
Bulgarian Chemical Communications, Volume 52, Issue A (pp. 192-196) 2020 DOI: 10.34049/bcc.52.A.255

Maximum-flow problem in networking
F. I. Sapundzhi*, M. S. Popstoilov

South-West University "Neofit Rilski", 2700 Blagoevgrad, Bulgaria

Received August 01, 2019; Accepted October 29, 2019

The communication network is made up of nodes and links. It carries traffic where traffic flows from a start node
(source) to an end node (sink). In general, a communication network can be represented as: (1) a directed network - the
flow is directional from one node to another and the links are considered as directional links; or (2) an undirected
network - there is no differentiation between the directions of flow. The aim of the maximal flow problem is to find the
maximum flow that can be sent from a specified start node to a specified end node through the edges of the network.
The maximum flow problem asks for the largest amount of flow that can be transported from one vertex to another.
Network flow modelling is used for traffic engineering of networks. It can help in determining routing decisions.

Keywords: maximum flow problem, routing, traffic engineering, communication network.

INTRODUCTION

The graphs theory plays a significant role in
many fields of applications in real world such as
travelling, transportation, various computer
applications, traffic control, communications, and
so on [1-4]. We can consider the graph as a
mathematical representation of a network that
describes the relationship between a finite number
of points connected by lines. The maximum flow
problem and its dual, the minimum cut problem, are
classical combinatorial optimization problems with
many applications in science and engineering.

The algorithm for finding the maximum flow
models several important problems as the traffic in
transportation networks and the data packets in a
communication network. A widely used algorithm
for finding the maximum flow problem based on
the augmenting path method was developed by
Ford and Fulkerson [5,6]. The Ford–Fulkerson
algorithm (FFA) is a greedy algorithm that
computes the maximum flow in a flow network.
Later Edmonds and Karp introduced the shortest
augmenting path method [7]. To define path
lengths, their method uses the unit length function
that sets the length of each edge to one. Other
popular maximum flow algorithms are Dinic's
blocking flow-based algorithm [8], and the
Goldberg-Tarjan push-relabel algorithm [9,10]. A
special case of the maximum flow problem
involving all arcs having unit capacities was
reported by Even-Tarjan [11] and Karzanov [12].

The main purposes of this study are: (a) to
determine and identify the concepts of the
maximum flow problem in networking; (b) to
determine the representation of graphs in the
computer in order to solve this path problem, as

well as to explore and understand he different basic
terms of graphs; (c) to explain the general concepts
and the C# implementations of the algorithms for
finding the maximum flow in networking.

METHODS

We consider a directed 𝐺𝐺= (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a
set of vertices and 𝐸𝐸 is a set of connections (edges)
between the vertices, 𝑒𝑒 = (𝑥𝑥,𝑦𝑦) consists of two
vertices such that 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑉𝑉 . Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) is
connected and loopless, 𝐺𝐺 has only one start node,
named 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 (𝑠𝑠) and only one end node, named
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡).

The weight 𝑠𝑠(𝑒𝑒) of the arc 𝑒𝑒 ∈ 𝐸𝐸 is called the
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑦𝑦 and it is a nonnegative real number, i.e.
we have a mapping.

A flow 𝑓𝑓 of a network is a weight mapping 𝐸𝐸 →
ℝ0 , which satisfies for each arc 𝑒𝑒 , we have the
capacity constraint 𝑓𝑓(𝑒𝑒) ≤ 𝑠𝑠(𝑒𝑒), and each vertex
𝑣𝑣 ≠ 𝑠𝑠, 𝑡𝑡. In this notation 𝑣𝑣𝑐𝑐𝑣𝑣(𝑓𝑓𝑒𝑒) denotes the value
of the flow for the arc 𝑒𝑒(𝑠𝑠, 𝑣𝑣). With 𝑓𝑓∗ we denote a
maximum flow, if the value is the largest possible
and for every flow is in effect 𝑣𝑣𝑐𝑐𝑣𝑣(𝑓𝑓𝑒𝑒

∗) ≥ 𝑣𝑣𝑐𝑐𝑣𝑣(𝑓𝑓𝑒𝑒).

�𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑦𝑦, 𝑥𝑥)
𝑦𝑦∈𝑉𝑉

 = 0, 𝑥𝑥 ≠ 𝑠𝑠, 𝑡𝑡 (1)

0 ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≤ 𝑠𝑠(𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸 (2)

�𝑓𝑓(𝑠𝑠,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑦𝑦, 𝑠𝑠)
𝑦𝑦∈𝑉𝑉

 = 0, (3)

�𝑓𝑓(𝑦𝑦, 𝑡𝑡)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑡𝑡,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

 = 0, (4)

Here 𝑓𝑓(𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸 is named flow if and
only if the equations (1) - (4) are in effect.

