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The present paper is concerned with mixed convection, viscous and Joule dissipations, thermophoretic  and 

Brownian diffusion effects on the steady stagnation point nanofluid flow with passive control of nanoparticles. 

Similarity transformation is exerted to convert governing boundary layer partial differential equations into ordinary 

differential equations without loss of generality. In order to optimize error and assess accuracy of solutions two 

different spectral schemes are efficiently employed to solve governing equations. The graphs for velocity, temperature 

and concentration of the present nanofluid flow model, obtained by using SLM (successive linearization method) and 

SRM (spectral relaxation method) are discussed in detail for various flow controlling parameters. Apart from it, 

regression analysis is performed for skin friction for making this model more effective in industries and engineering. 

Findings reflect that a boundary layer is formed even in case of the same stretching and free stream velocities in the 

presence of mixed convection parameter. Magnetic parameter is assisting parameter for the fluid flow when free stream 

velocity is dominant over stretching sheet velocity while in the opposite case it acts as opposing parameter for the 

velocity profile. 

Keywords: Regression model, viscous and Joule dissipations, Brownian and thermophoretic diffusions, SLM 

(successive linearization method), SRM (spectral relaxation method) 

INTRODUCTION 
th19 Century onwards, every country is running 

to thrive in all fields including technology and 

industries, for improving themselves and being the 

best. This race led to massive industrialization and 

many other activities. Therefore, we are getting 

beneficial outcomes, as well as direct consequences 

due to massive release of greenhouse gases. To 

mitigate the global warming, is a challenge for the 

world. This objective of reducing heat consumption 

can be achieved by increasing heat transfer. 

Therefore, nanofluids are introduced in the recent 

past, which are colloidal suspensions of nanosized 

particles in the base fluid. Masuda et al. [1] were 

the first to notice how heat transfer rate and thermal 

conductivity of liquid increases when ultra-fine 

particles are dispersed into it. They selected water 

as a base fluid and powders of Al2O3, TiO2 and 

SiO2 as ultrafine particles. Choi [2] coined the term 

nanofluid in his pioneering research. Some of the 

other relevant investigations are due to articles [3-

5]. 

The models for fluid flow over a 

stretching/shrinking sheet are very important 

because of their large potential to deal with many 

industrial and engineering areas. They also have 

manifold applications in manufacturing of long and 

uniform metal parts, melt spinning technique for 

cooling liquid, metalworking process, etc. 

The pioneering attempt to observe a boundary layer 

flow over a continuous moving surface was done 

by Sakiadis [6]. Theoretically, a flow adjacent to a 

linearly stretching plate is studied by Crane [7]. 

Makinde and Aziz [8] efficiently employed the 

convective heated boundary condition to study 

nanofluid flow past a stretching sheet and found 

that as thermophoretic  and Brownian diffusions 

become stronger; Sherwood number increases 

while Nusselt number decreases. Bhatti et al. [9] 

have taken a porous shrinking sheet to analyse the 

nonlinear thermal radiation effect on MHD 

nanofluid flow. Recently some other relevant 

research investigations are done by several authors 

[10-12], etc. 

Natural convection is a process in which fluid 

motion is dependent on the density difference in the 

fluid, encountered as a result of temperature 

gradients. The force convection is a process in 

which fluid motion is developed by an external 

source like fan, pump, etc. When these two 

mechanisms occur simultaneously, then it is termed 

as mixed convection and is used in many thermal 

engineering processes. Various engineering and 

industrial processes such as transpiration cooling, 

aerodynamic extrusion, continuous filament 

extrusion, etc., can be qualitatively analysed by 

such types of models. Ghaly [13] has taken 

synchronized action of thermal radiation, buoyancy 
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force and magnetic field on the flow-field and 

suggested that local shear stress is decreasing 

function of radiation. MHD mixed convection flow 

with buoyancy effect is studied by Makinde et al. 

[14] taking viscous and Joule dissipations into

account and reported that in case of a shrinking

sheet dual solutions exist. They also found that skin

friction decreases while local Nusselt number

increases with enhancement in buoyancy force.

Rashidi et al. [15] developed a very interesting

model for forced convection flow of a nanofluid.

Some more studies on this topic are due to articles

[16-18].

