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The classical mass transfer theory is not applicable for the modeling the mass transfer of chemical, absorption,
adsorption and catalytic processes in column apparatuses, where the velocity distributions and interphase boundaries are
unknown. The modeling of these processes is related with the creation of new type of convection-diffusion models (for
qualitative analysis) and average-concentration models (for quantitative analysis), where the surface reactions are
replaced by equivalent volume reaction, while the velocity and concentration distributions are replaced by average
velocity and concentrations. The effect of the radial non-uniformity of the velocity in the average-concentration models
is introduced by model parameters, which must be obtained experimentally. The new convection-diffusion and average-
concentration models are obtained in the cases of different processes in column apparatuses: simple and complicated
chemical reactions, physical and chemical absorption, physical and chemical adsorption, heterogeneous catalytic
processes (physical and chemical adsorption mechanism). These models are presented in the monograph Chr. Boyadjiev,
M. Doichinova, B. Boyadjiev, P. Popova-Krumova, “Modelling of Column Apparatus Processes” (Second edition),
Springer-Verlag, Berlin Heidelberg, 2018. Two hydrodynamic situations are considered, when the radial velocity
component is equal to zero, in the cases of an axial modification of the radial non-uniformity of the axial velocity
component and when the radial velocity component is not equal to zero. The use of experimental data, for the average
concentrations at the column end, for a concrete process and column, permits to be obtained the model parameters, related
with the radial non-uniformity of the velocity. These parameter values permit to be used the average-concentration models
for modeling of different processes.

Keywords: industrial mass transfer processes, convection-diffusion model, average-concentration model, velocity radial
non-uniformity, parameters identification.
E. 3

INTRODUCTION L
==, j=123 D¢ =1

The classical mass transfer theory is not 'R i (1)
applicable for the modeling the mass transfer of i.e., the phase volumes [m®] in 1 m® of the column
chemical, absorption, adsorption and catalytic volume (hold-up coefficients of the phases).
processes in column apparatuses, where the velocity The input velocities of the phases in the column

distributions and interphase boundaries are W [m.s], j=12,3 may be defined as:

unknown. The modeling of these processes is ! F ,

related with the creation of new type of convection- wW=—>__ j=123 F,=YF
] ) ) ) ) ]'

diffusion and average-concentration models, where
the surface reactions are replaced by equivalent
volume reactions, while the velocity and
concentration distributions are replaced by average

&y =y 2)
The column apparatuses are possible to be
modelled using a new approach [1-3] on the basis of

the physical approximations of the mechanics of

velocity and concentrations.

In the general case a multicomponent (
i=12,..,i,) and multiphase (j=1,2,3 for gas,
liquid and solid phases) flow, in a cylindrical

column with radius r, [m] and active zone height /

[m], will be considered. If F; is the fluid flow rate
in the column and F;, j=1,2,3 are the phase flow
rates [m’.s7!], the parts of the column volume

occupied by the gas, liquid and solid phase are
respectively:

* To whom all correspondence should be sent:
E-mail: chr.boyadjiev@gmail.com

continua, where the mathematical point (in the
phase volume or on the surface between the phases)
is equivalent to a small (elementary) physical
volume, which is sufficiently small with respect to
the apparatus volume, but at the same time
sufficiently large with respect to the intermolecular
volumes in the medium. On this base convection-
diffusion models for qualitative analysis of the
processes are proposed [1, 2].

Convection-diffusion models

The physical elementary column volumes
contain the elementary phase volumes and will be
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presented as mathematical points M in a cylindrical
coordinate system (r,z), where r and z [m] are
radial and axial coordinates. As a result, the
mathematical point M(r,z) is equivalent to the

elementary phase volumes, too.

The concentrations [kg-mol.m™] of the reagents
(components of the phases) are
;i 1=12,...,i5, j=12,3, i.e. the quantities of the

reagents (kg-mol) in 1 m® of the phase volumes in
the column.

In the cases of a stationary motion of fluids in
cylindrical column apparatus
u;(r.z),v;(r,z), j=1,2,3 [m.s"] are the axial and

radial velocity components of the phases in the
elementary phase volumes.

In the column apparatuses the phase boundaries
are unknown, and therefore the heterogeneous
reactions  (absorption, adsorption, catalytic
reactions) are introduced as a volume sources
(sinks) in the elementary phase volumes.

The volume reactions [kg-mol.m=3.s] in the
phases (homogeneous chemical reaction and
interphase mass transfer, as a volume source or sink
in the phase volume in the column) are

Q;(c;). =123 i=12..i,. The reagent

(substance) concentrations in the elementary phase
volumes can be created or disappear and the
reaction rates Q. are determined by these

concentrations ¢, (t,r,z) [ kg-mol.m™ |, where t

(s) is the time.

The volume reactions lead to different values of
the reagent (substance) concentrations in the
elementary phase volumes and as a result, two mass
transfer effects exist - convective transfer (caused
by the fluid motion) and diffusion transfer (caused
by the concentration gradient).