* To whom all correspondence should be sent.
E-mail: sapundzhi@swu.bg
192

 2020 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria

F. I. Sapundzhi, M. S. Popstoilov: Maximum-flow problem in networking

193

The idea of the Ford-Fulkerson algorithm is
simple [7]. As long as there is a path from the
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 (𝑠𝑠) to the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡), with available capacity
on all edges in the path, we send flow along one of
these paths. Then we find another path, and so on.
A path with available capacity is called an
augmenting path. According to the algorithm the
flow in a network is a collection of chain flows
which has the property that the sum of the number
of all chain flows that contain any edge is no
greater than the capacity of that edge [13-16]. A
flowchart illustrating the maximum flow network is
shown in Figure 1 [17]. A pseudocode of Ford-
Fulkerson algorithm is given below (Figure 2).

On Figure 3 a simple web architecture is
presented, with users, web servers, databases and
data where the ends should be considered in an
abstract way. We can consider this diagram as an
example of flow networking with source (users)
and sink (data) (Figure 2). Fig. 1. Flowchart for the maximum flow problem in

network.

Algorithm: Ford-Fulkerson
1: Input: 𝐺𝐺= (𝑉𝑉,𝐸𝐸), 𝑠𝑠, 𝑡𝑡. Any network flow from 𝑠𝑠 to 𝑡𝑡 is selected. Initially, label the source. If there is no

such flow, a flow of 0 is set for each arc (𝑥𝑥, 𝑦𝑦), 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0.
2: By the ordered pair (−,∞) the source 𝑠𝑠 is coloured.
3: If there is a non-coloured vertex 𝑦𝑦 in coloured 𝑥𝑥:

• If (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸 and 𝑓𝑓(𝑥𝑥,𝑦𝑦) < 𝑠𝑠(𝑥𝑥,𝑦𝑦) then color the arc (𝑥𝑥, 𝑦𝑦) and mark the node 𝑦𝑦 by the pair (𝑥𝑥+,△𝑦𝑦),
where ∆𝑦𝑦 = min{∆𝑥𝑥, 𝑠𝑠(𝑥𝑥,𝑦𝑦) − 𝑓𝑓(𝑥𝑥,𝑦𝑦)} , forward label.

• If (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸 and 𝑓𝑓(𝑦𝑦, 𝑥𝑥) > 0 then color the arc (𝑦𝑦, 𝑥𝑥) and mark the node 𝑦𝑦 by the pair (𝑥𝑥+,∆𝑦𝑦) ,
where ∆𝑦𝑦 = min{∆𝑥𝑥, 𝑓𝑓(𝑥𝑥,𝑦𝑦)}, backward label.
After that go to step 4, else return to step 2.

4: If 𝑦𝑦 = 𝑡𝑡, go to step 5. Else, return to step 3.
5: Let the node 𝑦𝑦 is labeled by pair (𝑑𝑑𝑦𝑦 ,∆𝑦𝑦). Then:

• If 𝑑𝑑𝑦𝑦 = 𝑥𝑥+ then 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) + ∆t.
• If 𝑑𝑑𝑦𝑦 = 𝑥𝑥+ then 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) − ∆t.

6: If 𝑥𝑥 = 𝑠𝑠, remove all labels and go to step 2. Else apply 𝑦𝑦 = 𝑥𝑥 and go back to step 5.
7: Output: The value of the maximum flow 𝑓𝑓∗.

Fig. 2. Ford-Fulkerson algorithm.

Fig. 3. Diagram for example of flow networking with source (users) and sink (data).

F. I. Sapundzhi, M. S. Popstoilov: Maximum-flow problem in networking

194

SIMULATION RESULTS

The maximum-flow problem in networking has
been investigated by many researchers because of
its importance for many areas of applications [3].
Max-flow and min-cut are widely applicable
algorithms for solving the following problems:
network reliability, network connectivity,
distributed computing, data mining, bipartite
matching, image segmentation, and more.