Due to the wide use in engineering and 

industries, the flow near the stagnation point is 

investigated by many authors. The application of 

the flow behaviour near a fixed point is found in 

many problems such as manufacturing of plastic 

substance, metallurgy, lubricants theory, polymer 

extrusion, etc. Mustafa et al. [19] reported the 

boundary layer solutions of a stagnation point flow 

adjacent to a stretching sheet by homotopy analysis 

method. Rahman et al. [20] have taken inclined 

stretching cylinder and analysed the thermophysical 

aspect of stagnation point flow. Some other studies 

are due to articles [21, 22] 

In the present investigation, our purpose is to 

present a boundary layer solution and observe the 

effect of various terms, viz. viscous and Joule 

dissipations, mixed convection, Brownian and 

thermophoretic diffusions on a stagnation point 

flow with passive control of nanoparticles by two 

different spectral schemes, i.e. SLM and SRM. As 

per authors concern, this model is not yet studied 

by a spectral scheme. There are several applications 

of such types of fluid flow models such as 

industrial cooling [23], nuclear reactor cooling [24], 

enhance the critical heat flux in pool boiling [25], 

reducing pollution and heating buildings [26], 

thermal energy storage [27], drug delivery [28], 

direct absorption solar collectors [29], friction 

reduction [30], etc. 

MATHEMATICAL MODELLING OF THE 

PROBLEM 

The present system deals with the steady two-

dimensional, viscous, incompressible and 

electrically conducting stagnation point flow of a 

nanofluid over a stretching sheet with mixed 

convection, heat generation, viscous and Joule 

dissipations, Brownian and thermophoretic 

diffusions. The key assumptions which are made 

while deriving the governing equations are: the 

nanoparticles and base fluid are assumed in thermal 

equilibrium and chemical reaction between them is 

neglected; the nanofluid is viscous, incompressible 

558 

and electrically conducting; the magnetic Reynolds 

number is small enough to discard the induced 

magnetic field; there is no external electric field so 

the induced electric field due to polarization of 

charges is negligible; and the Boussinesq 

approximation is taken into account, i. e. density 

variation obtained by concentration or temperature 

difference is neglected except in case of buoyancy 

force. The geometry of the concerned problem is 

presented in figure 1(a).  

Fig 1(a). Schematic diagram and coordinate system 

of the flow problem. 

The nanofluid is impinging normally over the 

stretching sheet and the stretching velocity is in the 

form of power law as us = axn. Free stream velocity 

of fluid is also taken in power law form as u= bxn 

where a, b and n  are constants, i.e. fluid flow and 

stretching sheet are in upward direction along the x-

axis. The symbols T = Ts and T = T∞ are for 

constant temperature of fluid at the surface and in 

the free stream, respectively. The symbol C∞ is for 

fluid concentration in the free stream while 

nanoparticle volume fraction C is controlled 

passively at the surface, as suggested by Kuznetsov 

and Nield [31]. For controlling boundary layer, 

transverse magnetic field having intensity B is 

exerted perpendicular to the sheet, i. e. along the y 

axis.  

Using these key assumptions, the governing 

boundary layer equations, i.e. continuity, 

momentum, energy and concentration equations, 

are expressed, respectively, as follows:  
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where meanings of symbols are given in the 

nomenclature section. 

The similarity of flow states for two 

geometrically similar bodies for which the flow 

around the test body and the flow around prototype 

can be considered the same or similar if the 

Reynolds numbers in the two cases are equal [32, 

33]. It will be true for other similarity parameters 

like Prandtl number, Schmidt number, etc. Due to 

this reason, we have considered it as a similar 

problem and similar solutions will be obtained. For 

similar solution of governing boundary layer 

equations (2), (3) and (4) along with boundary 

constraint (5), we have taken the following 

similarity transformations  
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where η is similarity variable and ψ is stream 

function while ϕ and θ are non-dimensional 

concentration and temperature, respectively. 

Using these similarity variables, our problem 

was reduced to the following form: 

 

 

2

2

2n 2M
f ff f f s

n 1 n 1

2 2n
Nr s = 0,

n 1 n 1

      
 


   

 

 (7) 

 
2

2 2

1
f Nt Nb

Pr

2MEc
Ecf (f s) = 0,

n 1

            

   


(8) 

Nt
Scf = 0.