The convective transfer in column apparatus is
caused by a laminar or turbulent (as a result of large-
scale turbulent pulsations) flow. In a small
(elementary) phase volume around the point M (r, z)
in the column, the mass transfer in this volume, as a
result of the convection, is

ij aoc; 3 - .
u.—’+vja—rJ [kg-mol.ms.s 1], j=123,

i=12,...,i, Ii.e. convective transfer rate (kg-
mol.s™?) in 1 m? of the phase volume.
The molecular (or turbulent, caused by small-
scale turbulent pulsations) diffusive mass transfer is
o’c. 10c, 0%,
X e kg-mol.m3s1], ie.
”[ o> ror  or [kg |

diffusive transfer rate (kg-mol.s?) in 1 m® of the
phase volume and Dj; [m?.s™!] are the diffusivities of
the reagents (i=1,2,...,i,) in the phases (j =1,2,3).

The mathematical models of the processes in the
column apparatuses, in the physical approximations
of the mechanics of continua, represent the mass
balances in the phase volumes (phase parts in the
elementary column volume) between the convective
transfer, the diffusive transfer and the volume mass
sources (sinks) (as a result of the chemical reactions
and interphase mass transfer). The sum total of these
three effects is equal to
oc; Jot, j=123, i=12,..,i,. In the case of
balance between these three effects, the mass
transfer process is stationary (acij /at = 0) .

In the stationary case, the convection-diffusion
equations in the phases (as a mathematical

structures of the mass transfer process models in the
column apparatuses) are:

oc; oc; o’c; 10c, 0%
j _ J_Dij[ [ B J]

o> ror  or
+Qij(c..), 1=12,3 i=12,..,i,.
3)
The axial and radial velocity components
uj(r,z) and vj(r,z),j=1,2,3 satisfy  the
continuity equations in the phases:
ou; ov; v,
—+—+—=0
oz or r
z=0, u;=u;(r,0), j=123
r=r, v,(r,z)=0, j=123. @)
The models of the mass transfer processes in the
column apparatuses (3) include boundary
conditions, which express symmetric concentration

distributions (r =0), impenetrability of the column
wall (r=r,), constant input concentrations ¢; and

mass balances at the column input (z=0) of the
phases:

acij 6cij
r=0, —=0; r=r, —=0;
or or
0 oc;
z=0, ¢;=c¢;, u;c;=uc;—D; e ;
Z:=0

1=12,3, i=12,..,i,.
(5)
In this paper two hydrodynamic situations will
be considered, when the radial velocity component
is equal to zero, in the cases of an axial
modification of the radial non-uniformity of the
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axial velocity component and when the radial
velocity component is not equal to zero.

RADIAL VELOCITY COMPONENT IS EQUAL
TO ZERO

Chemical reaction in column apparatus
Convection-diffusion model

Let’s consider one-component chemical

reaction in  one-phase  column,  where
u; =u(r),v;=v=0,¢;=c(r,z),D; =D,Q; =kc.
In this case the model (3, 5) has the form:

2 2
u(r)ac = D(a C+1@+ﬂ)+kc;

oz \a? ror or
r=0, @Eo; r=r, @EO;
or or

=)
e (6)

The qualitative analysis of the model (6) will be
made, using generalized variables [1]:

r=rR, z=1Z, u(r)=u(r,R)=u’U(R),

c(r,z)=c(r,R,12)=c’C(R,2), g:(rl—oj,
(7)

where 1y, 1, u®, ¢’ are the characteristic (inherent)

z=0, c=c°, uocozuc"—D(

scales (maximal or average values) of the variables.
The introduction of the generalized variables (7) in
(6) leads to:

2 2
U(R)ngo g%+l§+g ~DaC;

oz 0Z° ROR OR

R=0, ﬁso; R=1 ﬁzo;
oR oR

=0, C=1] 1EU—Pe’1§;
oz

Fo=i|2, Da:ﬂ, Pe:u—ol,
Uoly U, D

(8)
where Fo, Da and Pe are the Fourier, Damkohler
and Peclet numbers, respectively.

In industrial conditions the parameters
Fo <107, Pe™ <107 are small and model (8) has a
convective form:

U(R)%z—DaC; Z=0, C=1.

)

Average-concentration model

Let us consider the model of the stationary
simple chemical reaction case (6). The average
values of the velocity and concentration at the
column cross-sectional area are:

2" _ 2
u:ro—zgru(r)dr, c(z):FIrc(r,z)dr.

(10)

The functions u(r), c(r,z) in (6) can be presented
with the average functions (10):

u(r)=aa(r), c(r,z)=c(z)e(r,z), (11)

where G(r)and €(r,z) represent the radial non-

uniformity of the velocity and concentration.

