687465337,-0.0357017187 N, 0, 1.4884196858,0.0101215821,0.0455087233 C, 0, 0.7978857504,-1.0716432359,-0.0000469874 N, 0, -0. $5482932721,-1.1574415306,-0.080976577$ $\mathrm{H}, 0,-2.2113051511,-0.0250099667,-0.6589911677$ H, 0, -1.9196709934,-0.0445178279,1.0773941951 H, 0, -1.1065994383,2.1944184733,-0.1108170003 H, 0, 1.3199013785,-2.0229261107, 0.0014823699 H, 0, -0.957772813,-2.0742930661,-0.0836140863 $\mathrm{Br}, 0,1.7717024527,2.7542177322,-0.1790569233$ $\mathrm{HF}=-2839.0429253$ Nimag=0

4-CHO

C, 0, -1.4125026279,0.0105483899,0.101102612 C, 0, -0. $5621888153,1.2401238809,-0.0183775821$ C, 0, 0.7731719392,1.167898871,-0.0508892287 N, 0,1.5132295231,-0.0200783949,0.0004903786 C, 0, 0.8035844585,-1.0850486132,-0.0224187698 N,0,-0.5516977612,-1.1547187278,-0.0719315979 H, 0, -2.1939050096,0.0083701135, -0.6626955444 H, 0,-1.9175947032,-0.0142069952,1.0742932514 H, 0, -1. $0571189845,2.201329933,-0.0602882723$ H, 0,1.3026321433,-2.0493286798,-0.0271555824 H, 0, -0. $9724469519,-2.0660344677,-0.0489961535$ C, 0,1.5354101407,2.4402955141,-0.1572166873 $0,0,2.7299074116,2.52169707,-0.1974293539$ H, 0, 0.896431157, 3.3436197572,-0.1978101235 $\mathrm{HF}=-378.7908503$

Nimag=0

4-CN

C, 0,-1.5274974187,1.2046814426,0.0449547173
C, 0, -0.028641497,1.1650353952,-0.0126521449

C, 0, 0. 6276174595,0.0022490545,0.0313381455 $\mathrm{N}, 0,0.0344580623,-1.2681175417,0.1053674614$ C, 0, -1. $2444671112,-1.2524895023,0.0148118778$ $\mathrm{N}, 0,-2.0294931058,-0.1572529467,-0.1120811948$ H, 0, -1. $9220668872,1.8356704608,-0.7543398526$ H, 0, -1. $8652421925,1.6381821578,0.9935179191$ H, 0, 0. $5105439032,2.0985986865,-0.0716235955$ H, 0, -1.7775887441,-2.1975595019,0.0146205341 H, 0, -3. $0229417522,-0.2975143272,-0.1530275902$ C, 0, 2.0721385142,0.0062599379,-0.0102402328 $\mathrm{N}, 0,3.2179907695,0.0360066844,-0.0441980444$ $\mathrm{HF}=-357.7128127$ Nimag=0

4-NO

C, 0, 1. $86391544,1.2066500912,0.0000363546$ C, 0, 0.3635916534,1.1660047011,-0.0000199507 C, 0, -0. $2667304695,-0.0024402852,0.000020087$ $\mathrm{N}, 0,0.2902674034,-1.2641778875,0.000099754$ C, 0,1.5733941747,-1.2581324576,0.0000062575 $\mathrm{N}, 0,2.369261882,-0.1649594677,-0.0001266852$ H, 0, 2. $2284523402,1.745441121,0.8797558716$ H, 0, 2. $2285083159,1.7456437589,-0.8795305486$ H, 0, -0. $1919179878,2.0897648109,-0.0000642626$ H, 0,2.101080138, -2.2059109642,0.0000041761 H, 0, 3. $3629967448,-0.308893501,-0.0001786098$ N, 0, -1. $7585464219,0.0070405788,0.0000091464$ $0,0,-2.3061626103,1.0931139272,-0.0001041545$ $0,0,-2.319998603,-1.0587284259,0.0000935643$ $\mathrm{HF}=-469.9690384$

Nimag=0

5-aminopyrimidines

H
C, 0, -0. $6163688345,1.1784847194,-0.030849548$ $\mathrm{N}, 0,0.7085481517,1.1837251617,0.0069673051$ C, 0, 1. 3119760064,-0.0001071207,0.0249898378 $\mathrm{N}, 0,0.707845499,-1.1835798824,0.0053813014$ C, 0, -0. $6170495283,-1.1774991072,-0.0324048913$ C, 0, -1. $3612651587,0.0007349719,-0.0532704423$ H, 0, -1.1150242231,2.1430311136,-0.0429516509 $\mathrm{H}, 0,2.3933697085,-0.0004536656,0.0568305378$ H, 0,-1.116298111,-2.1417226662,-0.0457599026 $\mathrm{N}, 0,-2.7519904738,0.001082213,-0.0299191571$ H, 0, -3. $1804836979,0.8347286574,-0.4001264211$ H, 0,-3.1809291284,-0.8316475351,-0.4016653686 $H F=-319.6481355$

