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Adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) were applied in modeling of 

methane mixed reforming in a packed bed catalytic reactor. These methods were developed by use of data collected 

from a methane reforming pilot plant using CO2 and steam and in process conditions near to MIDREX reforming plant 

in sponge Iron production. Different reaction temperatures from 700 to 1100 C with different values of carbon dioxide, 

steam, hydrogen, methane and carbon monoxide, were randomly selected and used to generate around 5000 data set of 

input- output data. Both networks achieve quite satisfying scientific results with acceptable deviations. However, it is 

hard to say which one is better as they have close output values but ANN marginally outperformed ANFIS in predicting 

the reaction outputs by varying the inputs. The prediction performances of these models are compared. The accuracies 

of the two models were evaluated in terms of square correlation coefficient (R2) and mean square error (MSE). 
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INTRODUCTION 

Natural gas reforming reaction is one of the 

most important processes in oil, gas, petrochemical 

and steel production plants. The main process in 

each application is to convert hydrocarbons, mainly 

methane, to syngas with different H2-to-CO ratios. 

For example the ratio in an ammonia plant should 

be higher than 4 and in a MIDREX plant it should 

be 1.5-2 [1-3]. Among the variety of methods for 

syngas production, reforming with steam and 

carbon dioxide is commonly used due to its higher 

efficiency and cost effectiveness compared with 

other competing processes. This reaction takes 

place in a tubular reactor filled of mostly nickel 

alloy catalyst at around 900-1100 oC via an 

extremely endothermic reaction. Besides these 

reactions, the probability for occurrence of some 

undesirable reactions like production of coke will 

be high if the process parameters are not fixed at 

the optimized ones and lead to formation of hot 

spot and rupture of reforming tubes [1].  

Main parameters for optimization of the process 

are: the composition of reactants which are methane, 

carbon dioxide, carbon monoxide, hydrogen, water 

and the temperature of the reaction zone. For 

finding the optimized region and controlling each 

parameter, developing a process model that 

describes the dynamic relations of inlet and outlet 

conditions is a must. Then this model can be used 

in a digital control system to predict the online 

behavior, return and keep the total system in 

optimized conditions [4-6]. 

Generally modeling methods are divided in two 

main groups: fundamental and empirical. The first 

group includes theoretical and mathematical 

relations and focuses on mass, energy and 

momentum balance and kinetics of reactions. Such 

methods are very useful in case of availability of 

mechanistic information. The second one includes 

data-driven models which can relate the input- 

output data in a dynamic mode via black box 

estimators. New digital control systems are mainly 

using an artificial intelligence based model which 

allows simulation and online prediction of system’s 

behavior by processing online or offline input- 

output databases. Among the empirical AI methods 

artificial neural network (ANN) and adaptive 

neuro-fuzzy inference systems are the most 

promising ones and are applied to many real world 

systems [4]. These two methods have been applied 

in many researches and were compared. In some 

cases ANN was more accurate than fuzzy inference 

systems and in some cases vice versa [7-19]. 

C. Ozel used these methods for estimation of the 

thermal conductivity coefficient of some materials 

and revealed that ANFIS has less RMSE than ANN 

and is more accurate [7]. Areerachakul has used 

these two methods for estimation of biochemical 

oxygen demand parameter in surface waters, and as 

a result ANN was more accurate than the ANFIS 

model [8]. In another study conducted by Chauhan, 

these models were used in a dynamic control model 

for basic oxygen furnace steel making process with 

a higher yield for the neuro-fuzzy model [11].  
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a method for modeling empirical relations of input 

(reactant composition and temperature) and output 

data (outlet compositions) from a pilot unit of a 

mixed reformer to use in online implemented 

control. ANN was used with BP algorithm and 

ANFIS by dividing data space into rule patches and 

the versatility, robustness and predictive accuracy 

of each method was compared. 

MODEL DEVELOPMENT 

Material and methods 

A pilot plant was built specifically to evaluate 

experimental data gathering of methane reforming 

with steam and carbon dioxide. The basic design of 

this pilot was scaled down from an industrial unit of 

DRI production using MIDREX technology. It 

essentially consists of a tubular reactor with 2” 

diameter and 2 m height, filled of three levels of 

catalysts, inert, semi-active and active with 

different percentage of nickel oxide. The reactor is 

fixed in a cubic electrical heater designed to reach 

1400 ˚C with three heating zones. Five temperature 

sensors (TT) were implemented on inlet, outlet and 

three sections of the heater for accurate control of 

the reaction temperature. Also five mass flow 

controllers (model: Alicat- MCR) for gas cylinder 

lines and one vortex flow meter (model: Yokogawa- 

DY015) on the steam line were used for accurate 

control of the reactant flow rates. This plant is 

schematically shown in Figure 1. 

