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The aim of this paper is to identify the influence of land uses on soil organic carbon (SOC) distribution in the middle 
of Heihe, China. Geostatistical methods including ordinary kriging (OK), spline (SPLIN), inverse distance weight 
(IDW) and local polynomial interpolation (LP) were compared. It is noteworthy that OK engenders smaller prediction 
errors than SPLIN, IDW, and LP. We selected the OK method to estimate SOC distribution. Results show that spatial 
distribution of SOC has an obvious gradual decreasing trend from high to low sections at different layers in the depth of 
the 100 cm soil profile. Most notable is that SOC content of cultivated land is higher than that of desert, sandlot, saline-
alkali and naked fields. From a spatial perspective, paddy fields with a long history of cultivation are distributed on the 
two sides of Heihe river, while land with a shorter history of cultivation is located at a greater distance from the river. 
Land use change will increase or decrease SOC content. The extension of cultivated land with desert, naked land, 
sandlot, saline-alkali fields and middle density grassland with low SOC content will enhance the content of SOC in soil 
profile by a carbon fixation process, although sandy desertification is a reverse process. The results show that 
cultivation is an important process of increasing SOC content.  
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INTRODUCTION 

Global warming and the climate change 
including warming temperature, changing 
precipitation and rising sea levels are some of the 
most serious environmental problems in the world 
confronting the international community [1]. The 
essential issue is the increasing level of CO2 in the 
air because the rate of anthropogenic emissions 
exceeds the rate of absorption by natural carbon 
sinks (terrestrial biosphere and oceans). The 
Intergovernmental Panel on Climate Change reports 
that more than 95% in 2014 are being caused by 
anthropogenic activities. However, we still cannot 
balance the global C budget and predict its change 
because of a number of unknowns [2]. At present, 
SOC pool in soil is twice that of the atmosphere [3], 
with estimated value at about 1550 Pg in the world 
[4,5]. Change here may be the source or sink of 
carbon in CO2  [6-10]. If more carbon is stored in 
the soil and transformed to soil organic carbon 
(SOC), it will reduce or decrease the amount 
present in the atmosphere, and help ease the 
problem of global warming and climate change. 
Therefore, it is very important to comprehend the 
dynamic change of SOC, as well as its role in 
bringing about food security [11] and cutting 
carbon emissions down to air from the terrestrial 
ecosystem [12]. 

Content and storage of SOC and its composition 

are the foundation of the mechanism of organic 
carbon changes in different regions [13-15]. 
Methods for modeling spatial distributions of SOC 
can be realized by using GIS (Geographic 
information systems) models integrated with image 
data using remote sensing methods in regional 
scale, to select the appropriate model to improve 
the simulation accuracy. Geostatistics provides a 
superior tool to quantify the spatial variations of 
SOC and to perform spatial interpolation. It can 
calculate and visualize the spatial differences 
between SOC distribution and its influencing 
factors.  

Arid regions are one of the highest sensitivity 
zones for global changes. The oasis is one of main 
productive bases in arid regions. Although their 
area amounts to only 3.3% of the arid regions in 
China, they support over 90% of the population and 
create over 95% production values of industry and 
agriculture. The study area is situated in the middle 
of Heihe River Basin. Land use and farming have 
modified SOC content and the related properties. In 
this study, the objectives were to investigate (1) the 
spatial variation characteristics of SOC under 
different land uses, and (2) to evaluate the methods 
including OK, SPLIN, IDW, LP. and to search for 
the best one to simulate the spatial variability of 
soil organic carbon. 
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EXPERIMENTAL 

Study area 

The study area is situated in the northwest of 
China between 37°45′-42°40′ N and 97°05′-102°00′ 
E (Figure 1). Because of the position in the inner 
Eurasia, it belongs to a kind of dry climate with 
high temperature and evaporation rates. Yearly 
rainfall average ranges between 110 mm and 130 
mm, and annual evaporation average is 2341 mm. 
Evaporation surpasses precipitation, so irrigation is 
a typical means for increasing crop production. 
However, water resources including surface water 
and groundwater from the melting ice and snow 
from the Oilian Mountains are unevenly temporal-
spatial distributed. It brings cropland to mostly 
occupy both sides of the Heihe River. From south 
to north of the study area. The soil is mainly formed 
under drought conditions,  there are respectively the 
types of chesnut soil, sierozem, gray desert soil, 
gray-brown desert soil, aeolian sand soil and dry 
saline soil. Away from village or small town area to 
desert, the soils are respectively deep dark 
horsebean, irrigated aeolian sand soil and aeolian 
sand soil. Horsebean and fluvo-aquic soil are the 
two main agricultural soils occupying abundant 
area. 