Nimag=0

2-CH3

C, 0, 0.6340439215,1.1648023054,0.0924282113
N, 0, -0.689947186,1.1714554044,0.0930882898 C, 0, -1. 313326109,-0.0043980485,-0.0072587995 $\mathrm{N}, 0,-0.6924093865,-1.1799792977,-0.1060654288$ C, 0, 0.6333031876,-1.1750703043,-0.1050431442 C, 0, 1. 3812843972,-0.0063459518,-0.0051342447 H, 0, 1.131484977,2.1273671938,0.1693267315 H, 0, 1.1285782586,-2.137931094,-0.1903443697 $\mathrm{N}, 0,2.7742897389,0.0000370864,-0.0722299022$ H, 0, 3. $2078886957,0.7938585799,0.3730022885$ H, 0, 3. $2079847657,-0.8614322362,0.2213052258$ C, 0, -2. $8125572318,0.0002681734,0.0172872391$ H, 0, -3.1978279679,-0.9111805428,-0.4307833817 H, 0, -3.1670887741,0.0541142979,1.0477393939 H, 0, -3.1936680369, 0.8712232141,-0.5102003791 $\mathrm{HF}=-358.9607667$

Nimag=0

2-NH2

C, 0, -0. 616937073,1.1777483181,-0.0487445367 $\mathrm{N}, 0,0.7077542572,1.1978059092,-0.0636210526$

C, 0, 1. $3233386979,0.014576389,-0.0724365706$ $\mathrm{N}, 0,0.7184344959,-1.174139401,-0.090432243$ C, 0, -0. $6063211813,-1.1663960737,-0.074950995$ C, 0, -1. 3597816955,0.0021739995,-0.0483855561 H, 0, -1. $1170481884,2.1417955417,-0.0395501107$ $\mathrm{H}, 0,-1.097762858,-2.1348511128,-0.087314088$ $\mathrm{N}, 0,-2.7615779152,-0.0054133297,0.0411814784$ H, 0, -3.1896348489,0.824006311, -0.342255764 $\mathrm{H}, 0,-3.1823156094,-0.8271295507,-0.3662046898$ $\mathrm{N}, 0,2.6998811277,0.0201132552,-0.0203433972$ H, 0, 3. $1371918338,-0.8263138582,-0.3425279811$ H, 0, 3.1296806971,0.8775197125,-0.3229957436 $\mathrm{HF}=-358.9607667 \quad$ Nimag=0

2-F

C, 0, -0. $6105982212,1.1765061847,-0.0300683402$ $\mathrm{N}, 0,0.7166504715,1.1813384623,0.0049673144$ C, 0, 1.2872401587, -0.0000688584, 0.0206729695 $\mathrm{N}, 0,0.7160000326,-1.1811757191,0.0034905447$ C, 0, -0. 6112188177,-1.1755730844,-0.0314240291 C, 0, -1. $3568868695,0.0006963523,-0.0517794196$ H, 0, -1. $1018801872,2.1437542006,-0.0400157971$ H, 0,-1.1030653242,-2.1425208476,-0.0424301637 $\mathrm{N}, 0,-2.7507888183,0.0009307585,-0.0223710249$ H, 0, -3. $1749191882,0.8322638514,-0.4034471256$ H, 0, -3. $1753050014,-0.8289061203,-0.4062696059$ F, 0, 2. 6138459749,-0.0004690599,0.0558960275 $\mathrm{HF}=-418.9005455$

Nimag=0

2-CHO

C, 0, -0. $593237304,1.1734340696,-0.0461511465$ N, 0, 0.7297356871,1.1566758053,-0.0166308466 C, 0, 1. 3221155179,-0.0352980165,-0.0017688297 $\mathrm{N}, 0,0.7020347571,-1.2131663303,-0.0159482025$ C, 0, -0. $6159955426,-1.1906355986,-0.044562294$ C, 0, -1. $3497169356,0.0017904241,-0.0624696648$ H, 0,-1.0793224563,2.1437038506,-0.05638546 H, 0, -1.1291356177,-2.1475716913, -0.0536921948 N, 0, -2. $7292916138,0.0126628756,-0.0350708369$ H, 0, -3. $1725755566,0.8549710633,-0.3635249343$

