Contents

Structure of 6-acetyl teucrin F (1)	pg. 2
¹ H and ¹³ C NMR data, ¹ H- ¹ H COSY, HMBC and NOESY correlations for (1)	pg. 3
Parts of the ¹ H NMR spectrum of teuscordesin (1)	pg. 4
¹ H-broadband-decoupled ¹³ C NMR spectrum of (1)	pg. 5
DEPT 135° ¹³ C NMR spectrum of (1)	pg. 5
HSQC spectrum of (1)	pg. 6
COSY spectrum of (1)	pg. 6
HMBC spectrum of (1)	pg. 7
NOESY spectrum of (1)	pg. 7
IR spectrum of (1)	pg. 8
HRESIMS spectrum of (1)	pg. 8
Structure of teucrin E acetate (2)	pg. 9
¹ H and ¹³ C NMR data, ¹ H- ¹ H COSY, HMBC and NOESY correlations for (2)	pg. 10
Parts of the ¹ H NMR spectrum of (2)	pg. 11
¹ H-broadband-decoupled ¹³ C NMR spectrum of (2)	pg. 12
DEPT 135° ¹³ C NMR spectrum of (2)	pg. 12
HSQC spectrum of (2)	pg. 13
COSY spectrum of (2)	pg. 13
The HMBC spectrum of (2)	pg. 14
The NOESY spectrum of (2)	pg. 14
IR spectrum of (2).	pg. 15
HRESIMS spectrum of (2)	pg. 15
Structure of teuscordesin (3)	pg. 16
¹ H and ¹³ C NMR data, ¹ H- ¹ H COSY, HMBC and NOESY correlations for (3)	pg. 17
Parts of the ¹ H NMR spectrum of (3)	pg. 18
¹ H-broadband-decoupled ¹³ C NMR spectrum of (3)	pg. 19
The DEPT 1350 13C NMR spectrum of (3)	pg. 19
The HSOC spectrum of (3).	pg. 20
The COSY spectrum of (3)	pg. 20
The HMBC spectrum of (3).	pg. 21
The NOESY spectrum of (3)	pg. 21
IR spectrum of (3).	pg. 22
HRESIMS spectrum of (3).	pg. 22

Figure 1. Structure of 6-acetyl teucrin F (1)

position	δ^{13} C, nH	δ^{1} H	m, J (in Hz)	¹ H- ¹ H COSY	HMBC	NOESY
		2.085	m	2, 3	_	2, 19b
1	25.19, CH ₂	2.589	m ^c	2, 3	3, 4, 5, 6, 9, 11, 20	2, 12
2	129.85, CH	6.098	ddd, 10.0, 5.3, 2.2	$1\alpha, 1\beta, 3,$	-	$1\alpha, 1\beta, 3$
3	125.56, CH	5.547	ddd, 9.9, 2.8, 1.4	$1\alpha, 1\beta, 2$	-	2
4	75.85, C	-	-	-	-	-
5	47.84, C	-	-	-	-	-
6	68.04, CH	5.411 (α)	dd, 4.0, 2.1	7β , 1β	$3, 6^1, 8, 10$	7α, 7β, 19a
7	21.94 CH	2. 343 (α)	ddd, 14.8, 12.7, 2.0	6, 7 <i>β</i> , 8	8	6α, 17, 19a
1	$51.64, CH_2$	1.694 (β)	dt, 14.9; 4.0	7α	5, 6, 8, 9, 17	6α, 7α, 8β, 17
8	32.88, CH	2.179-2.095	m	7β, 17	20	7β, 11β, 17
9	51.57, C	-	-	-	-	-
10	37.23, CH	2.653-2.596	m	1, 2	1, 3, 4, 5, 9, 11 ^b , 20	-
11	42.57, CH ₂	2.570 A	dd, 14.3, 8.6	11 <i>β</i> ,12	8, 9, 10, 12, 13, 20	12
11		2.474 B	dd, 14.2, 8.9	11α	7, 8, 9, 12, 13	8 <i>β</i> , 14, 16, 17
12	72.21, CH	5.427	d, 9.0	11α	11, 13, 14, 16	1 <i>β</i> , 11 <i>α</i> , 14, 16
13	124.59, C	-	-	-	-	-
14	107.98, CH	6.406	dd, 1.8; 0.8	15 or 16	13, 15, 16	11 <i>β</i> , 12, 15, 17
15	144.33, CH	7.459	t, 1.8	12, 14, 16	16	11 <i>β</i> , 14
16	139.62, CH	7.477	dt, 1.7; 0.9	14, 15	13, 14, 15	11 <i>β</i> , 12, 17
17	16.44, CH ₃	1.004	d, 6.8	8, 7α	6, 8, 9	7α, 7β, 8, 11β, 14, 16
18	176.04, C	-	-	-	-	-
19	68.99, CH ₂	4.536 B ^b	d, 11.3	19b	4, 6, 9, 18	6, 7α
		4.118 A	d, 11.3	19a	6, 9, 10, 18	1α
20	177.51, C	-	-	-	-	-
$6^{1}(C = O)$	170.15, C	-	-	-	-	-
6 ² (CH3)	21.48, CH ₃	2.041	S	-	$6, 6^1$	