 
Fig. 1.  Location of field sampling points 

Data Collection 

Field sampling was carried out using a grid with 
12 km×12 km cells. 195 soil sampling points were 
chosen and the locations were measured with a 
GPS instrument (global positioning system) (Figure 
1). It was divided into five layers in 100 cm depth 
of the soil profile, with an interval of 20 cm. The 
fresh soil was collected and then moved to the 
laboratory for further air-dried disposal process. 
After removal of visible roots, the soil sample was 

passed successively through 2 mm and 0.15 mm 
sieves. SOC content was measured by the method 
of acid dichromate digestion and FeSO4 titration 
[16].  

Introduction of application models 

Previous studies have used geostatistical 
analysis methods for soil organic carbon content 
interpolation at spacial scale based points’ data [17-
19]. Four classical interpolation models, IDW, OK, 
SPLINE and LP were tested to estimate different 
layers distribution of SOC. IDW obtained the value 
at unsampled region using a weighted average from 
exsting adjacent points, and the weight designated 
to each adjacent point diminshed the adjacent point  
increase at the distance [20]. The IDW model can 
be given as Eq.1. 

∑
∑

=

== n

j
r
ij

n

j
r
ij

D

Djz
iZ

1

1

/1

/)(
)(

                                             

(1) 

where )(iZ  is the value at location i， )(jZ  is 

the value at sampled location j， ijD  is the distance 
between i and j, n is the quantity of sampled points; 
and r is the power of inverse-distance weight. 

OK is the most commonly and extensively used 
Kriging method. It supposes that the distance or 
direction between spatial points reflects a spatial 
correlation that can be used to interpret changes in 
the surface. OK model is given as Eq.2. 
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where Z(xi) is the monitoring value at point xi, 
Z(x0) is the predicted value at the unexpected point,  
λi is the kriging weight. 

SPLINE estimates values using a mathematical 
function that minimizes over surface curvature. It 
forms a smooth surface relying on the input points 
or the given point. It is based on modeling the 
measurements Z(Si) where  Si =(xi,yi) is a point of 
coordinates xi, yi (Eq.3). 

n  1,......, =i  , )ε(S + )f(S = )Z(S iii                   (3) 

where n is the number of measurement points or 
controlling points; f is an unknown deterministic 
smooth function, and ε(Si) are random errors. The 
function can be estimated by minimizing: 
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where J2 (f) is a measure of smoothness of f 
computed by the following double integral (Eq.5) 
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λ is the smoothing parameter which regulates the 
trade off between the closeness of the function to 
the data and the smoothness of the function. 

LP method suits numerous polynomials to the 
whole surface, each within specified overlapping 
neighborhoods. It fits the specified order 
polynomial based known points only in the range of 
the defined neighborhood. The neighborhoods 
overlap, and the predicted value of each point is the 
value of the fitted polynomial at the center of the 
neighborhood. 

Statistical parameters including ME (mean error) 
and RMSE (root mean square error) were used as 
evaluation criteria for IDW, OK, SPLINE and LP 
models (Eq. 6).  
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where z is the value at point i, 
∧

iz is the predicted 
value, and n is the number of data points. 

RESULTS AND DISCUSSION 

Model tests 

In order to obtain the best simulation results, all 
data were divided into two parts: analog part set 
and validation part set. Simulations of the positions 
of the validation points and experimental value at 
spatial position were compared by ME and RMSE 
(Figure 2). 

