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Organophosphorus compounds are often used as pesticides and they are known as major environmentally hazardous 

chemicals. Conformational analysis and geometry optimizations of all  organophosphorus compounds were carried out 

to determine the most stable structures. Modeling of the molecules was performed with DFT at B3LYP/6-31G* level. 

The solvation effects were computed using CPCM as the solvation model. A quantitative structure-activity relationship 

(QSAR) study was performed to correlate the toxicity of the organophosphorus compounds with calculated molecular 

descriptors by multilinear regression. The QSAR equations were validated internally and externally. The correlation 

coefficient (R2) and cross-validation correlation coefficient (R2
CV) were 0.9422 and 0.9192, respectively. These results 

show that the QSAR equations have both favourable estimation stability and good prediction power. 

Keywords: DFT, toxicity, molecular descriptors, solvent effect. 

INTRODUCTION 

Organophosphorus compounds (OPs) are often 

used as pesticides, as insecticides and as warfare 

agents [1,2]. Organophosphorus compounds are 

known as major environmentally hazardous 

chemicals. It is estimated that only 5% of the 

consumed pesticides reach the target pest, the rest is 

dispersed into the environment. The increasing use 

over time is significantly enhancing the risks of 

environmental contamination of groundwater, food, 

plants, water resources and human beings [1,3-5]. 

Organophosphorus compounds are highly toxic and 

show their acute toxic effects by inhibiting the 

enzyme acethylcholinesterase (AChE). This 

inhibition leads to paralysis and even death. 

Different studies have shown that pesticide 

exposure is associated to adverse health effects 

such as depression, memory disorders, respiratory 

problems, dermal damage, neurological deficit, 

miscarriages, birth deformities and cancer [4,6,7].  

There is a need for evaluating the potential 

hazard of these pesticides but traditional 

experimental investigations are often extremely 

time-consuming and expensive. One practical 

alternative would be to predict these toxic effects 

by using quantitative structure-activity relationships 

(QSARs) or quantitative structure-toxicity 

relationships (QSTRs) [8,9]. QSAR studies have 

been developed to assess the amount of toxicity for 

different chemicals from their molecular structure 

point of view. In development of QSAR, the 

descriptors fall into three classes: (i) physical or 

physicochemical properties (ii) quantum chemical 

descriptors  and (iii) topological descriptors. These 

descriptors are found to be useful because they help 

to characterize the electronic environment of a 

molecule [10,11].  

Quantum-chemical descriptors have become 

quite popular recently and are widely used due to 

the reliability and accuracy, as well as capability to 

characterize the electronic properties of the 

molecule. Among the variety of computational 

approaches, density functional theory (DFT) is one 

of the most commonly used. The conceptual 

density functional theory has been exploited in 

various occasions to understand the chemical 

reactivity and site selectivity [1,12]. Several studies 

have been performed for the toxicity of 

organophosphates and organothiophosphates 

against different aquatic organisms. Many models 

have been derived for OPs with topological indices 

[1,2,5,13] and some of them derived with the 

logarithm of the octanol-water partition coefficient 

or some other physical properties [9, 13-18]. The 

models mentioned can be used to explain the 

toxicity of organophosphate and 

organothiophosphate pesticides.  

However, the toxicity studies of OPs need to be 

improved because these molecules are hazardous 

for the environment. The aim of this work was to 

develop QSAR models to find suitable molecular 

descriptors to predict the toxicity of OPs. For this 

purpose various molecular descriptors such as 

hardness (), energy of the highest occupied 

molecular orbital (EHOMO), dipole moment (D) and 

charge of phosphorus atom (Pch) were calculated. 

The relationships between the experimental rat oral 

lethal dose (LD50) of the molecules and the 

calculated descriptors were examined through 

multilinear regression in order to determine the best 
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descriptor of the toxicity of the molecule. In order 

to determine both the stability and predictive power 

of QSAR models, leave-one-out cross-validation 

and external validation were performed on the 

developed models.  

The general chemical structure of OPs is shown 

in Fig. 1 where R are methyl or ethyl groups and X 

- leaving groups such as alkyl, heterocyclic, etc.