H, 0, -3. $1851551561,-0.823422102,-0.3624971223$ C, 0, 2. $8180583587,-0.0036039232,0.0306734253$ $0,0,3.5129729337,-0.9784144073,0.0423495251$ H, 0, 3. $2311503083,1.0192307409,0.042858862$ $\mathrm{HF}=-432.9641073 \quad$ Nimag $=0$

2-CN

C, 0, -0. $5990300439,1.1822112696,-0.0433227971$ $\mathrm{N}, 0,0.7225427334,1.186721307,-0.011307222$ C, 0, 1. 3199365308, 0.0000774957,0.0033989233 $\mathrm{N}, 0,0.7219717968,-1.1862661364,-0.0129316555$ C, 0, -0. $5995925042,-1.1810744565,-0.0449464496$ C, 0, -1. $345210844,0.0007618657,-0.0631142198$ H, 0, -1.0943060338, 2.1475343366, -0.0534269787 H, 0, -1. $0953386985,-2.1461425414,-0.0563816172$ $\mathrm{N}, 0,-2.7231138156,0.001071915,-0.0393809196$ H, 0, -3.1749969548,0.8413042978,-0.3609090655 H, 0, -3. $1753858109,-0.8385382922,-0.3619890518$ C, 0, 2. $7703815219,-0.0002998174,0.0376037383$ $\mathrm{N}, 0,3.9157973327,-0.0005971534,0.0639303752$ $\mathrm{HF}=-411.883154 \quad$ Nimag $=0$

$\mathbf{2 - N O}$

C, 0,-1.2660712378,-1.1805181313,-0.0710100309 $\mathrm{N}, 0,0.0571510514,-1.1804243833,-0.0620760319$ C, 0, 0. 6254167229,0.0000631174, -0.0011264627 $\mathrm{N}, 0,0.057355147,1.1806679301,0.0593198816$ C, 0, -1. $2659235804,1.1812736505,0.0629132644$ C, 0, -2. $012286428,0.0004591607,-0.0045408745$ H, 0, -1. $7586862527,-2.1448572398,-0.1328558467$ H, 0, -1. $758402578,2.1459766927,0.1201679243$ $\mathrm{N}, 0,-3.3875009074,0.0035958706,-0.0631440158$ H, 0, -3. $8505218989,-0.8526049175,0.1930908864$ H, 0, -3. $850874243,0.8264865383,0.2850835235$ $\mathrm{N}, 0,2.1257702085,-0.000202545,0.0026692862$ $0,0,2.6714689369,1.0585295147,-0.1971828229$ $0,0,2.6701650594,-1.0590912579,0.2054843191$ $\mathrm{HF}==-524.1374885 \quad$ Nimag $=0$

Table S9 Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Nucleobases from M06-2X/6-311+G(2d,2p) Computations.

Adenine

N, 0,1.9364904463,0.5208035012,0.1223733951 C, 0, 1. $2845825305,1.6907168186,0.1296718053$ N, 0, -0.0218558488,1.910077563,0.0801973468 C, 0, - $0.7055645787,0.7666313343,0.0140921554$ C, 0, -0.1754951825,-0.515384302,-0.0001492954 C, 0,1.2238698441,-0.6042940812,0.0625713074 $\mathrm{N}, 0,-2.0626579173,0.5803945916,-0.0591934504$ C, 0, -2. $2707231511,-0.7762838696,-0.1149248338$ $\mathrm{N}, 0,-1.1702669595,-1.4700402477,-0.0828904572$ $\mathrm{N}, 0,1.8622167759,-1.7957422347,0.0900747091$ H, 0,1.9134758201,2.570756635,0.1814166782 H, 0, -2. $7583141026,1.3056410269,-0.0709648856$ H, 0, -3. $2636013418,-1.1900704759,-0.1792207441$ H, 0, 2. $8588559596,-1.794770794,-0.0352520284$ H, 0, 1. $3409065158,-2.6263447054,-0.1271753824$ $\mathrm{HF}=-467.2886498 \quad$ Nimag=0

Guanine

$\mathrm{N}, 0,-2.1337892713,0.7657195159,0.0594120844$ C, 0, -1.2632369381,-0.2845301433, 0.0342428885 $\mathrm{N}, 0,0.0208151011,-0.1560178719,-0.1186212705$