The average concentration model may be
obtained if (11) is put into (6), multiplied by » and
integrated over r in the interval [0,r,]. As a result,
the average-concentration model has the form:

— 2—
ar 94 9%e _pIT e
dz dz dz
z=0, ¢(0)=c’, @y,
dz (12)

where
a(z)zéjra(r)(;(r,z)dr;
o 9 (13)

represents effect of the radial non-uniformity of the
velocity.
The use of the generalized variables

r=rR, z=IZ, u(r)=0U(R),

a(ﬂ:@:u(rz), c(r,z)=c’C(R,2),
_ o N c(r,z) C(R2)
c(z)=cC(zZ), €(r,z)=— =— ,
(2)-cC(2). e(n2)= 5=
C(2)=2[RC(R,Z)dR,
o otru (1 C(RZ)
a(z)_A(Z)—Z‘[RU(R) c @) dR,
(14)
leads to: B B
A(Z)d—C+d—AC_:=Pe‘1d CZ—DaC_;
dz dz dz
z-0, ¢-1 ¥ _g
dz (15)
In  industrial conditions the parameter

Pe" <10? is small and model (15) has a
convective form:

9
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A(z)3—§+j—§6=—Da6; z=0, C=L.
(16)

Axial modification of the radial non-uniformity of
the axial velocity component

Very often in the industrial conditions an axial
modification of the radial non-uniformity of the
velocity is realized. This radial non-uniformity is
caused by the fluid hydrodynamics at the column
inlet, where it has as maximum and decreases along
the column height as a result of the fluid viscosity.

The theoretical determination of the change in the
radial non-uniformity of the axial velocity
component in a column is difficult in one-phase
processes and practical impossible in two-phase and
three-phase processes. For a theoretical analysis of
the effect of the axial modification of the radial non-
uniformity of the velocity, this difficulty can be
circumvented by appropriate hydrodynamic model,
where the average velocity at the cross section of the
column is a constant, while the maximal velocity
(and as a result the radial non-uniformity of the axial
velocity component too) decreases along the
column height.

1.8

1.6

1.4

1.2

U.(R, Z,)
T

0.8 -

0.6 |

0.4 -

0.2 -

0.5
R

Z, =10

' Z, =09

Z, =08

Z, =07

Z, =06

Z, =05

Z, =04

Z, =0.3

Z, = 0.2

| 1 ! L Z, =0.1
0.6 0.7 0.8 09 1

Fig. 1. Velocity distributions U | (R,Zn), Z, =O.1(n +1), n=0,1..,9.

Let’s consider [4] the velocity distribution:

u,(r.z,)=uU,(R,Z,), n=01..,9, a7

where u° =const is the inlet velocity, and an axial
step change of the radial non-uniformity of the axial
velocity component in a column (Fig. 1):

Un(R,Zn)zan—bnRz,

a,=2-0.In, b, =2(1-0.1n),

0.In<Z, <0.1(n+1), n=0,1..,9, 0<R<L
(13)

If we put (17, 18) in (9), the model has the form:

10

u, oc, =-DaC,;
oz,

0.1n<Z, <0.1(n+1);

z,=01n, C,(RZ,)=C,,(RZ,);

n=01..9; Z,=0, C,(R,Z,)=1. (19)

The solution of (19)

C(RZ)=C,(RZ,),Z,=01(n+1),n=00,...,9
in the case Da =1 is presented on the Fig. 2. This
solution C(R,Z) permits to be obtained in (14) the
average (“theoretical”) concentration distribution
C(z)=C,(Z,),Z,=0.1(n+1), inthe column (the
points on the Fig. 3) and function A(Z)=A,(Z,)
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(the points on the Fig. 4) on every step n=0,1,...,9

From Fig. 4 is seen, that the function A(Z) is

2
A(Z)=a,+aZ+a,Z (20)
As a result, in the case of axial modification of the
radial non-uniformity of the velocity, the model (16)

possible to be presented as a quadratic has the form:
approximation:
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Fig. 3. Average concentration distribution: “theoretical” values (as solution 0f(10.1.4) and (10.1.5))

C(z)=C,(z

n

), Z = 0.1([‘1 +1), n=0,1...,9 (points); C_:(Z) as a solution of (10.1.7) for “experimental” values of

a,, &, a, (line).
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Z,=0.1(n+1), n=0,1,...,9 (14) (points);

A(Z) as a quadratic approximation (20) (line)

(3 +aZ+a,Z )ZC +(a, +2a,2)C =-DaC;

Z=0, C=1,

21)
where the parameters a,, a,a, must be obtained,
using experimental data.

The obtained value of the function C(1) (Fig.
3) permit to be obtained the artificial experimental
data Cly, (1) for the columnend (Z =1):

Co(1)=(0.95+0.1B,)C(1), m=1,...,10,

(22)
where 0<B, A <1, m=0,1,..,10 are obtained by a
generator of random numbers. The obtained
artificial experimental data (22) are used for the
(8 a,8,)
identification in the average concentrations model

(21) by the minimization of the least-squares
function:

illustration of the parameters

10

Q(8,a,a,)=2[C(Lay,a,3,)-C

m=1

o],

(23)
where the value of C(L,a,,a,,a,) is obtained after
the solution of (21) for Z=1. The parameters
(2, a,,a,) are used for the solution of (21) and the
result (the line) is compared with the average

12

(“theoretical”) concentration values

C(z)=C,(z,),Z,=01(n+1),n=0,1,...,9.