Nb
           (9) 

The boundary conditions (5) were reduced to the 

following form:  

   

     

     

f = 0, f = 1,

Nb Nt = 0, = 1, at = 0,

f s, 0, 0, as ,

  


         


          

  (10) 

where: 

 

 
   

   

     

2

x
f 2

xnf

3

s s
xx 2

p f

f s

2
p T wnp s

p p snf nf

GrB
M = , = (1 C ) ,

a Re

g T T x u x
Gr = , = ,Re

C
Nr = ,

1 C T T

c D T T u
Nt = , Ec = ,

c T c T T









 




 


  



 

 

 

   

 

  

   

 
p Bnp 0

fp nf

c D C 2Q
Nb = , = ,

(n 1)a( c)c




  

B B

b
Sc = PrLn = , Pr = , Ln = , s = .

D D a

  



For engineering purpose, it is important to find a 

dimensionless expression for skin friction Cfx and 

local Nusselt number xNu which are defined

respectively as: 
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Using similarity variable, we got the following 

dimensionless form of skin friction and local 

Nusselt number:  
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Here, θ’(0) is wall temperature gradient and 

f”(0) is wall velocity gradient. 

SOLUTION METHODOLOGY 

For finding solution of equations (7) to (9) along 

with boundary constraints (10) we have used two 

different spectral approaches, i. e. successive 

linearization method [34] and spectral relaxation 

method [35], to avoid inaccuracy of results. 

Spectral methods take on a global approach to 

deal with the problem, i.e. the value of a derivative 

at a certain point in space depends on the solution 

at all the other points in space, and not just the 

neighbouring grid points. For this reason, spectral 

methods have excellent error properties with the so-

called "exponential convergence" being the fastest 

possible, when the solution is smooth. Spectral 

methods are distinguished not only by the 

fundamental type of the method (Galerkin 

collocation, Galerkin with numerical integration), 

but also by the particular choice of the trial 

functions. Due to this fact, spectral methods usually 

have a very high order of approximation. In fact, 

spectral methods were among the first to be used in 

practical flow simulations. Because of their 

simplicity, rapid convergence and high accuracy, 

we conclude that the SLM and SRM have great 

potential of being used in place of the traditional 

methods such as finite difference method, shooting 

technique along with Runge Kutta method, finite 

element method, etc., in solving nonlinear boundary 

value problems. 

SUCCESSIVE LINEARIZATION METHOD 

(SLM) 

For applying this technique, the functions f(η), 

θ(η), and ϕ(η) can be assumed as: 
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where functions f(η), θ(η), and ϕ(η) are unknown 

and Fw(η), ϴw(η), and Φw(η), are successive 

approximations. The next algorithm to use SLM is 

to choose initial guess, i.e:  
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Here 0F , w and 0 are the initial guesses that

satisfy boundary conditions for f ,   and  . The 

solutions of f(η), θ(η), and ϕ(η), after M iterations 

can be expressed as:  
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The Chebyshev spectral collocation scheme is 

utilized to obtain a solution of these linearised 

equations. This scheme uses those polynomials 

which are defined on [-1, 1] closed interval. So, for 

using this method we have to convert the domain 

[0,  ) to [-1, 1] with the help of the domain 

truncation methodology. In this method, the 

solution of the problem is obtained in the interval 

[0, 
*L  ] in place of [0,  ) by utilising the 

following transformation: 
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Here 
*L  is the scaling parameter. This 

parameter is very significant due to its use in 

implementing boundary conditions at infinity. Let 

P  be the number of collocation points and Gauss-

Lobatto collocation points method is used to 

discretize the domain [-1, 1] which is defined as 

follows: 
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Kth Chebyshev polynomial is defined as: 
* 1
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Here 
*S = 2D / L  where D  is a matrix called 

Chebyshev differentiation matrix and the entries of 

this matrix are as follows:  
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In this procedure, we get the following matrix 

equation:  
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In these equations, T shows transpose and k, j 1a  , 

k, j 1b  , k, j 1c  , k, j 1d   are diagonal matrices. I and O 

are identity matrix and zero matrix, respectively, of 

order (P+1)×(P+1). Ultimately, the solution is given 

by: 
1

j j 1 j 1X = A R .