C, 0, 0.401579745,1.1428057305,-0.2321658675 C, 0, -0. $3777249637,2.284875756,-0.2304490694$ C, 0, -1. $8000156505,2.1465806761,-0.0675370681$ $\mathrm{N}, 0,1.6798889754,1.5864305959,-0.3904159366$ C, 0,1.6139065119,2.9603276105,-0.4741957912 $\mathrm{N}, 0,0.3993400293,3.4105462943,-0.3819398743$ 0,0,-2.6747501152,2.9748902457,-0.0203943513 $\mathrm{N}, 0,-1.8068254277,-1.5318812829,0.2350627781$ H, 0, -3. $1109249063,0.5982032103,0.2490356845$ H, 0, 2. $5000572491,1.0068448014,-0.4322651285$ H, 0, 2. $4981786243,3.5617253621,-0.6025856803$ H, 0, -1. $1556010216,-2.2727658638,0.0285951577$ H, 0, $-2.7276393686,-1.6873955324,-0.1421827895$ $\mathrm{HF}=-542.5266766$

Nimag=0

Thymine

C, 0, -1. $2147395192,0.338126211,-0.1869869888$ $\mathrm{N}, 0,-1.2908210034,-0.8343636741,0.5307163819$ C, 0, -0.1859855189,-1.5227757249, 0.9884642363 $\mathrm{N}, 0,1.0052168334,-0.914888164,0.6528953867$

C, 0, 1. $1867071407,0.2684233155,-0.0679913636$ C, 0, -0.0505501718, 0.919881307,-0.5073755189 C, 0, 0.0753916625,2.1907788844,-1.2839248445 $0,0,-0.2615943132,-2.5504598894,1.6171163241$ $0,0,2.2995097962,0.6869480568,-0.2898767747$ H, 0, -2.1663451337,0.7614514298,-0.4771527796 H, 0, -2. $1780642603,-1.2502032359,0.7578437114$ H, 0, 1. $8419495825,-1.3847938975,0.9679660834$ $\mathrm{H}, 0,0.6076633518,2.9418330916,-0.7010018287$ H, 0, -0. $9042750095,2.5799192381,-1.5541264426$ $\mathrm{H}, 0,0.6551425864,2.0262875904,-2.1916823327$ $\mathrm{HF}=-454.1067815$

Nimag=0

Uracil

N, 0,1.3559135485,0.4277898937,0.0196811375 C, 0,1.3390137123,-0.9493723975,0.0275338287 $\mathrm{N}, 0,0.0628723445,-1.4804891821,0.1203235759$ C, 0, -1.0707681507,-0.7126656027, 0.1973553915 C, 0, -1. $0267288917,0.6259358784,0.1879923018$ C, 0, 0.2618809542,1.3021694449,0.0931562279 $0,0,0.4345608123,2.4969025937,0.0756052089$ $0,0,2.3281915686,-1.6358755042,-0.0391426032$ H, 0, 2. $2692938755,0.8540105955,-0.0469220484$ H, 0, 0.0183665777, -2.4855287985, 0.1287186566 H, 0, -1.9974179607,-1.2633557132, 0. 2657740445

H, 0, -1. $9154093904,1.2296907921,0.2483662785$ $\mathrm{HF}=-414.7954267$

Nimag=0

Cytosine

C, 0, -1. $267909672,-0.4834344911,-0.3571190007$ C, 0, -0. $593431126,0.6676347915,-0.1587916627$ C, 0, 0.8407961985,0.5662274333,-0.173121372 $\mathrm{N}, 0,1.4969988791,-0.5489721881,-0.3666865625$ C, 0, 0.8180547385,-1.7215188967,-0.5642052297 $\mathrm{N}, 0,-0.5950176018,-1.6366204411,-0.5515551531$ $\mathrm{N}, 0,1.572420783,1.6861668462,0.054624205$ $0,0,1.3278510909,-2.8025637594,-0.7466681362$ $\mathrm{H}, 0,-2.3469381641,-0.540571546,-0.3684213887$ H, 0, -1. $1010422286,1.6028824418,0.0078533696$ H, 0, -1. $0755392893,-2.508853323,-0.7010169713$ H, 0, 2. $5648060691,1.6170041111,-0.0931741058$ H, 0, 1. 1427933225, 2. 5903520215, -0.0032469919 $\mathrm{HF}=-394.9067298$

Nimag=0

Table S10. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Carbonyl Oxygen Proton Accepting Sites from M06-2X/6-311+G(2d,2p) Computations.