Table 1. ¹H and ¹³C NMR spectral data, ¹H-¹H COSY, HMBC and NOESY correlations for 6-acetyl teucrin F (1) [600.13 MHz (¹H) and 150.903 MHz (¹³C)]^a

^a CDCl₃, ¹H 600.13 MHz, δ_{ref} 7.26; ¹³C 150.9 MHz, δ_{ref} 77.0 ppm, TMS as an internal standard; ^b endo hydrogen with respect to ring B; ^c δ_{H} data from HSQC; ov – overlapped signal.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 2. Part of the ¹H NMR spectrum of 6-acetyl teucrin F (1)

Figure 3. Part of the ¹H NMR spectrum of 6-acetyl teucrin F (1)

Figure 4. The ¹H-broadband-decoupled ¹³C NMR spectrum of 6-acetyl teucrin F (1)

Figure 5. The DEPT 135° ¹³C NMR spectrum of 6-acetyl teucrin F (1)

Figure 6. The HSQC spectrum of 6-acetyl teucrin F (1). The resonances denoted in blue are negative and are for CH_2 groups.

Figure 7. The COSY spectrum of teuscordesin A.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 8. The HMBC spectrum of 1.

Figure 9. The NOESY spectrum of 1.

Figure 10. IR spectrum of 1.

IR

sp

Flovdi

File path : D:\My_Documents\IR_spectra\Curre

[PITsA_pos_full_MS_tune_pos_01_05_15_cid10.RAW] scan #1

Figure 11. HRESIMS spectrum of 1.

Figure 12. Structure of teucrin E acetate (2)