 
(25)

OVERVIEW OF SPECTRAL RELAXATION 

METHOD (SRM) 

The brief explanation of SRM to solve the 

system of equations (7) to (9) with boundary 

conditions (10) is provided in this section. Gauss 

Seidel approach is utilized in this method to 

linearize and decouple a system of differential 

equations. We have denoted the current iteration 

label by (r+1) and the previous iteration which is 

assumed to be known is denoted by r. For applying 

SRM algorithm, we have assumed the following:  
'

r 1 r r 1f = p , f (0) = 0 
       (26) 

The linearised and decoupled form of equations 

(7) to (9) with boundary conditions (10) is given

by:

2

r 1 r 1 r 1 r 1 r

2

r 1 r 1

2M 2n
p '' f p ' p = p

n 1 n 1

2Ms 2 2n
( Nr ) s

n 1 n 1 n 1

   

 

  
 


    

  

    (27) 

' 2

r 1 r 1 r 1 r 1 r

' ' ' 2 2

r r r 1 r 1

1
'' f ' = Nt( )

Pr

2MEc
Nb Ec(p ) (p s)

n 1

   

 

      

    


     (28) 

r 1 r 1 r 1 r 1

Nt
'' Scf ' = ''

Nb
             (29) 

with the boundary conditions: 

     

 

   

 

r 1 r 1 r 1

r 1

r 1 r 1

r 1

p = 1, Nb ' Nt ' = 0,

= 1, at = 0,

p s, 0,

0, as .

  



 



      


   


     
    

      (30) 

To solve these decoupled equations, Chebyshev 

spectral collocation technique was used in which 

domain is transformed from the interval [0 L*] to [-

1 1], with suitable transformation where L* is 

scaling parameter. Equations (26) to (29) can be 

transformed as follows:  

1 r 1 1 2 r 1 2

3 r 1 3 4 r 1 4

A f = B , A p = B ,

A = B , A = B ,

 

  

where 

1

1 1 r

2

2 r 1

2

2 r

2

r 1 r 1

A = D , B = p ,

2M
A = D diag(f )D diag I,

n 1

2n 2Ms
B = p

n 1 n 1

2 2ns
( Nr ) ,

n 1 n 1



 

 
   

 

 
 


   

 
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 2

3 r 1

' 2 ' ' ' 2

3 r r r r 1

2

r 1

2 ''

4 r 1 4 r 1

A = diag(1/ Pr)D diag(f )D diag I,

B = Nt( ) Nb Ec(p )

2MEc
(p s) ,

n 1

Nt
A = D diag(Scf )D, B = .

Nb







 

  

     

 


  

Here Diag() and I are diagonal and identity 

matrices, respectively, of order (P+1)×(P+1), where 

P is the number of grid points. The initial guess that 

is chosen to solve equations (26) to (29) that 

satisfies boundary condition (30) is given by:  

0 0

0 0

f = 1 s s (1 s)e ,p = s (1 s)e ,

Nt
( ) = e , ( ) = e .

Nb

 

 

     

    

SOLUTION ERROR (SRM) 

The solution error method is used to check the 

convergence of the solutions. In this method, the 

norm of the difference of the solution at various 

iterations is calculated and if this value tends to 

very small then the method converges. The errors 

[36] in the solution of f ( ) , ( )  , and ( )   are

given as:

n 1 n 1

r 1 r

n 1 n 1

r 1 r

n 1 n 1

r 1 r

errorF= f f ,

errorT= ,

errorG= .

 

 

 

 

 

 



 

 

P P

P P

P P

The errors in the solutions are portrayed in Figs. 

1(b)-1(d). After fifty iterations we got the minimum 

error. 

VALIDATION OF APPROXIMATE SOLUTION 

To validate our results, we have compared skin 

friction and local Nusselt number for different input 

parameters via two different approaches, SLM and 

SRM which are presented in Tables 1 and 2.  

There is an excellent agreement between the 

results obtained by these schemes. In addition to it, 

a comparison of local Nusselt number between our 

results and those of Ishfaq et al. [37] was 

performed by nullifying extra parameters (see table 

3). Excellent agreement between them leads to 

approvement of the present solutions. 

Fig 1(b). Solution error for f ( )

Fig 1(c). Solution error for ( ) 

Fig 1(d). Solution error for θ(η). 
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Table 1. Values of skin friction and local Nusselt number for different flow parameters by SLM

M  Sc Nt Nb s 1/2

x xCf Re (SLM)
1/2

x xNu Re (SLM) CPU Time (Sec) 