Cyclohexa-2,4-dienones

H
C, 0, -1. $4187588306,-0.0069684398,0.02738463$ C, 0, -0. $7334109777,0.6873011961,-1.0741550219$
C, 0, 0.7866355962,0.672065931,-1.0738623686
C, 0, 1. $4436798723,-0.0514464786,0.055504032$ C, 0, 0.7369315816, -0.6531429979,1.012585761 C, 0, -0. $722817619,-0.6262531752,0.9913613419$ $0,0,-1.3441363417,1.253367676,-1.9537213454$ $\mathrm{H}, 0,-2.4995824537,0.0126366653,0.0124564582$ H, 0,1.1206158594,1.7136291842,-1.1029755685 H, 0, 1. 1058863708, 0.2500737144, -2.0316321207 H, 0, 2. 5259208738, -0.0739489669, 0.075251153 H, 0, 1. $2314149967,-1.1718364713,1.821712987$ H, 0, -1.2499929279,-1.1302998374,1.7918820619 $\mathrm{HF}=-307.4026795$

Nimag=0

4- CH_{3}

C, 0, -1. $4291466411,0.0549339035,-0.0391148358$ C, 0, -0. $7601284487,0.7698076729,-1.136851257$ C, 0, 0.7579937892,0.75901949,-1.1479004178 C, 0, 1. 4278588733, 0.0276244737,-0.0301867217 C, 0, 0. $7484993163,-0.5964129175,0.9346408238$ C, 0, -0. $7178103842,-0.5694897934,0.9082575005$ $0,0,-1.3841390453,1.3455972327,-2.0008348141$ C, 0,1.4061902954,-1.3359047196,2.0634046208 H, 0, -2. $5100771202,0.0649561495,-0.0415898959$ H, 0, 1. $0860772157,1.8023774045,-1.1732102524$ $\mathrm{H}, 0,1.0672287059,0.3458063459,-2.1128429295$ H, 0, 2. 5114583367,0.0151854372,-0.0227138654 H, 0, -1. $2354413429,-1.0885063269,1.708000372$ H, 0, 2. $4901801783,-1.295811605,1.9826497291$ H, 0, 1.099177937,-2.3833073609,2.0693975942 H, 0,1.1160033346,-0.9094093865,3.0253163492 $\mathrm{HF}=-346.7128085$

Nimag=0

4-NH2

C, 0, -1. $4379195658,0.0081837095,-0.2652670812$

C, 0, -0. $7579684171,0.6119473181,-1.4247973158$ C, 0, 0. $756293474,0.6861434108,-1.3795683113$ C, 0, 1. $4238595299,-0.0480384008,-0.2602998088$ C, 0, 0. $7269882962,-0.614115185,0.730996741$ C, 0, -0.73742921, -0. $554702841,0.7244621117$ $0,0,-1.3800742953,1.0462833,-2.3686770276$ $\mathrm{N}, 0,1.2980572893,-1.2168854656,1.8627902$ H, 0, -2. 5185592001,0.0281186297, -0.2703891606 H, 0, 1. $0013848189,1.75372746,-1.3346739661$ H, 0, 1. $1250113853,0.3520511152,-2.3516271094$ $\mathrm{H}, 0,2.5061218729,-0.0878476111,-0.2552208883$ H, 0, -1. $2529958541,-0.9970260776,1.5698447875$ H, 0, 2. $2819392817,-1.4145302638,1.7589625129$ H, 0, 0. $8055055942,-2.0409960984,2.174440316$ $\mathrm{HF}=-362.7589985$

Nimag=0

4-F

C, 0, -1. $4291503995,0.0003755898,0.0159848313$ C, 0, -0. $7381346314,0.695559589,-1.0870274403$ C, 0, 0. $7840899457,0.6840410512,-1.0926984247$ C, 0, 1. $4517218563,-0.0376051619,0.0336008159$ C, 0, 0. $7185349448,-0.6245117209,0.9678170615$ C, 0, -0. $7346226918,-0.6174590286,0.9777000711$ $0,0,-1.3530758835,1.2590986748,-1.9627076908$ F, 0,1.2845665661,-1.2821518761,1.9946092162 H, 0, -2. $5093290171,0.0194781115,0.0018322656$ H, 0, 1. 1079657649,1.7279777256,-1.1229274811 H, 0, 1.093194943,0.2622175684,-2.05301181 H, 0, 2. 5305534174, -0.079680167,0.0841822738 H, 0, -1.2239288148, -1.1321623559,1.7944383113 $\mathrm{HF}=-406.6451159 \quad$ Nimag $=0$

4-Cl

C, 0,-1.4253773365,-0.1326172111,-0.1148865835 $C, 0,-0.7368413199,0.5717852867,-1.2107489914$ C, 0, 0. $7828973587,0.5641390083,-1.205678806$ C, 0, 1.4451031314,-0.1637421688,-0.0807002965 C, 0, 0. $7228441531,-0.7665194567,0.8573629963$