The optimized geometries of the OP molecules in

this study are given in Figs. 2 and 3.

Figure 1. General structure of OPs. 

Figure 2. Optimized structure of training set (gray, carbon; red, oxygen; blue, nitrogen; orange, phosphorus; yellow, 

sulphur; blue, nitrogen; green, chlorine; white, hydrogen) 
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Figure 3. Optimized structure of the test set. 

Table 1. Calculated molecular descriptors, η (au), EHOMO (au), D (Debye) , Pcharge 

and experimental LD50 (mg/kg) for OP compounds. 

η EHOMO D Pcharge LD50 

OP 1 0.1827 -0.3010 2.7848 1.0072 3283 

OP 2 0.1801 -0.2963 2.6548 1.1150 8210 

OP 3 0.1752 -0.2885 2.5056 1.1482 1900 

OP 4 0.1753 -0.3031 0.9631 1.1951 1095 

OP 5 0.1807 -0.2987 5.2988 1.0235 4350 

OP 6 0.1809 -0.2936 2.8593 1.1134 800 

OP 7 0.1789 -0.2899 2.7453 1.1263 2330 

OP 8 0.1757 -0.2984 4.7914 1.2348 1600 

OP 9 0.1735 -0.2852 2.8630 1.1304 984 

OP 10 0.1082 -0.2619 3.7891 1.2534 6.3 

OP 11 0.1088 -0.2512 5.9621 1.2434 18.3 

OP 12 0.1063 -0.2389 6.2476 1.2504 18.8 

OP 13 0.1018 -0.2449 4.6495 1.2618 2 

OP 14 0.1229 -0.2539 5.3691 1.0833 22 

OP 15 0.1142 -0.2346 4.9309 1.0799 20 

OP 16 0.1073 -0.2582 4.8449 1.1762 51 

OP 17 0.1022 -0.1999 5.4711 1.0635 3.3 

OP 18 0.1047 -0.2647 2.9489 1.1851 4.7 

OP 19 0.1059 -0.2585 8.2244 1.1866 8.9 

OP 20 0.1074 -0.2568 4.7903 1.1761 8.9 

OP21 0.1055 -0.2494 3.7317 1.2874 10 

OP22 0.1209 -0.2495 3.4911 1.2067 17 

OP23 0.1123 -0.2603 2.9430 0.7863 7 

OP24 0.1043 -0.2464 5.9263 0.7924 6.8 

OP25 0.1052 -0.2467 7.8190 1.0026 13 

Table 2. Statistical  parameters for model equations 

No Equations R R2
2
adjR SD F 

1 log LD50 = - 2.70314 + 0.20416 Pch + 32.53254  0.9696 0.9402 0.9327 0.3106 125.7278 

2 log LD50 = - 3.13745 – 3.1370 EHOMO + 31.08450  0.9688 0.9386 0.9314 0.3237 129.9486 

3 log LD50 = -3.13491 + 0.06483 D + 35.14140  0.9707 0.9422 0.9354 0.3141 138.4956 
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MATERIALS AND METHODS 

Computational method 

Computational studies were carried out using 

the Gaussian 03 software suite [19]. The molecular 

structures of 25 OPs were optimized using Density 

Functional Theory (DFT) with the three-parameter 

Becke–Lee–Yang–Parr (B3LYP) exchange-

correlation functional at 6-31G (d) level. The force 

constants and vibrational frequencies of the 

molecules were determined after optimizing their 

geometries to ensure that they are minimal on the 

potential energy surface. The molecular descriptors 

were calculated from the orbital energies of the 

optimized geometries. The conductor-like 

polarizable continuum model (CPCM) was used to 

model solvent effects. The solvent was water at 

25oC, with dielectric constant ε = 78.39 [20].  

Density functional theory was used extensively 

to calculate molecular properties of environmental 

organic pollutants [21]. In this study we calculated 

the global descriptor, namely hardness (), for the 

toxicity predicting of OPs. According to the DFT, 

hardness, , is defined as [22]: 
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where E is the total energy of the system, N is 

the number of electrons in the system, and (r) is 

the external potential.  