position	δ^{13} C, nH	δ^{1} H	m, J (in Hz)	¹ H- ¹ H COSY	HMBC	NOESY
		1.57 (α)	m ^c	2α, 3β	2	19b
1	25.0, CH ₂	2.06 (<i>β</i>)	ov m ^c	$1\alpha, 2\beta, 3\alpha, 3\beta, 8, 10$	2, 4, 5, 20	2β , 11α
2	22.5 CH	2.03 (a)	ov ^c	$1\alpha, 3\alpha, 3\beta, 4, 10$	-	3α
Z	$22.3, CH_2$	1.51 (β)	m ^c	1 <i>β</i> , 3 <i>β</i> ,10	3	$1\beta, 10\beta, 3\beta, 4\beta$
2	02 1 CH	1.45 (α)	m ^c	1β , 2α , 3β	-	2α, 19b
3	$25.1, CH_2$	1.90 (β)	m ^c	1α , 1β , 2α , 2β , 3α	-	2β
4	46.01, CH	2.18 (<i>β</i>)	br s	2α, 6, 10, 19A	3, 6	2 <i>β</i> , 6 <i>β</i> , 10 <i>β</i>
5	45.98, C	-	-	-	-	-
6	78.3, CH	4.75 (β)	dd, 12.1; 3.8	4, 7α, 7β, 8	4, 6 ¹ , 7, 19	4β, 8β, 10β
-	31.8, CH ₂	1.81 (<i>α</i>)	ov	6, 8	5, 17, 19, 20	19a, 6^2 , 17
1		2.20 (β)	dt, 13.1; 3.8	6	5, 6, 8, 9, 10, 17, 18	
8	47.4, CH	1.80 (β)	ov	6, 7α, 17	5, 6, 9, 10, 17, 19	6, 11 <i>β</i>
9	50.9, C	-	-	-	-	-
10	38.0, CH	1.80 (<i>β</i>)	ov	1 <i>β</i> , 2 <i>α</i> , 2 <i>β</i> , 4, 19A	7, 9, 17, 18	4β, 6β, 11β
11	41.7, CH ₂	2.45 A	dd, 14.5; 8.9	12	8, 9, 10, 12, 13, 20	1 <i>β</i> , 12
11		2.37 B	dd, 14.5; 8.9	12	8, 9, 10, 12, 13	8, 10, 12, 14, 16, 17
12	71.9, CH	5.37 (α)	t, 8.9	11A, 11B	13, 14, 16	1β , 11α
13	124.7, C	-	-	-	-	-
14	107.9, CH	6.39	dd, 1.8; 0.8	15 or 16	13, 15, 16	11β, 12, 15, 17
15	144.3, CH	7.45	br d, 1.8	14	16	14
16	139.6, CH	7.46	m	14	13,14, 15	12, 11 <i>β</i> , 17
17	16.4, CH ₃	1.03	d, 6.6	8	6, 7, 9, 10	7α, 11β, 14, 16
18	176.5, C	-	-	-	-	-
19	68.4, CH ₂	4.80 B ^b	d, 11.3	4, 10, 19A	4, 6, 20	6 [″] , 7α
		4.32 A	d, 11.3	19B	4, 6, 20	1α
20	178.5, C	-	-	-	-	-
6 ¹ (CO)	170.8, C	-	-	-	-	-
6 ² (CH ₃)	21.0, CH ₃	2.04	S	-	$1, 6, 6^1, 9,$	7α, 19a

Table 2. ¹H and ¹³C NMR spectral data and ¹H-¹H COSY, HMBC and NOESY correlations for **2**. $[600.13 \text{ MHz} (^{1}\text{H}) \text{ and } 150.903 \text{ MHz} (^{13}\text{C})]^{a}$

^a CDCl₃, ¹H 600.13 MHz, δ_{ref} 7.26; ¹³C 150.9 MHz, δ_{ref} 77.0 ppm, TMS as an internal standard; ^b endo hydrogen with respect to ring B; ^c δ_{H} data from HSQC; ov – overlapped signal.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 13. Part of the ¹H NMR spectrum of 2.

Figure 14. Part of the ¹H NMR spectrum of **2**.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 15. The ¹H-broadband-decoupled ¹³C NMR spectrum of 2.

Figure 16. The DEPT 135° ¹³C NMR spectrum of 2.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 17. The HSQC spectrum of 2. The resonances denoted in blue are negative and are for CH_2 groups.

Figure 18. The COSY spectrum of 2.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 19. The HMBC spectrum of 2.

Figure 20. The NOESY spectrum of 2.

Figure 21. IR spectrum of **2**.

[PITsBA_pos_full_MS_tune_pos_01_05_15_cid10.RAW] scan #1

Figure 22. HRESIMS spectrum of 2.