1 1.15150341 -1.37468956 3.247 

3 0.88942638 -1.27033132 5.965 

5 0.65057101 -1.18196765 8.742 

0 -1.12725825 -1.09985601 3.321 

5 -0.02590419 -1.2873988 6.231 

10 1.01728621 -1.32014235 8.796 

1 1.02180356 -1.40933744 2.987 

2 1.01355207 -1.36085112 5.654 

4 1.02375922 -1.2854098 8.215 

0.1 0.9111903 -1.41121177 3.984 

0.2 1.01728621 -1.32014235 6.742 

0.3 1.12567155 -1.22570304 9.281 

0.1 1.12872826 -1.29920906 2.946 

0.2 1.01728621 -1.32014235 5.852 

0.3 0.97949569 -1.32637838 8.742 

0.5 1.01728621 -1.32014235 4.511 

1 2.13083584 -1.50721597 6.423 

1.5 3.71647164 -1.2249959 9.836 

Table 2. Values of skin friction and local Nusselt number for different flow parameters by SRM 

M  Sc Nt Nb s 1/2

x xCf Re (SRM)
1/2

x xNu Re (SRM) CPU Time (Sec) 

1 1.151512 -1.37463 4.852 

3 0.889423 -1.27035 7.499 

5 0.650573 -1.18198 10.842 

0 -1.127248 -1.09981 3.427 

5 -0.025904 -1.2873 6.732 

10 1.017285 -1.32017 9.537 

1 1.021802 -1.40931 5.632 

2 1.013553 -1.36082 8.432 

4 1.0237129 -1.2854 11.211 

0.1 0.91119 -1.41121 3.673 

0.2 1.017285 -1.32017 5.763 

0.3 1.125673 -1.22570 7.834 

0.1 1.128729 -1.29924 3.984 

0.2 1.017285 -1.32017 5.975 

0.3 0.979474 -1.32632 9.392 

0.5 1.017285 -1.32017 4.521 

1 2.130834 -1.50724 8.291 

1.5 3.716474 -1.2249 11.211 

Table 3. Comparison of local Nusselt number 
1/2

x xNu Re with Ishfaq et al. [37] when Nb = 0.1 and Sc = 10 

Nt Pr = 14.2 Pr = 21 

Present result (SLM) Ishfaq et al. [37] Present result (SLM) Ishfaq et al. [37] 

0.1 2.48347 2.4835 3.02857 3.0286 

0.2 2.18151 2.1815 2.61673 2.6167 

0.3 1.89587 1.8959 2.22533 2.2253 

0.4 1.63714 1.6371 1.87618 1.8762 

0.5 1.41258 1.4126 1.58418 1.5842 

RESULTS AND DISCUSSION 

The numerical computation of the present model 

is performed in this article by using two different 

schemes, i.e. SRM and SLM, for selected flow 

controlling parameters such as M , Nb , Ec , etc. 

For the current study default values of input 

parameters for numerical simulation are taken as M 

= 2, n = 1, λ = 10, Nr = 0.2, s = 0.5, Pr = 6.2, Nb = 

0.2, Nt = 0.2, Ec = 0.1, Sc = 3, and α = 0.2  until 

otherwise stated. In table 1 it is clearly depicted that 

parameters , Nt, s  have a tendency to enhance 

skin friction at the surface while parameters M  and 

Nb  have the reverse effect on it. The parameters 

M, Sc  and Nt  show a decreasing nature for local 
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Nusselt number but   and Nb  have tendency to 

enhance the rate of heat transfer in magnitude. 

The distribution of velocity with various flow 

controlling parameters is displayed in figures 1(e) 

to 1(h).  

Fig1(e). Velocity profiles for different values of s 

Fig 1(f). Velocity profiles for different values of M 

The velocity distribution for disparate values of 

the stagnation parameter along with the mixed 

convection parameter is portrayed in Fig. 1(e). It is 

suggested here that when a free stream is moving 

faster than the stretching velocity, i. e. s >1, the 

increment in s  increases velocity distribution and 

the same effect is observed in s <1 case. It is the 

main observing point here that in absence of a 

mixed convection parameter there is no boundary 

layer when stretching and free stream velocity are 

the same but in presence of mixed convection a 

boundary layer is observed to form and more 

precisely, the momentum boundary layer thickness 

tends to decrease as increment in s . 

This phenomenon is the sole contribution of 

buoyancy forces acting on the flow-field. The 

nature of velocity for different values of M and two 

different values of s  and   is revealed in Fig. 1(f). 

Fig 1(g).Velocity profiles for different values of Ec 

Fig 1(h).Velocity profiles for different values of Nr 

It is widely accepted that M has a tendency to 

slow down the velocity because Lorentz force 

behaves as a resistive force that retards the motion. 