Hardness is calculated by using Koopmans’ 

theorem [22]: 

2

HOMOLUMO EE 
    (2) 

where ELUMO is the energy of the lowest 

unoccupied molecular orbital and EHOMO is the 

energy of the highest occupied molecular orbital.  

All calculated descriptors such as hardness, 

energy of the highest occupied molecular orbital, 

dipol moment and charge of phosphorus atom, are 

listed in Table 1 for aqueous medium. 

Data sources 

The QSAR models presented in this paper were 

developed on 25 OP compounds. These compounds 

were divided into two groups: 20 OPs for the 

training set (OP1-OP20) given in Fig. 2 and 5 OPs 

for the test set (OP21-OP25) given in Fig. 3. 

The toxicity of each compound was qualified in 

terms of LD50 (mg/kg). LD stands for “Lethal 

Dose”. The value of LD50 for a substance is the 

dose requir ed to kill half the members of a tested 

population after a specified test duration. LD50 is 

frequently used as a general indicator for acute 

toxicity. The experimental rat oral LD50 values 

obtained from the literature are presented in Table 1 

[23]. 

Statistical analysis 

A QSAR model is a mathematical relationship 

between the chemical’s quantitative molecular 

descriptors and its toxicological, biological, and 

physicochemical activities [24]. Multilinear 

regression is a common method used in QSAR 

studies. The multilinear regression is a statistical 

method used to find a relation between one 

dependent variable and several independent 

variables. This relation can be expressed as: 

Y = A xj + Byj + Czj +…+ D 

where A,B,C are regression coefficients and D is 

the intercept obtained through regression analysis, 

where xj, yj and zj are the quantum chemical 

descriptors for the molecule J as independent 

variables. Y, as dependent variable, represents the 

expected values by the regression model. 

The statistical qualities of the regression 

equations were judged by parameters such as R2 

(correlation coefficient), R2
adj (adjusted correlation 

coefficient), F value (Fischer statistics) and SD 

value (standard deviation). Testing the stability, 

predictive power and generalization ability of the 

models is a very important step in QSAR study. As 

for the validation of predictive power of a QSAR 

model, two basic principles (internal validation and 

external validation) are available. The cross-

validation is one of the most popular methods for 

internal validation. In this paper, the stability and 

prediction ability of models were examined by 

using leave-one-out (LOO) cross-validation. Cross- 

validation provides the values of PRESS 

(Predictive Residual Error Sum of Squares), SSY 

(Sum of squares of deviation of the experimental 

values from their mean) and R2
CV  coefficient 

(Cross-validation correlation coefficient) which can 

test the predictive power of the proposed model 

[25]. 

RESULTS AND DISCUSSION 

QSAR analysis 

This study was carried out for some 25 OP 

compounds in order to determine a quantitative 

structure–activity relationship between the 

molecular descriptors and the rat oral LD50 toxicity 

values. Regression analyses were performed using 

the experimental toxicity log LD50 as the dependent 

variable and the DFT-based descriptors, namely 

hardness (), highest occupied molecular orbital 

energy (EHOMO), dipole moment (D) and charge of 

phosphorus atom (Pch) as the independent variables. 
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Twenty training compounds (OP1-OP20) were used 

for all model equations. 

Table 3. Cross-validation parameters for the model 

equations. 

With the intention of finding certain molecular 

descriptors in order to determine the toxicity of 

OPs, we derived model equations by forward 

stepwise regression analysis. Among the several 

models generated, the three best two-parameter 

models were selected and they are listed in Table 2. 

The selection was based on the following 

mentioned statistically parameters. Generally, the 

higher R2 and the higher F value indicate that the 

model is reliable. It is commonly assumed that a 

robust and reliable correlation is indicated by R2 ≥ 

0.75 and SD ≤0.5 [26]. As seen in Table 2, the 

derived model equations are statistically reliable, 

the correlation coeffients were found to be good 

(0.9386 – 0.9422) and the standard deviations were 

below 0.33. According to the model equations, 

dipole moment, charge of phosphorus atom and 

hardness positively affected toxicity; in contrast, 

the energy of the highest occupied molecular orbital 

had a negative correlation. In the derived model 

equations, the greatest value of regression 

coefficient was for hardness, it played a dominant 

role in the toxicity of OPs. 

