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First principles calculation and simulation of correlation functions and functions of 
metal melts’ radial distribution 

S. Shaltakov
1
, B. Nussupbekov

1
, M. Stoev

2
, D. Karabekova

1
, A. Khassenov

1*
, Y. Oshanov

1
 

1
Karaganda State University named after E.A. Buketov, Kazakhstan 

2
South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria 

Received August 03, 2019; Accepted November 30, 2019 

Majority of technological processes in metallurgy are based on the extensive use of gases, liquids and granular 

materials. From this point of view, the viscoelastic theory, which is based on one of the most important melting 

process’s features, that is establishment of proximity of the liquid state to the crystalline state near the melting point, is 

of interest. Development of the given theory allows establishing and predicting metal melts’ properties, based on 

interparticle interactions. 
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INTRODUCTION 

Theoretical descriptions of processes occurring 
in melts are based on the Stokes – Kirchhoff theory, 
which, within the frame of classical 
hydrodynamics, revealed phenomenological 
connections between molten systems’ kinetic 
properties. Nowadays, the viscoelastic theory is 
widespread, distinguishing feature of which is a 

unified description of the liquid and solid states, 
that is, proximity of the liquid state to the 
crystalline state near the melting point. In other 
words, such a theory makes it possible to predict 
the melt properties on the strength of hydrodynamic 
motion equations [1], based on interatomic 
interactions. When describing individual molecules 

within the frame of the density functional, the 
assumption that the electronic states of individual 
chemical bonds and electrons that are not involved 
in the bonds formation are independent of each 
other, is used as an approximation. Molecules 
convergence during the semiconductor melt 
formation leads to a perturbation of the states on the 

bonds, which can be comparable with interaction of 
the bonds inside the molecule. Therefore, it is 
necessary to use separate bonds as an initial 
approximation when considering liquid 
semiconductors. Given model is convenient in the 
case when bonds formation leads to quasilattice 
structures. In the frame of hydrodynamic method 
for solving a system of equations, only specifically 

existing initial conditions are possible, and its 
asymptotic solution is possible only in the large 
times limit. Dimensional theory leads to the 
conclusion that velocity correlation function 
decreases inversely with time, and with a 

proportionality factor equal to the system’s 
dimensions. This suggests that the correlation 
function does not decrease exponentially. As shown 
in many papers, the decrease is slow and leads to a 
divergence of diffusion coefficient. 

This comparison would give a good agreement 
if we exclude small times area where classical 
hydrodynamics is unsuitable. Indeed, the time 
intervals corresponding to this area are shorter than 
the time required making several collisions. 
Therefore, in the given case, it is required to 
consider the melt at the quantum level. 

Density functional’s important advantage [2], as 

is well known, is the possibility of using the first 
principles of quantum chemistry for estimating 
density distribution’s energy and electronic 
characteristics, and from this information to draw a 
picture of the energy bands. Given model can be 
applied to liquid semiconductors.  

RESULTS AND DISCUSSION 

Let in the quasilattice of a unitary volume in the 

energy interval from E  to dEE   there are dZ  

quantum states (taking into account spin). Denote 

by )(EN  states density, i.e. states number in the 

unitary interval of energy for unitary volume of 
quasilattice. Then, by the definition of states 
density, we write:  

dE

dZ
EN )(                                                  (1) 

If the probability of an electron filling the state 

with energy E  is equal to ),( TEf , then the 

number of electrons dn that are in the states dZ , 

will compose the quantity: 

dEENTEfdn )(),(                                   (2) 
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Correspondingly, the quantity of electrons, for 
which the possible interval of energy lies within the 

limits   21, EE , will be equal to: 


2

1

)(),(

E

E

dEENTEfn                                   (3) 

Let us find an expression for the quantum states 
density in the case when the surface of equal energy 
of the conduction band and the valence band are 

spheres. Then you can get an expression for the 
quantum states density at the bottom of the 
conduction band, which has spherical symmetry: 
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Similarly, one can determine the states density 
near the upper edge of the valence band. But on the 
other hand, the above expression is related to the 

Thomas-Fermi-Dirac functional by the following 
relation: 
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 cEE .                              (4) 

After simple transformations for the states 
density can be written:  
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where  ,...}.,,,{ 2121 ppss    