(points) (as solution of (19) and (14)) on the Fig. 3.
Gas absorption in column apparatus

Convection-diffusion and average-concentration
models

The new approach for the modelling of the
processes in column apparatuses [1-3] will be used
in the cases of the physical absorption processes in
a co-current column [5], where the convection-
diffusion and average-concentration models have
the forms:

ac, o’c, laoc, oc
—1=D Ly 24 —k(c,—x¢,);
oz [822 ror or? (¢~ 7¢.)
ac, o’c, loc, 0%
u,—==D 24> 242 |+k(c,—xc,);
2[822 Tt or +ar2J+ (6-2%)

U

? oz
oc.

r=0, —=0; (24)
or

r=r aCJ—0' =172

Y a7 1=%4
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dc, deo, __ d°c, _

o (2)0, % F dzl ulclleﬁ—k(cl—;(cz);
_dc, da, __ °C. _

a,(z)0, d22+ d22u2 ,=D,—2+k(T, - 1%,)
2=0, ¢ (0)=c’, T,(0)=0, (25)
45 _, 9% _g
dz ' dz

2% o ui(n)
aJ(z):r—ZIruijdr, a(r)= -

00 i

In (24, 25) y isthe Henry’s number, k - volume
interphase mass transfer coefficient [s'], k, -

chemical reaction rate constant [s], uf,c], j=1,2

- input (z=0) velocities and concentrations,
0,,C;(z), j=12 - the average velocities and
concentrations at the column cross-sectional area,
a;(r),¢;(r,2), j =1,2 - the radial non-uniformities

of the velocities and concentrations.
In (24, 25) the generalized variables can be
introduced:

r=rR, z=1Z, uj(r)zﬁ.Uj(R), i=12,

c(r2)=

(26)
and as a result is obtained:

2 2
0,2 o [+ 06, 106, TG
oz oz R OR OR
(C _Cz)v
2 2
0, e o, 0%, 108, O,
oz oz R OR OR
(C _Cz)
oC. oC. .
R=0, —=0; R=1 —=0; j=12
R OR
Z=0, C =1 C,=0, (27)
1EU1—Pe1’18—C1, %EO.
oz oz
dAl L, d*C, = =\,
Ai(z) dz dZC P dZZ_Kl(Cl_CZ)’
dA, = ,1d2C = =
Z)—+—=C,=Pe,;, —~+K,(C,-C, );
Al )dZ dz * 7 dz? 262G,
z=0, C,=1 C,=0, ﬁ:o, %€,
dz dz

In (27) are used the expressions:

Cj(z)zszcj(R,z)dR,

J :1, 2. (28)
In practical conditions the models (26, 27) have
convective forms:

dc,
-K,(C,-C
2K (C-C)
dc,
c,-C
S0k, (G- C,);
z:o, C, =1 C,=0. (29)
LY = &)
Ai(z> dZ dZ C __Kl(cl_CZ)'
dA, = _ = &)\
AZ(Z)dZZ dZC =aK,(C,-C,);
Z = 0, Cl :1, C2 = O (30)

Effect of the axial modification of the radial non-
uniformity of the axial velocity components

Let’s consider [5] the velocity distributions:
uj, (r, zn)zu?an (R.Z,), i=12,n=01.,9,

€2))

where

13
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an(R’Zn):ajn _bjnRZa ajn =2-0.1n,
b;, = 2(1—0.1n), 0.In<Z, SO.l(n +1),

n=01..9, j=12
If we put (32) in (29), the model has the form:

dC,

Ulnﬁz_Kl(Cln _CZn)'
dcC,,

U2n dZZH :a)Kl(Cln_CZn);

Z =0.1n, Cjn(R,Zn):Cj(nfl)(R,Zn),

n=01..9, j=12

Z,=0, Cy(R,Zy)=L Cy(R,Z,)=0.

The parameter @ in (33) is known beforehand.
The solution of (33), for a concrete absorption
process (w=1) of an average soluble gas and
“theoretical” value of K, =1, permits to be obtained

the concentration distributions Cjn(R,Zn), j=12

for different Z =0.1(n+1),n=0,1...,9 (Fig. 5).

The solution of (33) (Fig. 5) and (28) permit to
obtain the “theoretical” average concentration
distributions

(32)

NN NN N NSNS
W

Fig. 5. Concentration distributions CJ.

2(R.Z,), =12 inthe case =K, =1 for different

Z,=0.1(n+1),n=01,...,9.
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Fig. 6. Average concentration C,(Z), j =12 inthe case @ =K, =1: “theoretical” values

C,(Z2)=C,,(Z,), j =1,2 as solutions of (33) and (28) for different Z, =0.1(n+1),n=0,1,...,9 (points);

Cj (Z), j=1,2 as asolution of (35), using the ¢

14

‘experimental” parameter values @,,, &

a;,, =12, K, (lines)
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Fig. 7. Function A, (Zn), J=12 inthe case w=K, =1: as a solution of (29) and (28) for different

Z,=0.1(n+1),n=0,1,...,9 (points); A, (Z), j =1,2 as a quadratic approximation (34) (line).