Validation of the QSAR models 

In order to confirm that the models with 

excellent statistics have excellent predictive power 

too, we evaluated cross-validation parameters for 

model equations. Calculated cross-validation results 

are presented in Table 3 and results indicate that all 

models proposed were significant. The cross- 

validation was performed using the leave-one-out 

method (LOO) in which one compound is removed 

from the training set and the toxicity is correlated 

using the rest of the training set. Cross-validation 

provides the values of PRESS, SSY, PRESS/SSY 

and R2
CV which we can use to test the prediction 

power of the model equation. PRESS is a good 

estimate of the real prediction error of the model 

equations. If PRESS is smaller than the SSY the 

model is considered to be statistically significant. In 

a reasonable QSAR model PRESS/SSY should be 

smaller than 0.4 and R2
CV should be bigger than 0.5 

[25]. In our results, good cross-validation R2
CV was 

obtained for the models. As seen in Table 3, cross-

validation correlation coefficient R2
CV values range 

from 0.9145 to 0.9192. The ratio PRESS/SSY 

ranges between 0.0808 – 0.0855 indicating that all 

proposed models are reliable. 

Finally, in order to confirm our findings, the 

toxicity of the OPs predicted log LD50 by model 

equations was compared with corresponding 

observed log LD50 values. These comparisons are 

shown in Table 4. As is seen in the table, the 

predicted toxicity values agree with the 

experimental ones. The residual is the difference 

between observed and predicted log LD50. The two 

numeric values are close enough to each other. The 

plot between the predicted and the observed 

toxicity values of OP compounds is shown in Fig. 

4. The predictive ability of the QSAR models was

also evaluated by external validation. The external

validation results are given in Table 4. As seen in

the table, the two numeric values (observed and

predicted) are close to each other. This shows that

the equations have excellent determining capability

of the OP compounds toxicity.

Toxicity interpretation by QSAR analysis 

Based on the QSAR equations, the main 

descriptors that could impact the toxicity of OPs 

were , EHOMO, D and Pch. Hardness is a measure of 

the stability of the molecule. According to the 

maximum hardness principle (MHP) molecules 

arrange themselves so as to be as hard as possible 

[22]. Therefore, stable molecules are likely to be 

harder than less stable molecules and thus they 

have low reactivities. Hardness is the most 

important descriptor for the toxicity of OPs, as 

mentioned above. The positive coefficient of 

hardness demonstrated that the toxicity increases 

with hardness. EHOMO was negatively correlated 

with the toxicity which could be seen in equation 2. 

EHOMO is the electronic energy identical to the 

corresponding negative value of the ionization 

potential which can be used to measure the 

donating electron ability [22]. EHOMO models the 

nucleophilic nature of the OPs which is important 

for their reaction with the active site of AChE [14]. 

Atomic charges are often used as an important 

concept and describe electronic aspects both of the 

whole molecule and of particular regions or 

fragments. They are often used in QSAR studies as 

descriptors [1,5]. In this study, the charge on the 

phosphorus atom is particularly important, because 

it is related with the toxicity of the OPs. The 

Mulliken charge analysis of the OP compounds 

shows that the increase in the positive charge on the 

phosphorus atom in a molecule leads to an increase 

in toxicity in most of the OP compounds. Fig. 5 

shows the molecular electrostatic potential (MEP) 

PRESS SSY

PRESS
2
CVR

Equation 1 2.0466 0.0835 0.9165 

Equation 2 2.4796 0.0855 0.9145 

Equation 3 2.3441 0.0808 0.9192 
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plot for OP12, OP14 and OP19. In the MEP plot, 

blue and green colors show positive electrostatic 

potential whereas red color shows negative 

electrostatic potential. As can be seen in Fig. 5, 

positive electrostatic charge regions belong to 

phosphorus and hydrogen atoms. Negative 

electrostatic charge regions represent oxygen 

atoms. In the electrostatic potential map, the 

phosphorus atom is in the centre of negative and 

positive charge separation. So inhibition reaction 

occurs at this center and X is the leaving group 

shown in Fig. 1. The inhibition is a nucleophilic 

substitution which replaces the X group with the 

hydroxyl group of serine in the active site of AChE 

[14,27]. Overall, the toxic effect of OPs is mostly 

related with electronic descriptors as , EHOMO, D 

and Pch which show that electron exchange occurs 

between OPs and biological molecules. 