These data give opportunity to the molecular 

bonds quantum interpretation formed in 
semiconductors melts, as well as other high-
temperature liquids elastic properties. It should be 
noted that the greatest successes were achieved in 
this direction in the works of M. Born, G. Green, J. 
Kirkwood, N. N. Bogolyubov and others. 
Moreover, the main task of such a statistical theory 

of liquids is the establishment of a connection 
between the molecules’ properties and the 
interatomic potential, as well as between the molten 
systems’ thermodynamic and kinetic properties. 
When studying the melt properties, it is necessary 
to take into account the set of particles that 
averages physical quantities. As is known [2], in 

the case of a crystal, one can obtain, for example, 
information relating to a single dislocation, but one 
cannot trace the single impurity atom motion. And 
in melts, due to the high mobility of its particles 
and due to the absence of a long-range order (as in 
the crystal lattice), closest environments of various 
atoms or molecules can differ quite strongly, both 
in the number of neighbors and in their spatial 

arrangement. Since it is not possible to monitor the 
behavior of an individual atom or group of atoms, 

the so-called clusters, any melt property 
measurements results turn out to be averaged over a 

large number of atoms. When a property, that does 
not depend on the angular orientation (in space) of 
the given atom’s nearest neighbors, is studied, then 
during averaging over different atoms, such 
orientation cannot be reflected in a measurement 
result, so that only the total number of atoms 
located at a certain distance from a given atom, is 
left essential. 

In order to describe a given position, we choose 
a spherical segment with an inner radius r  and an 

outer one R  with a center in a simple melt’s 

arbitrary particle core (containing for simplicity 
only atoms of one element). In this case, the 
average number of atoms in the given spherical 
segment will be proportional to the segment’s 

volume. drr 24  is determined by the following 

relation: 

   rdrRrrdn 24 ,                                     (5) 

where  rR  is the so-called radial distribution’s 

pair function. 

Function  rR  by its physical meaning is the 

particles’ number’ density, not average, but local 

with respect to some arbitrary atom selected as the 
coordinates’ origin. In case, when the distance r  is 
sufficiently large compared with the interatomic 

distance ar , then there is a probability that the 

separate atoms will not experience the action of the 
central particle and, therefore, will be located 
independently of it. In this case, we have to 

substitute (5) instead of  rR  normal average 

density   .0RrR   In the case when the 

distance from the given atom’s center is too small 
(less than the so-called diameter of the atom), not a 
single particle core will fall into the spherical 

segment. Function  rR  has oscillating character at 

short distances r. It is this behavior that corresponds 
to the melt’s structure, since it must exhibit certain 
features peculiar to the crystal from which this melt 

was formed. Thus, there must be a preferred 
distance between the nearest neighbors, analogous 
to the interatomic distance in a crystal, average 
number of the nearest neighbors, similar to the 
coordination number in the lattice, and so on. 
Existence of ordering elements in the melt, which is 
ultimately determined by the intrinsic volume of the 

molecules and interatomic potential features, is 
determined by the term “short-range order”. 

Previously, we determined the radial 
distribution’s pair function R(r) [2], describing melt 
particles’ average placement around an arbitrary 
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atom. Now it is necessary to generalize to the case 
when we are interested in the relative position of 

the number of atoms. In order to do this, select 

volume in the melt dV . Let the particles’ average 

number in this atom be equal to ,0dVRdn   

where 
0R  is particle’ number’ density (number of 

particles per unit volume). If we count dV  as 

sufficiently small, then dn  will be much less than 

unit. Therefore, the product dVR0
 can be 

considered as probability of detecting a melt 

particle in the volume dV : .101 dVRdW   

Distinguish the following volume elements in the 

melt 1dV  and 2dV  near points with radius vectors 

., 21 rr  Determine the probability that in volumes 

1dV  and 2dV  will be two particles at the same 

time: 

  ,, 2121212 dVdVrrRdW                                 (6) 

where the function  212 ,rrR  is a so-called binary 

correlation function.  

Assuming the volumes 1dV  and 2dV   

.21

2

02112 dVdVRdWdWdW   

From relations (6) it is seen that at large values 

21 rr   follows   ., 2

0212 RrrR   Similarly, 

analogically to the above, we can introduce the 

probability ndW ,...,2,1  that in volumes 

ndVdVdV ,...,, 21  will be one particle in each. 

Define ndW ,...,2,1  as follows: 

  nnnn dVdVdVrrrRdW ...,...,, 2121,...,2,1  .     (7) 

Besides that, it is possible to establish a 
connection between the binary correlation function 

and the radial distribution’s pair function  rR . 

Probability of two particles being in volumes 1dV  

and 2dV  can be represented as a product of two 

probabilities: firstly, that in the volume 1dV  will be 

one particle 1dW  and secondly, that on the distance 

21 rr  from the first particle will be the second 

2dW . Thus, 2dW  is the probability of the second 

event, provided that the first one has already come:  

  .2122 dVrrRdW   

Probabilities dW  can be normalized as follows: 

  
V

NVRdVRdW ,0101  

where N  is the total number of melt particles. 