But in the present situation there is a dual nature of 

velocity for two different values of s. When s >1, 

M acts as assisting parameter for flow while for 

s <1, M has a tendency to decrease the velocity. 

This event is due to the fact that when s >1 free 

stream velocity is dominant over stretching 

velocity. Tendency of M for s >1 is also reported 

in [38, 39]. Fig. 1(g) displays the velocity 

distribution for various values of Eckert number. It 

is concluded from the figure that increment in 

parameter Ec boosts the velocity and increases 

boundary layer thickness due to an increment in 

kinetic energy. The velocity behaviour for 

parameter Nr is depicted in Fig. 1(h) which 

indicates a dual behaviour of buoyancy ratio 

parameter on fluid velocity, i. e. near the sheet 

velocity distribution increases and as going away 

form sheet, it acts as opposing parameter for the 

flow. 

Figures 2(a) to 2(d) display the temperature 

distribution for various pertaining parameters. 
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Fig 2(a). Temperature profiles for different values of 

Ec. 

Fig 2(b). Temperature profiles for different values of 

Nb. 

Fig 2(c). Temperature profiles for different values of Nt. 

Fig 2(d). Temperature profiles for different values of α. 

It is interesting to note from Figs. 2(a)-2(d) that 

the thermal boundary layer is thinner in case of 

s >1 than that of s<1. Fig. 2(a) illustrates the 

temperature profiles for various values of Ec. It can 

be seen here that when s<1 or s>1, increasing 

behaviour of temperature profile is found with an 

increase in Eckert number. When s>1 a hump is 

found in the region near the sheet on increasing Ec, 

also fluid temperature approaches free stream value 

quicker for s>1. This influence of Ec  on the 

temperature profile is encountered due to the 

increasing nature of viscous and Joule dissipations. 

The tendency of viscous and Joule heating is to 

generate heat, which is due to friction between two 

adjacent electrically conducting fluid layers thereby 

increasing fluid temperature. Temperature 

distribution for different values of Brownian 

motion parameter is displayed in Fig. 2(b) which 

depicts the opposite nature of temperature towards 

Brownian motion parameter for s <1, but for s >1
Nb acts as assisting parameter for the temperature 

profile. Same behaviour of Nb for s <1 is also 

found by Halim et al. [40]. The behaviour of 

temperature distribution towards parameter Nt can 

be seen in Fig. 2(c). The fact which is visualized 

here is that parameter Nt acts as assisting parameter 

for temperature distribution and significant 

increment is found in thermal boundary layer 

width. Increment in Nt means increase in 

thermophoretic  phenomenon which is the particle 

analogous phenomenon. Therefore, nanoparticles 

transport thermal energy with increment in Nt due 

to collision of particles from hot surface into 

boundary layer, so increment in temperature is 

found. Fig. 2(d) displays the heat generation effect 

on the temperature profile which indicates that 

increment in temperature is found on increasing 

heat generation parameter. It is quite obvious that 

the heat source emits heat in the flow region, 

therefore, fluid temperature rises. 

Fig 2(e). Concentration profiles for different values of 

Ec. 
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Fig 2(f). Concentration profiles for different values of 

Nb.  

The concentration distribution for various values 

of input parameters is shown in Figs. 2(e) to 2(g). 

These profiles start with a negative value and after 

obtaining a positive peak they start approaching 

towards free stream. The numerical values of 

concentration are negative in the region close to the 

stretching sheet. This may be due to passive control 

of species concentration and it is dominant in the 

region close to sheet than that in the region away 

from the sheet within the concentration boundary 

layer.  

Fig 2(g). Concentration profiles for different values of 

Nt

Table 4. Error bound and quadratic regression coefficients for the estimated 
1/2