C,.(Z,), j=12 (the points in Fig. 6) and the
functions A, (Z,), j =12 (the points in Fig. 7) for
different Z =0.1(n+1),n=0,1...,9.

From Fig. 7 it is seen that the functions
Ajn(Zn), n=0,1...,4, j=12 may be presented as
guadratic approximations:

Ai(z):aio +a,Z +a1222,
Az(z):azo"'azlz"'azzzz- (34)
As a result, in the case of axial modification of the

radial non-uniformity of the velocity, the model (30)
has the form:

dC, -
(aio +a,Z + aizzz)d_zl"'(an + 2a122)C1 =
=—K1(C_:1 —C_:Z);

dC. -
(a+2,Z + azzzz)d—zer (ay +2a,2)C, =

le(Gl—Cz);

=0, C,=1 C,=0,

N

35
where (at unknown velocity distributions in the (twc))
phases) @ is known beforehand for a concrete
process, while the parameters
8,9, aj;,8,, =12, K, must be obtained using
experimental data.

The obtained values of the functions
C_:jn(Zn), j=12, for a concrete process (w=1),

“theoretical” value of K =1 and different
Z,=0.1(n+1),n=0,1,...,9 (Fig. 6), permit to be
obtained the values of C_:j (1), j=12 and the

artificial experimental data:
Chp(1)=(0.95+0.1B,)C; (1), j=12,

m=l,...,10, (36)

where 0<B_ <1 m=1..10 are obtained by a

generator of random numbers. The obtained
artificial experimental data (36) are used for the
illustration of the parameters

P=(aj0, ;. a,, j =1,2,K,) identification in the

average concentrations model (35) by the
minimization of the least-squares function with

respect to Pz(ajo, 1, @z, j=12, Kl):

Q( p) = i[él (1, P) - C_:lrzxp (1)]2 *

+:z:[62 (LP)-Cr, @], -

where the values of C i @, P), j =1,2 are obtained as

solutions of (35). The obtained (“experimental”)
parameter values a;,d;,,;,, j =1,2, K, are used
for the solution of (35) and the results (the lines) are
compared with the “theoretical” average

concentration values on Fig.6.

15
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RADIAL VELOCITY COMPONENT IS NOT
EQUAL TO ZERO

Chemical reaction in column apparatus
Convection-diffusion model

A theoretical analysis of the effect of the radial
velocity components in the industrial column
chemical reactors will be presented in the case,
when the radial velocity component is not equal to
zero for pseudo-first order chemical reactions. In the
stationary case, the convection-diffusion model (3-
5) has the form:

oc ac o’c loc o% _
U—+v—=D| —+=—+— |-kc;
oz ror or?

oz or
r=0, @s ;o r=r, @: ;

or or
z=0, c=c’, u°c°Euc°—D@.

0z (38)

ou ov v
—+—+—=0;
0z or r

r=r,, v(r,z)=0; z=0, u=u(r,0). (39)

The theoretical analysis of the model (38, 39) will
be made, using generalized variables (7) and

v(r,z)=v(r,R,1Z)=u’sV (R,Z). (40)
As a result from (7, 38-40) the following may be
obtained:

2 2
oc ., oC F0[8250+150 acj Dac:

U—+V—= > +

o0z oR 0Z*> ROR OR?

R=0, §EO; R=1, gzo; (41)
JR JR

Z=0, C=1 1=U- pet .

o ov V

—+—+—==0;

oZ OR R

R=1 V(14,Z)=0; Z=0, U=U(R0).

(42)
In industrial conditions the parameters

Fo <107, Pe™" <107 are small and the model (41)
has a convective form:

U o« V@=—Dac;
oz oR

16

Average-concentration model

The functions u(r,z),v(r,z),c(r,z) in (38)
can be presented with the help of the average
functions (10):

u(r,z)=0U(R,Z), v(r,z)=etVv(R),
c(r,z)=t(z) ¢(r,2). (44)

As a result, the following is obtained:

— 2—
)5S+ [A(2) 1 (2)Jig =D S ke
z=0, c=c’, d—C=,
dz
(45)
where
a(z)z—zfrUCdr, ﬂ(z):%frU@dr,
00 rO 0 az
2% o6 - =
7(2):FIrV dr, ¢(r,z2)=C(R,Z),
00
U=U(R,Z), V=V(R).
(46)

The theoretical analysis of the model (45) will be
made, using the next generalized variables and
functions:
z=1Z, r=rR, t(z)=c’C(2),
1
c‘:(z)—szc (R,Z)dR,

)_

¢(r,z o(r.z
")

(47)

-1

z-0, ¢=1 Lo (48)

In industrial conditions Pe >10° and the model (48)
has the convective form:
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dc _ _ component (effect of the radial velocity component)
A(Z)d_ZJf[B(Z)JFG(Z)]C =-DaC; in a column can be made by an appropriate
— hydrodynamic model, where the average velocity at
2=0, C=1. (49) the cross section of the column is a constant (inlet
average axial velocity component), while the radial
non-uniformity of the axial velocity component
The theoretical analysis of the change in the decreases along the column height and as a result a
radial non-uniformity of the axial velocity radial velocity

Axial and radial velocity components

1.6 .