C, 0, -0. $7365929362,-0.7557868954,0.8480089508$ $0,0,-1.3488358471,1.1381904106,-2.0866587179$ H, 0, -2. $5057909358,-0.1184110476,-0.1316493808$ H, 0,1.1104861631,1.6075918544,-1. 223581569 H, 0,1.1063943397,0.1494810624,-2.1647430009 H, 0, 2. 5251500893,-0.1908809608,-0.044021066 H, 0, -1. $244892693,-1.2721469814,1.6511593468$ Cl,0,1.4790688333,-1.6198769008,2.176506118 $\mathrm{HF}=-767.0041856$

Nimag=0

4-Br

C, 0, -1.4259697729,-0.090875961,-0.1800605669 C, 0, -0.7369915986, 0.6130764462,-1.275342234 C, 0, 0. $7822948062,0.6043496974,-1.2685414119$ C, 0, 1. $4436896216,-0.1241700438,-0.1423456993$ C, 0, 0. 7205076935, -0.7264135819, 0.7949934922 C, 0, -0.739128674, -0.7148222706, 0.784248279 $0,0,-1.3477623074,1.1798063808,-2.1518920148$ H, 0,-2. $5064263949,-0.0763754564,-0.1973423776$ H, 0,1.1120424475,1.6471745273,-1. 2855047438 H, 0,1.1079665552,0.1889001862, -2. 2265680473 H, 0, 2. $5238522609,-0.1483511079,-0.1101638284$ H, 0, -1.2532836562,-1.2293111179,1.5846005191 $\mathrm{Br}, 0,1.5472600191,-1.6546466985,2.2302206336$ $\mathrm{HF}=-2880.9708155$

Nimag=0

4-CHO

C, 0, -1.4378501911, 0.0438224593,-0.0217689961 C, 0, -0. $7487542994,0.7536666131,-1.113703679$ C, 0, 0.773937571,0.7394570025,-1.1159065872 C, 0, 1.4239128805,0.0065587225,0.0042843313 C, 0, 0. 7108155335, -0.6085397242,0.9546206615 C, 0, -0. $7516997281,-0.5877146735,0.9372469195$ $0,0,-1.3540950514,1.3326957501,-1.9854655976$ C, 0, 1.4086627076,-1.3230748549,2.043613795 $0,0,0.8431103732,-1.8991611768,2.9347139971$ H, 0, -2. $5182929551,0.0654307592,-0.0425821234$ H, 0,1.1126230036,1.7795440261,-1.1362844956 H, 0, 1.0956803479,0.3241491366,-2.0758152535 $\mathrm{H}, 0,2.5078208714,-0.0224033035,0.0388327234$ H, 0, -1. $2542643003,-1.1099322834,1.7411863358$ H, 0, 2. $5124582367,-1.296013453,1.9889519689$ $\mathrm{HF}=-420.7243725$

Nimag=0

4-CN

C, 0, -1. $4160287016,0.0257723868,0.0046350772$ C, 0, -0.7341653741, 0.7395880052,-1.0896579078 C, 0, 0.7862932676,0.7269792506,-1.097522733 C, 0,1.4515605156,-0.0035479445,0.0162187245 C, 0,0.7424561305,-0.6207592555,0.9689714107 C, 0, -0. $7247834046,-0.6046858116,0.959540102$ $0,0,-1.3482543161,1.3169024385,-1.9552353118$ C, 0,1.4042909139,-1.3216220234,2.0357762928 $\mathrm{N}, 0,1.9106525486,-1.8866543154,2.8965203133$ H, 0, -2. $4964652267,0.0420456088,-0.0071807892$ H, 0,1.1250650704,1.767174575,-1.1169570431 H, 0, 1. $1066999007,0.3119485237,-2.0581141714$ H, 0, 2. $5328741849,-0.0285732962,0.0431170184$ H, 0,-1.2339475091,-1.1251441423,1.7598610176 $\mathrm{HF}=-399.6417814$ Nimag=0

4-NO

C, 0, -1. $4565198191,-0.2380562905,0.0564965441$ C, 0, -0. $7699868785,0.4670155104,-1.0405620364$ C, 0, 0. 7538875787,0.4624684654,-1.0403167872 C, 0,1.4165603592,-0.2606997819, 0.0771489652

C, 0, 0. $6949554048,-0.8684456368,1.0222146966$ C, 0, -0. $7605027327,-0.8589186125,1.0160921121$ $0,0,-1.3771499372,1.0346375423,-1.9181791587$ $\mathrm{N}, 0,1.2905034898,-1.5888778274,2.1393863554$ $0,0,2.4869820257,-1.6080866664,2.1478093594$ H, 0, -2. 5368182943,-0.2236086233,0.0399643116 H, 0, 1. $0865834553,1.5049629723,-1.0613022295$ H, 0, 1.082285571,0.0505202531,-1.9996856752 H, 0, 2. 4978634357, -0. $2960682534,0.1274445124$ H, 0, -1. $2556926584,-1.3794640514,1.8268130302$ $\mathrm{HF}=-436.6873319$