Methane, steam, carbon dioxide, carbon 

monoxide, hydrogen and nitrogen were mixed and 

preheated up to around 500 ˚C through electrical 

heaters, and then the mixture flows to the reactor on 

three levels of catalysts. The reaction occurs at 

900-1100 oC and produced syngas is then cooled 

via a water condenser and then goes online through 

a gas chromatograph for composition analysis. The 

typical operational reaction conditions and catalyst 

properties in the MIDREX plant used in sizing of 

the equipment are reported in table 1. 

To know the whole process well and find out the 

contribution of each process parameter on outlet 

condition, a sufficient and most informative data set 

should be generated to learn the ANN and ANFIS 

structures, which could cover the whole data space 

in experimental conditions. Therefore, around 5000 

sets of randomly selected input data, comprising 

gas compositions from 0 to 3 Nm3/h and reaction 

temperature from 700 to 1100 ◦C, were used to 

generate the input-output dataset. 

Neural Network Modeling 

An artificial neural network (ANN) is composed 

of simple calculation nodes or neurons which are 

connected to each other and operate in a parallel 

manner just like the network of neurons in the 

human brain. Each neuron represents an activation 

function with its specific output. Figure 2 shows the 

basic structure of the ANN [20]. In brief the method 

will be applied in the project in five steps:  

(1) choosing proper input/output parameters; 

(2) splitting the data bank into training and 

testing sets;  

(3) creating a proper structure of neural network;  

(4) training and optimizing the network 

architecture and  

(5) performance analysis after being trained. 

A schematic view of the basic structure of ANN 

is depicted in Fig. 2 [21]. 

 
 

Fig. 1. Schematic diagram of the experimental system. 
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Figure 2. Basic structure of ANN 

Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

Another identification and modeling method 

is the adaptive neuro-fuzzy inference system 

(ANFIS) which is a neuro-fuzzy modeling 

technique that applies a hybrid learning algorithm 

combining back propagation (BP) and least 

square estimate (LSE) during the modeling 

process. Data-driven procedures for the 

construction of ANFIS networks are typically 

based on clustering a training set of numerical 

samples of the unknown function to be 

approximated [22]. 

Table 1. Reaction conditions in the MIDREX 

reformer. 

Catalyst parameters 

Type 
Particle size 

(mm) 
Porosity Sphericity 

Raschig 

ring 
16×6×16 0.52 0.656 

Tortuosity 

Loose 

density 

(3kg/m) 

Bed 

density 

)3(kg/m 

 

2.74 2390 1362  

Reaction conditions 

Pressure 

(bar g) 

Temperature 

C)o( 
CO2 % CO % 

2 900-1100 15.21 17.4 

H2 % H2O % % 2N CH4 % 

31.09 13.94 1.5-2 19.73 
 

Each layer in the network corresponds to a part 

of the fuzzy inference system (FIS) called: input 

fuzzification, rule inference and fire strength 

computation, and output defuzzification. The main 

advantage of this kind of representation is that the 

FIS parameters are encoded as weights in the neural 

network and, thus, can be optimized via powerful 

well-known neural network learning methods. 
This model is mostly suited to the modeling of 

nonlinear systems. Figure 3 shows a typical 

example of ANFIS architecture [22]. Each node in 

layer 1 is an adaptive node, with a node function 

that may be a Gaussian membership function or any 

other membership function. Each node in layer 2 

is a fixed node labeled π, representing the firing 

strength of each rule. Each node in layer 3 is a 

fixed node labeled N, representing the normalized 

firing strength of each rule. Each node in layer 4 is 

an adaptive node with a node function. The single 

node in layer 5 is a fixed node labeled Σ, indicating 

the overall output (Z) as the summation of all 

incoming signals [23]. 

ANFIS systems are often applied in conjunction 

with the Takagi-Sugeno (TSK) fuzzy system, its 

main purpose being to utilize fuzzy modeling using 

measured data. In the fuzzy TSK method, for a 

system bearing two input parameters X and Y each 

describing a membership function, are depicted in 

premise and consequent parts of Fig. 3(a). Where x 

and y are the input to node, i, p, q, and k are 

consequence parameters resulting from the training; 

and A and B are labels of the fuzzy linguistic set 

[24]. 