1.2+ .

IR, Z)

U

0.8 - §

0.6 - y

—_
o

0.2

N oNNN N

S eee =
S o=

0 1 L 1 L 1 L 1 L 1
0 0.1 02 03 04 05 06 07 0.8 0.9 1
R

Fig. 8. Axial velocity component U (R, Z) for different Z =0,0.3,0.5,0.7,1.0
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0.03 - 1
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R

Fig. 9. Radial velocity component V (R)
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0 1 | 1 1 1 1 1 1 L
0 0.1 02 03 04 05 06 07 08 09 1

R
Fig. 10. Concentration distributions C(R,Z ) for different Z =0.1,0.3,0.5,0.7,1.0
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Z

n

Fig. 11. Average concentrations C (Z) : “theoretical” values C (Zn ), Z
solution of (49) (lines)

:0.1(n +1), n=0,1,...,9 (points);
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1.3 ; ; r | | ; ; .
12+ -
1.1+ o0 O -

1¢ E

09F 8
08 -
0.7+ :

U 06f E
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0.4+ -
03 |
0.2 1
0.1 -
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01+ [o)
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Z

Fig. 12. Functions A(Zn ), G (Zn ), Z = 0.1(n +1), n=0,1...,9 (points) and theirs quadratic and linear
approximations (53) (lines)

VA
Fig. 13. Functions B(Z,),Z, =0.1(n+1),n=0,1,...,9 (points) and its parabolic approximation (53) (line).
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component is initiated. In generalized variables (7)
is possible to be used the model:

U=(2-04Z)-2(1-0.4Z)R?,

3
V=02(R-R?), (50)
where the velocity components satisfy the equation
(42). The velocity components (50) are presented
on the Figs. 8, 9. From Fig. 9 is seen, that V < 0.1
and must be presented with the help of a small
parameter 0.1=a ] 1, i.e.

V=aV,, V,=02(R-R%)a"

(51
As a result, the problem (43) has the form:
U@+0N0@:—Dac; R=1, @z :
oz oR OR
Z=0, C=1], (52)

where 0.1=a l] 1 is a small parameter and (52)
must be solved by the perturbation method [1, 9].
The solutions of (52) in the case Da =1, and

0.1=al) 1,lead to .C(R,Z) which is presented

on Fig. 10.

The solution of (51, 52) and (47) permits to be

obtained the average concentrations (“theoretical”

values) C(z,) and functions
A(Z,), B(Z,), G(Z,), Z,=0.1(n+1),

n=0,1...,9, which are presented (points) on Figs.

11-13.
From Figs. 12, 13 is seen, that the functions

A(Z),B(Z),G(Z) are possible to be presented as

the next approximations:
A(Z)=1+aZ+a,Z°, B(Z)=b,+bZ",
G(Z)=9z

As a result, the model (49) has the form:

(53)

(1+az +a222)3—§+(b0 +b,2" +9Z)C =-DaC;

Z=0, C=1, (54)
where the parameters P(a,, a,,0,,b,,b,,g) must be
obtained using experimental data.
The value of the function C(1) obtained from
(51, 52) and (47) permits to be obtained the artificial
experimental data C_:e”;p (1) for the columnend (Z =1
):
Co(1)=(0.95+0.1B,)C(1), m=1,...,

exp

10, (55)
where 0<B_ <1 m=0,1..,10 are obtained by a
generator of random numbers.
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The obtained artificial experimental data (55) is
possible to be used for the illustration of the
parameters P identification in the average
concentrations model (54) by the minimization of
the least-squares function:

QP)-F[euR-caal.

where the values of C(1,P) are obtained after the

solution of (54) for Z =1.

The obtained (“experimental”) parameter values are
used for the solution of (54) and the results (the
lines) are compared with the average (“theoretical”)
concentration values
C(z,),Z,=01(n+1),n=0,1,...,9 (points) on Fig.
11.

GAS ABSORPTION IN COLUMN APPARATUS
Convection-diffusion model

The new approach of the processes modeling in
the column apparatuses [1-3] permits to be created
the convection-diffusion model of the co-current
physical absorption process in the case, when the
radial velocity component is not equal to zero:

ac, ac; d%c; 10c; o,
Uj—+V,—=D;| —F+-—+— |+
0z ror or

oc. .
r=0, —=0; r=r, L=0, j=12
or
z=0, ¢, =c}, c,=0,
ufcfzulcf—D{a—clj , (%J =
z z=0 62 z=0
(57)
Ny N LY
oz or r
r=r, v,(r,z)=0;
z=0, u;=u;(r,0); j=12 (58)

In (57, 58) the generalized variables can be
introduced:
r=rR, z=1Z,
u;(r,z)=u;(nR,1Z)=uju