Figure 23. Structure of teuscordesin (3)

position	δ^{13} C, nH	δ^{1} H	m, <i>J</i> (in Hz)	¹ H- ¹ H COSY	HMBC	NOESY
1	27.9, CH ₂	2.17 $(\alpha)^{c}$	ov m ^c	1β, 2α, 3α, 3β, 10β	7^{2}	$1\beta, 2\beta, 3\beta$
		1.68 (β)	ov m ^c	1α, 2α, 10β	-	1α , 2β , 3β , 10β
2	60.4, CH	5.60 eq (α)	br s	1α, 1β, 10β	-	1α , 1β , 3α , 3β
_		2.13 (a)	ov m ^c	1 <i>β</i> , 2α	7^{2}	2β
3	19.9, CH ₂	1.66 (β)	ov m ^c	1α, 2α	-	1β , 2β , 10β
4	124.7, C	-	-	-	-	-
5	167.5, C	-	-	-	-	-
6	78.0, CH	4.82 (β)	dd, 10.1; 7.4	$7\alpha, 7\beta$	-	7 <i>β</i> , 8 <i>β</i> , 10 <i>β</i>
7	34.8, CH ₂	2.24 (α)	ddd, 14.2;12.6;10.1	$6\beta, 7\beta, 8\beta$	-	7 <i>β</i> , 17
7		2.37 (β)	m ^c	$6\beta, 7\alpha, 8\beta$	6, 8	6β, 7α, 17
8	35.7, CH	1.94 (β)	ddq, 12.6; 3.3; 6.8	7β, 7α, 17	-	6β, 10β, 11, 17
9	53.6, C	-	-	-	-	-
10	42.0, CH	2.68 (<i>β</i>)	m	1α , 1β , 2β	-	1 <i>β</i> , 3 <i>β</i> , 6 <i>β</i> , 8 <i>β</i> , 11
11	40.7, CH ₂	2.58 A 2.58 B	d, 8.5 d, 8.5	12	8, 9, 10, 12, 13, 20	8 <i>β</i> ,10 <i>β</i> , 12, 14, 16, 17
12	71.2, CH	5.46	t, 8.5	11	13, 14, 16	11, 14, 16
13	124.1, C	-	-	-	-	-
14	107.9, CH	6.40	br s	15 or 16	13, 15, 16	11, 12, 15, 17
15	144.3, CH	7.46	t, 1.6	14	16	14,
16	139.6, CH	7.47	br s	14	13, 14, 15	11, 12, 17
17	16.9, CH ₃	1.09	d, 6.8	8	6, 7, 9	7α, 7β, 8β, 11β, 14, 16
18	170.7, C	-	-	-	-	-
20	174.9, C	-	-	-	-	-
7 ¹ (CO)	170.5, C	-	-	-	-	-
7 ² (CH ₃)	21.2, CH ₃	2.15	S	-	7 ¹ , 7	3α

Table 3.	1 H and 13	C NMR	spectral	data ^{a,} and	¹ H-	¹ H COSY	, HMBC	and NOES	Y correlations i	for 3
----------	----------------------	-------	----------	------------------------	-----------------	---------------------	--------	----------	------------------	--------------

^a CDCl₃, ¹H 600.01 MHz, δ_{ref} 7.26; ¹³C 150.89 MHz, δ_{ref} 77.0 ppm, TMS as an internal standard; ^b δ_{H} data from HSQC; ov – overlapped signal.

Figure 24. Part of the ¹H NMR spectrum of 3.

Figure 25. Part of the ¹H NMR spectrum of 3.

Figure 27. The DEPT 135° ¹³C NMR spectrum of **3**.

Figure 28. The HSQC spectrum of 3. The resonances denoted in blue are negative and are for CH_2 groups.

Figure 29. The COSY spectrum of 3.

Supplemental file for manuscript Petko I. Bozov, Plamen N. Penchev, Yoana P. Georgieva and Velizar K. Gochev, Clerodane diterpenoids from *Teucrium scordium* L. subsp. *scordioides* (Shreb.) Maire et Petitmengin

Figure 30. The HMBC spectrum of 3.

File path : D:\My Documents\IR spectra\Ourrent IR spectra\Plamen Plovdiv

[PTsCA_concentrat_pos_full_MS_tune_pos_01_05_15_cid10.RAW] scan #1

MS1, RT 0.0, base peak: 409.1270 m/z (7.2E8)

Figure 33. HRESIMS spectrum of 3. 22