By comparing simulated results of the four 
models, it was found that ME error is relatively low 
for OK and SPLINE models, and is generally the 
lowest on for OK model in the soil profile. OK 
method gives the lowest RMSE, IDW gives poor 
performance in the whole profile. In addition, there 
is similar variation in error in the soil profile, the 
highest value is in 0-40 cm and the lowest                                                                                   
in 80-100 cm, which probably reflects the greater 
regional SOC differences in the surface layer.  

Prediction errors with the worst results were 
produced by LP and IDW. Spatial result of IDW 
method has a higher error and is prone to appear 
“buphthalmos” for uneven sampling points. LP 
method must be considered spatially trendy 
ignoring the local variations, as a result of which 
the simulation is not consistent with the actual 
situation. SPLINE needs data with little change 
without extreme values. OK method considers the 
points’ distance, azimuth and irregular changes of 
spatial continuity, it can give appropriate 

description using a random surface. It is proved that 
OK model does the best job and is the best choice 
to perform the trend prediction in the study. 

-0.02

0

0.02

0.04

0.06

0-20 20-40 40-60 60-80 80-100

Depth(cm)

M
E

OK IDW

SPLINE LP

 

0.35

0.45

0.55

0.65

0.75

0-20 20-40 40-60 60-80 80-100

Depth(cm)

R
M
S
E

OK IDW

SPLINE LP

 

     Fig. 2. Validation of ME and RMSE for the four 
interpolation methods in 0-100 cm depth                           

Spatial distribution of different land use 

Land use map in the region was obtained from 
the website (http://heihe.westgis.ac.cn). Figure 3 
shows the spatial distribution of the land use.  

 
Fig. 3.  Distribution of different land use in the area 

There are 15 types of land use in middle Heihe 
river basin: desert, paddy field, middle-density 
grassland, rock-gravel land, saline-alkali field and 
sandlot. Each covers a relative large portion of the 
region, whereas, lake, reservoir, dry land, high- 
density grassland, shrub land, woodland, river, 
urban land-use, and bare land each cover a 
relatively small portion. The cultivated land 
including dry land and paddy field is about 17.09% 
of the total. From a spatial perspective, paddy field 
and urban land-use are mainly located along the 
two sides of the Heihe River, and the middle-
density grassland is close to the paddy field and dry 
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land. Desert, sandlot, saline-alkali field, bare land, 
and rock-gravel land are more distant from the river. 

Spatial distribution of SOC in soil profile  

Spatial distribution between SOC and land use 
displays a homologous trend in each layer of soil 
profile (Figure 4). There are two high-value areas, 
the one is situated in the southeast of the study area 
near to Qilian Mountain, affected by factors 
including climate, plants and soil animals. For the 
reason of high precipitation and low temperature, 
vegetation species and coverage are rich, litter and 
falling matter have adequate sources. This will 
enhance the SOC content in the surface layer (0-20 
cm), and further increase the content  in the deep 
layer (20-100 cm). The other high section is the 
paddy field near to the suburb of Jiuquan city. It is 
found that irrigation from domestic sewage is the 
main reason. From surface layer (0-20 cm) to deep 
layer (80-100 cm) in 0-100 cm, SOC content 
gradually decreased at the same land use, the 
reduced amplitude is smaller. From high to low 
section at different layers in the depth of 100 cm 
soil profile, it is an obvious gradually decreasing 
trend.  
     In the oasis region of the study area, the most 
notable character is that SOC content of cultivated 
plots is higher than those of the desert, sandlot, 
saline-alkali field, and naked land at each layer. 
This trend is most obvious in the surface 0-20 cm 
and 20-40 cm. From a spatial perspective, paddy 
fields with a long history of cultivation are located 
at both sides of the river, while land with a shorter 
history of cultivation is located at a greater distance 
from the river. This reflects the trend in cultivation 
to spread from the river border to the outer 
wilderness. Previous studies showed that the 
cultivation activites cause SOC content reduction 
and loss, such as plough, fertilization, etc. On the 
other hand, some measures can enhance SOC 
content under the effect of the straw organic matter 
returning, crop rotation and organic fertilizer 
increasing. At the study area, SOC content is low 
compared with the land use of desert, sandlot, 
saline-alkali field, naked land and rock-gravel. 
These lands distribute the oasis inward and show an 
inlaid distribution pattern with the cultivated plots. 
For the low vegetation coverage and few plant 
species, it will cause a little litter and falling matter 
and low organic matter return. Under the effect of 
high temperature and low precipitation conditions, 
the amount of SOC decomposition and 
transformation is less. So, if these land uses with 
low SOC are changed into cultivated plots, it will 
increase the content of SOC. Land uses such as 

rock-gravel land, high density grassland, woodland 
and shrub land are unsuitable for cultivation. 