Modeling scenario 

Most of the time, data gathering techniques are 

well controlled, which results in outliers, missing 

values and different types of errors. Analyzing data 

that have not been carefully separated for these 

problems can produce confusing results. In order to 

avoid such problems, min-max normalization 

method was implemented to the gathered data 

before mathematical modeling.  

A multilayer perceptron feed-forward neural 

network with back-propagation algorithms was 

used to predict the reformer behavior and syngas 

produced. The considered learning rule and training 

function are Levenberg Marquardt and trainBR, 

respectively. A number of around 3461 data were 

utilized for training session. By using the trained 

structure and remaining experimental data, the 

model was tested and the difference between the 

real and model data was calculated. Among 

structures and configurations tested, 4 hidden layers 

predicted the best and nearest result to the actual 

conditions. The log sigmoid function was employed 

as an activation function and 872 numbers of 

epochs were considered to overcome the over- and 

underfitting of data
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Figure 3. Basic structure of ANFIS [24]. 

 

Table 2. ANN - ANFIS model properties 

ANN model structure ANFIS model structure 

Parameter Description Parameter Description 

Total layer 6 Total layer 6 

Hidden layer 4 Hidden layer 4 

Input layer 

neuron 
6 Type of MF Gaussian 

Output layer 5 Number of MF 6 

Learning rate 0.001 Type of output parameter Linear 

Epoch number 872 Epoch numbers  27-62 

Error goal 1e-5 Error goal 1e-5 

Similar numbers of training and test data were 

used for the ANFIS model and tuning of the 

membership function of each input was performed 

by the hybrid method of back propagation for input 

membership function and the least square 

estimation for the parameters output membership 

functions. The computations of the membership 

function parameters are facilitated by a gradient 

vector which provides a measure of how well the 

FIS system is modeling the input/output data. The 

comparative properties of each model are shown in 

table 2. 

As the most suitable method for training a 

neural network, the MATLAB-Simulink neural 

network function fitting was employed for the 

implementation of the ANN model. In contrast, the 

MATLAB command was also used to apply a fuzzy 

system into the forecasting model. Also the ANFIS 

Editor GUI applications enable the parameters of 

the membership functions to be automatically used. 

To analyse and evaluate the performance and 

proficiency of developed ANN and ANFIS methods 

in predicting the catalytic reformer two of most 

common error factors, R2, coefficient of 

determination, and MSE, mean square error, were 

selected and used in this work. Definition and 

formula of each method are denoted with the 

equations below: 

mod 2

2 1

2

1

( )
1 (1)

( )

N real el

i ii

N real real

i avi

Y Y
R

Y Y






 






 

mod 2

1

1
( ) (2)

N real el

i ii
MSE Y Y

N 
   

where N, Y(i)real, Y(i)model and Y(av.)model are 

number of data, real data, predicted value and 

average of real data, respectively. It should be noted 

that unlike R2 which being to 1 is desirable, MSE 

being close to zero is desirable and shows better 

performance of the developed model. 

SIMULATION RESULTS 

In the current study, two models of ANN and 

ANFIS were developed by estimation of the output 

parameters of the catalytic reformer, which are CH4, 

CO2, CO, H2, H2O composition, from input 
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parameters, which are normal flow rate of each of 

the above gases added by reaction temperatures. 

The same training and testing data sets were used to 

train and test both models to extract better 

conclusions from the comparison results. About 70 

percent of the datasets were used for training of the 

neural network. The error histogram plot for these 

data is shown in figure 4. This analysis can be an 

effective means for investigation and resolving the 

inconsistent networks performance. In this graph, 

blue, green and red bars represent the training, 

validation and testing data, respectively. As it is 

depicted, most of the data fall on the zero error line 

and there is a large central peak which indicates 

very small errors or outputs which are close to the 

target values. The performance indicators related to 

the training, test and validation of the ANN model 

including the R2 and MSE are reported in Table 3. 

A comparison between the real experimental and 

predicted data separately is presented and discussed 

in the following. In parallel the ANFIS model was 

also implemented for input/output datasets. 6 

numbers of FIS were generated. Genfis1 was used 

as the initial training of fuzzy sets. Training and 

testing process using ANFIS model were also done.  