J

(R2),

vi(r.z)=v;(LRIZ)=uleV,(R,Z), j=12,
c,(r,z)=c(rR,12)=cC,(R,Z),

0
6, (r.2)=c,(KR,1Z)=2C,(R,Z)

X
(59)
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and as a result is obtained:

oC; oC; Zazcj 1 0C;
U —+V,—=Fo| ¢ st ——+
oz oR 0Z° R OR
aZC- (27]')
+—8R2‘]+(—1) K(C,-C,);
oC. )
R=0, —=0, j=12
OR
oC. )
R=1 —=0, j=12
OR
Z=0, C =1 C,=0,
1EU1—Pel’1£, QEO.
oz oz
ou;, ov, V, 0
—+—+—=0;
0Z OoR R
R=1 V,(1Z)=0; Z=0, U;=U,(R,0).

(60)

In industrial conditions the model (60) has a
convective form:

oC. oC. i
(2-1) .
Uja_ZJJera_RJ:(_l) K;(C,~C,);
R=1 o, =0; j=12 (61)
] aR — VY J_ ) &y

Z=0, C =1 C,=0.
Average-concentration model

The functions
u;(r,z), v;(r,z), ¢;(r,z), j=12 in(57) can be
presented with the help of the average functions:
u;(r,2)=0U;(R,Z2), v;(r,z)=¢tV,(R,2),

¢, (r.2)=c;(z) &, (r2), j=12

(62)
As a result, the following is obtained:
_ dg; _
aj(z)ujd_zl*'[ﬂj(Z)+71(Z)J“1Cj =
d’c i
=D; d 7 +(_1)(2 J)k(el 7%);
z
dc. i
2=0, T;(0)=(2-j)c’, —Z‘zo, j=12.
(63)

2%
aj(z):r—zj'rujcjdr,
00

2% o

(z)==|ru,—Ldr,
ﬂ](z) roz'([r ] az r

2% OC
yj(z):gl‘rvja—r’dr,
Ui :Uj(R’Z)’ Vi :Vj(R)'
¢(r.z)=C;(R,Z2), j=12 64)
The theoretical analysis of the model (63) will

be made, using the next generalized variables and
functions:

1 oC, _
7i(2)=6G,(2)=2[RV, (R)g dR j=12,
(65)
and as a result the model (63) has the form:
dC. _
A(2) 2 +[8,(2)+6,(2)]C, -
, d?C,
i dzz
Z=0, C=1 C,=0,
ﬁ:O, &:O; j=12.
dz dz (66)
In industrial conditions the model (66) has the
convective form:

—Pe +(-1)*"K,(C,-C,);

z=0, C =1 C,=0; j=12 67)

Axial and radial velocity components

The theoretical analysis of the effect of the radial
velocity components in a column can be made by an
appropriate hydrodynamic model. In generalized

21



Chr. Boyadjiev & B. Boyadjiev: New approach to modelling and simulation of chemical and mass transfer processes...

variables, as an example, is possible to be used the
next velocity distributions, where the difference
between the gas and liquid flows is in the average
(inlet) velocities, only:
U, =(2-0.4Z)-2(1-0.4Z)R?
V;=02(R-R%), j=12 (68)
where Vj <0.1, j=1,2 and must be presented

with the help of a small parameter 0.1=a Ul 1, i.c.
3 . -

Vi=aV,, Vj,=02(R-R’)a™, j =12 o)

In the cases of physical absorption) of an average

soluble gas (@1) in an industrial absorption

column, the convection-diffusion and average-
concentration models (61, 67) have the forms:
dC dc,
Uld_zl+avm dR (C -C )
dC dc,
U,—2+aV =wK,(C,-C,);
A R Gl S
oC. i
R=1 —=0, j=12
OR
Z=0, C =1 C,=0
dC,
1+a,Z +a,Z%)—:+
(1ranZ +a,2")
(blo"'buzbu"'gl ) -K (C Cz);

z=0, C =L

(2 +8,Z +2,7 )—+(b20 +h, 2% +

+gZO +9212)C
Z=0, C,=0;

=aK,(C,-C,);

b, by,

where the parameters a;,, a i
gjov gjl’ J
experimental data.

The solution of (70), in the case K, =1, w=1, is
obtained with the help of the perturbation method
[10]. The solution of (70) and (65) permits to be
obtained the average concentrations in the phases

j1 12’ b10’

=12, K, must be obtained using

Cj (Z),i=12 (“theoretical” values, the points in
Fig. 14).
The values of the functions C;(Z), j=1,2

Z
permit to be obtained the values of C, (1), j=1,2

and the artificial experimental data (36), which are
used for the parameters

P(aJOlajliaJZbeOijlbe2,gjo,gll, ), J:1'2

identification in the average concentrations model
(71), by the minimization of the least-squares
function (37) with respectto P, where the values of