x xCf Re

s n Cf
1e 2e 3e 4e 5e 1т

0.5 
1 -0.89501 -0.24844 0.44092 0.02051 -0.00262 -0.01327 2.55E-05 

2 -0.91406 -0.11542 0.22577 0.00418 -0.00107 -0.00375 5.21E-06 

1.5 
1 1.75346 0.14461 0.37040 -0.00036 0.00013 -0.0146 5.87E-04 

2 1.74464 0.073601 0.19009 -0.00098 -0.00031 -0.00387 2.60E-04 

Fig. 2(e) presents the effect of parameter Ec on 

concentration distribution and it is visualised here 

that, when s <1 initial concentration decreases in 

magnitude and when s >1 initial increment in 

concentration is found but in both cases 

concentration profiles obtain a positive peak and 

finally tend to increase as approaching the free 

stream. This event is the contribution of increment 

in kinetic energy and reduction of nanoparticle 

migration as increment in Ec. Fig. 2(f) portrays the 

influence of Nb which indicates that enhancement 

in Nb tends to dilute concentration throughout the 

boundary layer because increment in Nb leads to 

increase the diffusion of nanoparticles inside the 

boundary layer. However, opposite impact of Nt 

can be seen from Fig. 2(g) because increment in Nt 

increases thermophoretic  phenomena, which leads 

to weaken the transport of nanoparticles near the 

sheet. These two figures also suggest that when 

s<1, this phenomenon is stronger than that when 

s>1.

A QUADRATIC MULTIPLE REGRESSION

MODEL 

In this section estimation of skin friction is 

performed with the help of quadratic regression 

model. For performing it on skin friction we have 

generated values of M and λ randomly from the set 

of 100 values that are taken from the interval [0.5 

2] and [0 10], respectively, while values of other

parameters are taken fixed. The approximated

quadratic regression model for xxCf Re  is given

as follows:
2 2

est 1 2 3 4 5Cf = Cf e M e e M e e M ,       (31) 

Following formula is used to find the maximum 

relative error:  

1 est= Cf Cf / Cf .  (32)

Table 4 presents the regression coefficients of 

this estimation along with the maximum relative 

error. It is visible from table 4 that whether free 

stream velocity is dominant over the stretching 

sheet or conversely, the regression coefficient of λ 

is greater than the regression coefficient of M 

which reflects that small variation in λ leads to 

larger perturbation in skin friction in comparison to 

M. It  is  also   interesting   to   note  that   when n

increases, the regression coefficients of both M and

λ decrease in magnitude.

CONCLUSION 

Throughout the present mathematical model of 

stagnation point nanofluid flow over stretching 

sheet, our main focus is to find flow controlling 

parameters effect on fluid velocity, concentration, 
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temperature along with skin friction and heat flux. 

The parameters s and Ec have tendency to enhance 

fluid velocity. Apart from it when s<1 the magnetic 

parameter shows the obvious result, i.e. decrement 

in velocity distribution but when s>1 the magnetic 

parameter acts as assisting parameter for fluid 

velocity. The parameter Nr enhances the velocity 

near the sheet but while approaching free stream it 

tends to decrease. Temperature distribution is 

enhanced due to increment in parameters Ec, Nt 

and α. The parameter Nb acts as assisting parameter 

for temperature for s>1 while for s<1, it acts as 

opposing parameter. Parameter Nb leads to dilute 

concentration throughout the boundary layer while 

thermophoretic  parameter increases it. 
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NOMENCLATURE 

a, b arbitrary constants s stagnation parameter 

B magnetic field, T T fluid temperature, K  

C nanoparticle volume fraction,
3kg / m sT fluid temperature at stretching sheet, K

xCf skin friction coefficient T
ambient fluid temperature, K

C ambient species concentration, 
3kg / m u

fluid velocity component in the x direction, 
1ms

pc  specific heat at a constant pressure, 
1 1J kg  K 

su stretching velocity,
1ms

BD  coefficient of Brownian diffusion u free stream fluid velocity, 
1ms

TD  coefficient of thermophoretic diffusion v
fluid velocity component in the y direction, 

1ms

Ec Eckert number x, y coordinate directions, m   

f stream function  heat generation parameter 

g
gravitational acceleration, 

2ms  nanofluid volumetric expansion coefficient, 
1K

k thermal conductivity, 
1 1Wm K  ( )  dimensionless temperature 

Sc Schmidt number 
dynamic viscosity, 

1 1kg m  s 

M magnetic parameter 
kinematic viscosity, 

2 1m s

Nb Brownian motion parameter
nf nanofluid density, 

3kg m

Nr buoyancy ratio parameter
nf nanofluid reference density, 

3kg m

Nt thermophoretic parameter
np density of nanoparticles, 

3kg m

xNu local Nusselt number 
p nf( c )  nanofluid heat capacity 

n constant 
p np( c ) nanoparticles heat capacity 

Pr Prandtl number 
electric conductivity, 

1S m

Q heat generation coefficient  mixed convection parameter

sq heat flux at the surface, 
2Wm

s surface shear stress 
2N m

xRe local Reynolds number ( )  dimensionless concentration 