 

Figure 4. Error histogram for the neural network 

Table 3. Performance of developed ANN network 

2R MSE Number of data  
1-9.99e 5-7.19e 3461 Training 
1-9.97e 4-1.83e 742 Validation 
1-9.99e 5-5.43e 742 Test 

Analysis of training - test in different epoch 

numbers was also done for each 5 different outputs 

in ANFIS models to find the best numbers of the 

epochs in each case. 

Figure 5 (a-e) depicts the RMSE-Epoch 

numbers for all outlets. In this graph the blue line 

refers to training sets and green line to testing sets. 

In Table 4 the performance of the developed ANFIS 

model including MSE and R2 is reported, which can 

be compared with Table 3.  

Table 4. Performance of developed ANFIS model 

2R MSE Number of data  
1-9.99e 5-5.54e 3461 Training 
1-9.67e 4-5.28e 742 Validation 
1-9.54e 4-6.68e 742 Test 

Figures 6-10 show the comparison graphs 

between predictions from the two networks, ANN 

and ANFIS against actual values obtained from the 

experiments. These sets of graphs are related to 

each outlet gas composition, respectively, methane, 

carbon monoxide, carbon dioxide, hydrogen and 

water and also each set comprised 4 sub-plots 

which show the comparative result of ANN with 

real data (a), related calculated error (b), 

comparative result of ANFIS with real data (c) and 

related calculated error (d). With regard to the huge 

number of input-output data, to have clearer plots, 

the first 200 data were considered and compared to 

each other. 
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Figure 5. Test/ Train performance for ANFIS model in predicting each output and finding number of epochs. (a) CH4, 

(b) CO, (c) CO2, (d) H2, (e) H2O 

  

 
 

Figure 6. Comparative results for prediction performance of outlet methane composition using ANN (a,b), ANFIS 

(c,d) and real data 

As can be seen in these graphs, there is excellent 

agreement between the predicted results by both 

ANN and ANFIS with real datasets from 

experimental setup. It is obvious that the ANN and 

ANFIS both fit and follow the real data diagram in 

a consistent way. Also the error plot shows the 

(c) 
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deviation more clearly which means that all of them 

are in an acceptable range for both approaches.  

Based on the two criteria mentioned above, R2 

and MSE for the developed model, reported in 

tables 3 and 4, it is obvious that, although R2 values 

for both models are sufficiently near to 1, for ANN 

the situation is better, moreover this observation 

can be proven by checking the MSE. Although the 

values of both are near to zero and both model 

outputs follow the trend of the actual ones, for 

ANN the values are more close to zero and so, 

ANN is more favorable. Despite some of its general 

demerits, like overfitting problems, high processing 

time, etc., in this special case utilizing the fuzzy 

logic beside the neural network did not make any 

added value and forward movement.

  

  
Figure 7. Comparative results for prediction performance of outlet CO composition using ANN (a,b), ANFIS 

(c,d) and real data. 

 

 

(c) 
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Figure 8. Comparative results for prediction performance of outlet CO2 composition using ANN (a,b), ANFIS (c,d) 

and real data 

  

 

 
Figure 9. Comparative results for prediction performance of outlet hydrogen composition using ANN (a,b), ANFIS 

(c) 

(c) 
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(c,d) and real data 

 

  

 
 

Figure 10. Comparative results for prediction performance of outlet H2O composition using ANN (a,b), ANFIS (c,d) and 

real data 

CONCLUSIONS 

Due to the importance of methane catalytic 

reforming for producing syngas in different 

industries, especially in DRI plants, which this 

study is focused on, for producing sponge iron, a 

pilot plant with the design of a MIDREX reformer 

was constructed. At different inlet gas flow rates 

and temperatures, around 5000 data were tested and 

their outlet data including gas compositions were 

acquired in an input- output databank. Two smart 

approaches, ANN and ANFIS were utilized for 

prediction of the outlet parameters from each inlet 

data. The predicted data were then compared with 

real data from the experimental ones. As to the 

result, both models followed the trend of real data 

with an acceptable accuracy and their R2 and MSE 

values were sufficiently near to 1 and zero, 

respectively. But as to these values calculated for 

each case, the maximum error of the ANN model 

was around 0.3 and this value for the ANFIS model 

was around 0.5, so the ANN model was more 

favorable and had more accurate data in 

comparison to addition of fuzzy system to it.  
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