C,(L P), j=1,2 are obtained as solution of (71).
The (“experimental”) values of the parameters

jor A e Byoy By By, Gges 95 Ky J=12

are obtained for the solution of (71) and the results

(lines) are compared (Fig 14) with the solution
(points) of (70) and (65).

a

0% L L 1 1

L 1 1 1

0 0.1 02 03 04

0.5
Z

06 07 08 09 1

Fig. 14. Concentration distributions C j (Z ), j =1,2 : solution of (71) (lines); solution (points) of (70) and (65).
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HOB IIOXOA 3A MOJEJIMPAHE U CUMVYJIALIA HA XUMWUYHU 1 MACOIIPEHOCHUA
I[TPOIIECHU B KOJIOHHU AITAPATHU

Xp. bosmxues, b. bosnxues

Hucmumym no unowcenepna xumus, Beaeapcka akademus na naykume, yia. Axad. Cm. Aueenos, on. 103, 1113 Cogus,
bvaeapus

Ilocrpimna wa 20 mapr, 2018 r.; mpueta Ha 26 roHH, 2018 T.
(Pesrome)

Krnacuueckara Teopusi Ha MacolpeHacsiHe HE € MPWIOKMMa 32 MOJAEINpPaHe Ha MAacOIPEHACSHETO NMPU XMMHUYECKH,
abcopOIMOHHN, aICOPOIIMOHHY M KaTaTUTUYHHU IPOLIECH B KOJIOHHH anapaTtH, KbJETO paslpeIeIeHHEeTO Ha CKOPOCTUTE
1 MeXIy(}ha3oBUTE TPaHUIM ca HEU3BECTHU. MOJeTUpaHeTo Ha T€3H MPOIECH € CBBP3aHO ChC Ch3AABAHETO HA HOB TUI
KOHBEKTHUBHO-IM()Y3HOHHU MOJIENM (32 KaueCTBEH aHaM3) U MOJIENIM Ha CpeAHAaTa KOHIEHTpauus (3a KOJIMYECTBEH
aHaiuu3), KBAETO IOBBPXHOCTHUTE pEAaKIUH ca 3aMEHEHHM C EKBHBAJCHTHa OOEMHAa peakIis, a CKOpOCTTa M
pasmpeeNeHueTo Ha KOHIIGHTPALMUTE ca 3aMEHEHH ChC CPEHA CKOPOCT M KOHIIEHTpalnu. BiIusHueTo Ha paguaiHaTta
HEpaBHOMEPHOCT Ha CKOPOCTTa B MOJICIIMTE Ha CpeHATa KOHIIEHTPALUs CE€ BhBEXKAa YPe3 MOJIETHU ITapaMeTpH, KOUTO
TpsOBa sJa ce ONpenessT eKcnepuMeHTanHo. HoBHTe KOHBEKIMOHHO-AM(Y3MOHHH MOAENM M Te3W Ha cpexHara
KOHILICHTPALMsI ca TIOJlydeHH B CIy4ad Ha Pa3iIMdHU IPOIECH B KOJOHHUTE amapaTH: MPOCTH W CIOXHU XUMHYHH
peaknuy, (GU3MYHA M XUMH4YHA aOcopOums, ¢u3nyHa M XUMHUYHA aJCOpOIMs, XETEPOT€HHHM KaTaJUTHUYHH IIPOLECH
(pmznuen n xumuUeH agcopOIMOHEH MeXaHu3bM). Te3n Mojenu ca mpeacraBeHn B MoHorpadusta Ha Xp. bosupkues,
M. JoituunoBa, b. bosmkues, 1. ITonoBa-KpymoBa ,,Moaenupane Ha npouecy B KOJIOHHH anaparu’, BTOPO U3JIaHUE,
u3n. Springer, bepnun-Xaiinen6epr, 2018 r. Pasrienanu ca aBe XUAPOJUHAMUYHU CUTYAI[MH, KOTATO PaIUATHUSAT
CKOPOCTEH KOMIIOHEHT € PaBeH Ha HyJia B CIyuyauTe Ha aKCHaJIHO MOJIU(HUIMpaHe Ha paJuaHaTa HEPaBHOMEPHOCT Ha
aKCHAJTHHUSI CKOPOCTEH KOMIIOHEHT M KOTaTo PaJHaTHUAT CKOPOCTEH KOMIIOHEHT € pa3fiMueH oT Hyna. M3noma3BaHeTo Ha
eKCIIEpUMEHTAIHH JTaHHU 32 CPEAHNTE KOHIICHTPAINU B Kpasi Ha KOJIOHATA, 32 KOHKPETEH IIPOIleC U KOJIOHA, TO3BOJISIBA
Jla ce TOoJTydJaT mapaMeTpuTe Ha MOJIeNa, CBbP3aHy C paJralHaTa HepaBHOMEPHOCT Ha ckopocTTa. CTOMHOCTHTE HA TE3U
IapaMeTpH MO3BOJISABAT J1a C€ M3IOI3BAT MOJIENIN Ha CpeJHaTa KOHIIEHTPAIHUS 32 MOJICNMPaHe Ha PA3TUIHHU IPOLIECH.
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