Table 4. Predicted and observed log LD50 of OPs from model equations 

exp50log LD Eq.1 Residual Eq.2 Residual Eq.3 Residual 

OP 1 3.5163 3.4462 0.0701 3.4859 0.0304 3.4660 0.0503 

OP 2 3.9143 3.3836 0.5307 3.3904 0.5239 3.3662 0.5481 

OP 3 3.2788 3.2310 0.0478 3.2136 0.0652 3,1843 0.0945 

OP 4 3.0394 3.2438 -0.2044 3.2625 -0.2231 3.0878 -0.0484

OP 5 3.6385 3.3844 0.2541 3.4165 0.2220 3.5587 0.0798

OP 6 2.9031 3.4093 -0.5062 3.4068 -0.5037 3.4075 -0.5044

OP 7 3.3674 3,3469 0.0205 3.3330 0.0344 3.3299 0.0375

OP 8 3.2041 3.2649 -0.0608 3.2602 -0.0561 3.3501 -0.1460

OP 9 2.9930 3.1720 -0.1790 3.1504 -0.1574 3,1477 -0.1547

OP 10 0.7993 1.0728 -0.2735 1.0475 -0.2482 0.9130 -0.1137

OP 11 1.2625 1.0903 0.1722 1.0326 0.2299 1.0750 0.1875

OP 12 1.2742 1.0104 0.2638 0.9163 0.3579 1.0057 0.2685

OP 13 0.3010 0.8663 -0.5653 0.7952 -0.4942 0.7439 -0.4429

OP 14 1.3424 1.5163 -0.1739 1.4793 -0.1369 1.5320 -0.1896

OP 15 1.3010 1.2325 0.0685 1.1483 0.1527 1.1979 0.1031

OP 16 1.7076 1.0277 0.6799 1.0079 0.6997 0.9499 0.7577

OP 17 0.5185 0.8388 -0.3203 0.6665 -0.1480 0.8112 -0.2927

OP 18 0.6721 0,9450 -0.2729 0.9475 -0.2754 0.7356 -0.0635

OP 19 0.9494 0.9843 -0.0349 0.9653 -0.0159 1.1198 -0.1704

OP 20 0.9494 1.0310 -0,0816 1.0066 -0,0572 0.9498 -0.0004

OP21 1.0000 0.9919 0.0081 0.9243 0,0757 0.8144 0.1856

OP22 1.2304 1.4764 -0.2460 1.4033 -0.1729 1.3400 -0.1096

OP23 0.8451 1.1108 -0.2657 1.1699 -0.3248 1.0023 -0.1572

OP24 0.8325 0.8518 -0.0193 0.8776 -0.0451 0.9145 -0.0820

OP25 1.1139 0.9240 0.1900 0.9065 0.2074 1.0689 0.0451

Figure 4. Comparison between the predicted and observed log LD50 values of OPs 
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Figure 5. Molecular electrostatical potential representation of  selected OPs 

CONCLUSIONS 

QSAR analysis was performed in this work for 

selected OPs on their oral toxicity to rats using 

quantum chemical descriptors. The usefulness of 

descriptors in the development of QSAR analysis 

was clarified by statistical analysis. The derived 

model equations were statistically significant and 

can be used for prediction purposes; they may be 

helpful for a better understanding of the toxicity of 

this class of compounds. It could be concluded that 

hardness, dipole moment, highest occupied 

molecular orbital energy and charge of phosphorus 

atom can be used as descriptors in the prediction of 

the toxicity of OPs. Due to the success of the 

developed regression model, it may be utilized to 

predict the toxicity of other OPs whose 

experimental toxicity data are not available.  
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