      ,1, 212122 NNdVdVrrRdW  

and correspondingly: 

 
.

!

!

nN

N
dWn


  

In practice, for calculations convenience, it is 
advisable to reformulate the correlation functions 
and probabilities so that the first ones become 

dimensionless and normalization integrals are equal 
to unity. In order to do this, we introduce new 
probabilities of a given configuration of melt п -
particles:  

  ,...,...,,
1

2121 nnnnn dVdVdVrrrF
V

dW        (8) 

where ,iiii dzdydxdV   iii zyx ,,  are the 

coordinates of the ith particle. 
Further, it will be possible to require that new 

probability be normalized to unity     ,1ndW     

  .1...,...,,
1

2121  nn
nn

dVdVdVrrrF
V

        (9) 

From equations (8) and (9) is seen that: 

 
.

!

!
nn dW

nN

N
d


  

Taking into account the given relations (7) and 
(9), we can find connection between correlation 

functions nR  and nF : 

 
 

 .,...,,
1

!

!
,...,, 2121 nnnnn rrrF

VnN

N
rrrR


  (10) 

Note that the correlation functions of two 
subsequent orders are interconnected by relation 

(10) which follows from the probability definitions 
[3-6]. We now introduce the total potential energy 
of the system: 

 
....

,...,,
exp 21

21
n

n
n dVdVdV

kT

rrrU
AdW 








  

Then one can build recurrence relations for NF , 

which allows us to find the correlation functions of 
lower orders: 

 
 

.
,...,,

exp,...,, 21
21 










kT

rrrU
AVrrrF nN

nN  

At present, calculation of these integrals can be 
easily carried out only for gases whose particle 
density is low. A direct melt correlation functions’ 
definition using statistical mechanics is quite 
difficult to perform. In such cases, one resorts to 
numerical methods, such as the Monte Carlo 

method, using computer technology capabilities. 
Suppose that we are interested in the average value 
of some melt extensive physical properties 
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 ,,...,, 21 nn rrrM  defined by the relative position of 

the п - particles group. In various melt areas n  

configurations will be different from each other, so 

property values of 
nM  will fluctuate around a 

given average value. Since the probability of 

particles’ location in 
ndW  configuration is 

described by the correlation function 

 ,,...,, 21 nn rrrF , then averaging of value 
nM  is 

performed by integrating with weight 
nF : 

      .1...,...,,,...,,
1

,...,, 21212121   nn
n

nnnnnnn dVdVdVrrrFrrrM
V

dWrrrMM  

In the melt containing N particles, the number of 
various groups of п - particles is equal to  

 
.

!!

!

nnN

N


 Therefore, the property value nM  for 

the total melt volume is: 

 
 

    ....,...,,,...,,
!!

!1
212121 nn

n
nnnn dVdVdVrrrFrrrM

nnN

N

V
NM 

  

The most frequently considered properties depend 
either on the single particle’s coordinates, or on 

particle pairs’ mutual distances, that is, the 
properties determined by pair interactions. In the 
first case:  

      .11
1

111 dVrFrM
V

N
NM   

From equation (10) follows that  
N

V
rF 11 , 

,1
N

V
R    ,10 R  therefore: 

    .11 dVrM
V

N
NM   

We can write for a property determined by pair 
interactions:  

 
 

    .,,
2

1
2121

2
21222 dVdVrrFrrM

V

NN
NM 




After a few transformations we have: 

      .,
2

2112212
0

2 dVdVrrRrrM
R

NM    

Denoting 12 rr   through r , we write: 

      .2
0

2

22 


 drrrRrMNNM                 (11) 

An important example of the equation 

application (11) is melt total energy calculation in 
the approximation, when the system’s potential 
energy can be represented as the sum of particles 
pair interaction energies. 

If the pair potential is denoted by U(r) and 
taking into account that the average kinetic energy 
of a monatomic particle is 3/4kT, then for 

mechanical energy the following relation is valid: 

    .2
2

3

0

2




 drrrRrUNNkTU   

CONCLUSION 

Results described above show that the 
knowledge of correlation functions F1, F2,…,Fn   is 
necessary for the calculation of a whole row of 
metal melt thermodynamic properties. Methods of 
quantum statistical physics allow us to express 
coefficients of shear and bulk viscosities using 

correlation functions. This makes it possible to 
discover matter construction’s physical nature 
through secondary quantization operators; thereby a 
powerful apparatus of quantum physics can be 
connected for research.  
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