 
     Fig. 4.  Spatial distribution of soil organic carbon in 
0-100 cm (%)                                                                      

Rock-gravel land is located at the foreland of the 
Heli-longshou Mountains which are far away from 
water sources and are not covered with any 
vegetation. High-density grassland and woodland 
occupy the transitional zone between the middle 
Heihe River Basin and the low-temperature section 
of the Qilian Mountains. Shrubbery land provides 
ecological protection but covers only small areas at 
scattered locations. 
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DISCUSSION 

SOC is an important matter in soil, and also the 
basis of soil fertility. How to improve soil organic 
carbon content in the region has become the core 
issue of climate change and food production. 
Usually, the results of experiments are constrained 
to points or the region where the experiments are 
involved, the forecasts of soil organic carbon at 
regional scale are scarce for their spatial variability 
for lack of amounts of experimental data. Spatial 
variability based on GIS methods at spatial scale is 
more advantageous than the studies at points or 
regions where the experiments are carried out for 
resource utilization and rational allocation.  

Comparing OK, SPLINE, IDW and LP models, 
the simulated results showed that OK model 
provides minimum error with higher spatial 
resolution. Spatial distribution between SOC and 
land use is a homologous trend in each layer of soil 
profile.  

There are significant spatial differences of SOC 
content under different land use types in 0-100 cm. 
The transitions or conversions of different land uses 
drive the SOC content changes. Land use change 
will increase or decrease SOC content. Numerous 
studies have shown that the expansion of cultivated 
plots, sandy desertification and urban land-use are 
the primary factors driving land use change in oasis 
regions, resulting in the shrinkage of middle-
density grassland and water area [21-27]. The 
extension of cultivated land, by which low SOC 
content uses such as desert, naked land, sandlot, 
saline-alkali field and middle-density grassland are 
changed to dry land and paddy field, will enhance 
the content of SOC in the soil profile, is a carbon 
fixation process, although sandy desertification is a 
reverse process. Many studies have also proven that 
cultivation and soil desertification have an 
important influence on SOC content and pools for 
oasis farmland, and that oasis soil can act as a 
carbon sink [28-32]. 

CONCLUSION 

It is very important to build better models at a 
regional scale because it is the level at which 
management and decision making are carried out. 
By comparing four interpolation models (OK, 
IDW, SPLINE and LP), the prediction errors 
indicate that OK model does the best job and is the 
best choice to perform the trend prediction in the 
study. 

Spatial distributions of SOC are an obvious 
gradually decreasing trend from high to low section 
at different layers of soil profile, the high sections 
located at the southeast of the study area near to 

Qilian Mountain and the paddy field near to the 
suburb of Jiuquan city. 

In the oasis region of the study area, the most 
notable character is that SOC content of cultivated 
plots is higher than those of desert, sandlot, saline-
alkali field and naked land. From a spatial 
perspective, paddy fields with a long history of 
cultivation are distributed on both sides of Heihe 
river, while land with a shorter history of 
cultivation is located at a greater distance from the 
river. The transitions of different land uses drive the 
SOC content changes, the extension of cultivated 
land, by which low SOC content such as desert, 
nakedness land, sandlot, saline-alkali field and 
middle density grassland are changed to dry land 
and paddy field will enhance the content of SOC in 
the soil profile. It is a carbon fixation process, 
although sandy desertification is a reverse process. 
These should attribute to deserts and desertification 
land uses initially having a low SOC content 
because of the effect of scarce water resources. 
Reasonable cultivation is an important process of 
increasing SOC content. 
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