Nimag=0

4-NO

C, 0, -1. $467833649,0.0426178461,-0.3750603098$ C, 0, -0. $7671222936,0.7450053621,-1.4658408811$ C, 0, 0. $7546654671,0.7071585112,-1.4663582016$ C, 0,1.4017245457,-0.0455557423,-0.3579817718 C, 0, 0.6589934301, -0.640856763,0.5704670196 C, 0, -0. $7962019726,-0.6085232218,0.5811372733$ $0,0,-1.3644802949,1.3338136834,-2.3348386242$ $\mathrm{N}, 0,1.3324056878,-1.3789425684,1.656190217$ $0,0,0.6192485289,-1.9079781804,2.4828160823$ $0,0,2.5432292484,-1.4117135135,1.6565649214$ H, 0, -2. $5474194117,0.0821751283,-0.3912704338$ H, 0,1.1122742444,1.7411892761,-1.46923296 H, 0,1.0766492126,0.2989027736,-2.4289371313 H, 0, 2. $4795549707,-0.1089609981,-0.3063736133$ H, 0,-1. $303300714,-1.1252535934,1.3821844132$ $\mathrm{HF}=-511.8978812$

Nimag $=0$

Benzoquinone

C, 0, -2.4470396116,-0.1166481848,1.1079214352 C, 0, -2.4129653381, -0.7899517296,-0.0395242182 C, 0, -1.1370975347,-1.329221696,-0. 5767371032 C, 0, 0.099446326, -1.0904890207, 0.2114341417 C, 0, 0.0653721449,-0.4171856029,1.3588801317 C, 0, -1. $2105350401,0.12186243,1.8962220591$ 0,0,-1.1061054097,-1.9409938571,-1. 6196404458 $0,0,-1.2414731516,0.7339390001,2.9389483715$ H, 0, -3.3582854029, 0.2889054125,1.52671144 H, 0, -3. $2940198652,-0.9809746846,-0.6374211307$ H, 0, 1. $0107152037,-1.4959116605,-0.207432306$ H, 0,0.9464498191,-0.2260315647,1.9567011351 $\mathrm{HF}=-381.4171527$

Nimag $=0$

Table S11. Cartesian Coordinates, Total Energies (in hartree), and Number of Imaginary Frequencies for the Optimized Structures for Base Pairs from M06-2X/6-311+G(2d,2p) Computations.

Adenine-Thymine

$\mathrm{N}, 0,-5.2767795357,-0.1565657614,0.3501328297$
C, 0, -5.4332996668,-1.4900720558,0.3169498285 $\mathrm{N}, 0,-6.5493062872,-2.1726827237,0.1289895295$ C, 0, -7. $5971016568,-1.3588368492,-0.0391890888$ C, 0, -7. $587537213,0.0272262294,-0.0298933572$ C, 0, - $6.3403347437,0.6436114646,0.1789055502$ $\mathrm{N}, 0,-8.9082962886,-1.6935127557,-0.2570154591$ C, 0, -9. $603662574,-0.5136594192,-0.3652994171$ $\mathrm{N}, 0,-8.8519522765,0.5406192868,-0.2356320097$ $\mathrm{N}, 0,-6.185132487,1.9711567886,0.2111916369$ H, 0, -4. $5224028663,-2.0585565807,0.4640459229$ H, 0, -9. $2746454773,-2.6271307397,-0.3230316641$ H, 0, -10.6666896661,-0.5007829658, -0.5404817147 H, $0,-5.2673616983,2.3783782118,0.3660203918$ H, 0, - $6.9916354936,2.5550352147,0.0828390425$ $\mathrm{N}, 0,-2.6610393182,0.8064432008,0.7889018694$ C, 0, -1. $6929114833,-0.1542534034,0.942337435$ $\mathrm{N}, 0,-0.4267046213,0.3602779893,1.1533456143$ C, 0, -0.1586698516,1.7064817658,1.2050186707 C, 0,-1.1124064473,2.6382550207,1.0534189049 C, 0, -2.4801902162,2.1733444996, 0.82580643 $0,0,-3.4279043996,2.9311535816,0.6738133395$ $0,0,-1.9135482669,-1.3437824188,0.8990818017$ C, 0, -0. $8694267003,4.1123045548,1.1015537069$ H, 0, -3. 6321377741, 0.453623837,0.6263357324 H, 0, 0. 3022024979, -0.3231253532, 1. 2693076602 H, 0, 0.8767983026,1.9657169968,1.3767107122 H, 0, -1.1764638881, 4.580629535,0.1667140961 H, 0, 0.18309733,4.3268665001,1.2759267601 H, 0, -1. $4606122327,4.5710973492,1.8937252453$ $\mathrm{HF}=-921.4178597$

Nimag=0

Adenine-Uracil

N, 0, -1. $6876457474,-0.4223400492,0.0175485635$ C, 0, -1.9987552313,-1.7291081334, 0.0079678507 N, 0, -3.1991402952,-2. $2793459254,0.0518976552$ C, 0, -4.1598194113,-1.3504474458, 0.1118714165 C,0,-3.990908696,0.0252225081,0.1292170691 C, 0, -2. $6652006207,0.4948433695,0.0779981459$ N, 0, -5.5165982613,-1.5323917985, 0.1692623662 C, 0, -6. $0807802241,-0.2802151351,0.217171181$ N, 0, -5. $2034141351,0.680575865,0.1952915129$ $\mathrm{N}, 0,-2.3571513892,1.7956187773,0.0877203417$ H, 0, -1. $1473026123,-2.3985718731,-0.0424387937$ H, 0, -5.992401006,-2.4178686619, 0. 1744362097 H, 0, -7. $1487606414,-0.1455932365,0.267476506$ H, 0, -1. $3873227226,2.0949360657,0.0461706488$ H, 0, -3. $1014889796,2.4677026253,0.1309784359$ N, 0, 1. $0520589628,0.2195368798,-0.1054841976$ C, 0, 1.911778381, -0. $8467458032,-0.1681507871$ $\mathrm{N}, 0,3.2516491427,-0.4893612195,-0.2335200361$ C, 0, 3. $6791457966,0.8102362451,-0.2358246495$ C,0,2.8193609098,1.8370463966,-0.174107522 C, 0, 1.3924266701,1.5605631869,-0.1029065499 $0,0,0.5269381018,2.4196665887,-0.0440813252$ $0,0,1.5544247241,-2.002138461,-0.1676969846$ H, 0, 0.0338238428,-0.0185385522,-0.0567078401 H, 0, 3. $8996038847,-1.2576152823,-0.2802217663$ H, 0, 4.7490566542,0.948200155,-0.2904452347 H, 0, 3.1465089029,2.8620499142,-0.1755662162
$H F=-882.1066865$
Nimag=0

Guanine-Cytosine

N, 0,-5.0634347309,0.3996896946,0.1926126616 C, 0, -5.4623190746,-0.8925157366, 0.1102605561 $\mathrm{N}, 0,-6.8967833709,-1.1588610686,0.1195666006$ C, 0, -7. $6030040327,-0.0449660442,0.1636546056$ C, 0, -7.2843015187,1.1241423528,0.3251748256 C, 0, -5. $8858043957,1.4502848055,0.2317784188$ $\mathrm{N}, 0,-5.3937605268,2.6717970584,0.2110182095$ $0,0,-4.7305115926,-1.8576436302,0.0065699033$ H, 0, -7.1922289437, -2.0815398624, -0. 1594308946 H, 0, -4.3727304194,2.8151349946,0.1345310015 H, 0, $-6.0233879672,3.451750332,0.2609593463$ $\mathrm{N}, 0,-2.1256945976,0.761515865,0.0409267178$ C, 0, -1. $2537929951,-0.2926916477,0.0077112555$ $\mathrm{N}, 0,0.0422355901,-0.1543920673,-0.1382380191$ C, 0, 0.4131969559,1.1379667925,-0.2394428736 C, 0,-0.374002282,2.2796725311,-0.2137695673 C, 0, -1. $7820948297,2.1132313208,-0.063558752$ $\mathrm{N}, 0,1.6875466123,1.5963487833,-0.3969225962$ C, 0,1.6111201019,2.9733849604,-0.4576601104 $\mathrm{N}, 0,0.3967132216,3.4155630467,-0.3520447598$ 0,0,-2.6583165778,2.9723063512,-0.0213184976 $\mathrm{N}, 0,-1.7945568449,-1.5196460901,0.1680495284$ H, 0,-3.1287214267,0.5747832362,0.1378883616 H, 0, 2. 5113612423,1.0234621006,-0.4520039642 H, 0, 2. $4914231515,3.5818723301,-0.5800122844$ H, 0,-1.1781887691,-2.2934098707,-0.0032742887 H, 0, -2. $7949699795,-1.6636085377,0.0772656158$ $\mathrm{HF}=-936.1296521$

Nimag=0