Popular algorithms for finding the max-flow in a
network are Ford-Fulkerson algorithm, Edmonds-
Karp algorithm, Dinic’s algorithm and Goldberg-
Tarjan algorithm. The values of execution time and
different number of vertices for these are presented
in Table 1. It depends on the number of 𝑠𝑠,𝑚𝑚 and 𝑠𝑠
(number of nodes, edges and capacities)
respectively.

The main task of the present work was the
design, implementation and analysis of the Ford-
Fulkerson algorithm for finding max-flow in
network (Figure 4). The C# implementation was

developed by using Visual Studio Community
2018. The developed program was tested in the PC
with following parameters: Intel® Pentium®
Processor N3710, 1.6 GHz (4 CPUs), 4096 MB
RAM [18,19]. The experimental results are shown
on Figure 5.

The algorithms of Edmonds-Karp and Goldberg-
Tarjan use breath-first-searches and are performed
from the sink, labelling each vertex with the
distance to the sink, while the algorithm of Ford-
Fulkerson can be applied to find the maximum flow
between a single source and a single sink in a
network [20, 21-29].

As can be seen, the time complexity for Ford-
Fulkerson algorithm is higher than for other
algorithms, it is simple to implement in finding the
maximum flow. The algorithm of Edmonds-Karp is
a version on the Ford-Fulkerson algorithm.
Goldberg-Tarjan algorithm manipulates the preflow
rather than an actual flow in a graph.

Table 1. Comparison for time complexity of maximum flow algorithms.

Maximum-flow algorithms Method Asymptotic Time Year
Ford-Fulkerson Augmenting path 𝑂𝑂(𝑠𝑠𝑚𝑚 𝑠𝑠) 1955
Edmonds-Karp Shortest path 𝑂𝑂(𝑠𝑠𝑚𝑚2) 1970
Edmonds-Karp Fattest path O(mlog ∪ (mlogn)) 1970
Dinic Improved shortest path 𝑂𝑂(𝑚𝑚𝑠𝑠2) 1970
Goldberg-Tarjan FIFO preflow-push 𝑂𝑂(𝑚𝑚𝑠𝑠log(𝑠𝑠2/𝑚𝑚)) 1986

Fig. 4. Diagram for example of flow networking with source (users) and sink (data).

F. I. Sapundzhi, M. S. Popstoilov: Maximum-flow problem in networking

195

Fig. 5. Results of the C# implementation of the maximum-flow algorithm for different nodes, edges and capacities

F. I. Sapundzhi, M. S. Popstoilov: Maximum-flow problem in networking

196

When the capacities of the edges are integers,
the runtime of Ford-Fulkerson algorithm is
bounded by the following notation: 𝑂𝑂(|𝐸𝐸|𝑓𝑓), where
|𝐸𝐸| is the number of edges in the graph and 𝑓𝑓 is the
maximum flow in the graph. In this case each
augmenting path can be found in 𝑂𝑂(|𝐸𝐸|) time.
Other modified algorithms for finding the
maximum flow in networking are developed to
reduce computation time, but they require high-
speed processors such as supercomputers to
simulate the problem and calculate the optimal
flow. In conclusion, we can say that the algorithm
of Ford-Fulkerson guarantees to stop work if the
edge capacity has a non-negative real value.

Acknowledgement: This paper is partially
supported by SWU “Neofit Rilski”, Bulgaria,
Project RPY – B4/19; Project of the National
Science Fund of Bulgaria, BNSF Н27/36 National
Scientific Program "Information and
Communication Technologies for a Single Digital
Market in Science, Education and Security
(ICTinSES)", financed by the Ministry of Education
and Science.

REFERENCES

1. К. Erciyes, Guide to Graph Algorithms: Sequential,
Parallel and Distributed, Springer, 2018.

2. M. Kochenderfer, T. Wheeler, Algorithms for
Optimization, The MIT Press, 2019.

3. J. Evans, Е. Minieka, Optimization Algorithms for
Networks and Graphs, Second edn., Inc., New York
and Basel, 1992.

4. R. Gould, Graph Theory (Dover Books on
Mathematics), US, Cafifornia, 2012.

5. L. Ford, D. Fulkerson, D. Canadian Journal of
Mathematics, 8, 399, (1956).

6. T. Cormen, Ch. Leiserson, R. L. Rivest, C. Stein,
Introduction to Algorithms, Second edn., MIT Press
and McGraw–Hill, 2001, p. 651.

7. J. Edmonds, R. Karp, Journal of the ACM, 19, 2,
248, (1972).

8. E. Dinic, Soviet Mathematical Docladi, 11, 1277,
(1970).

9. A. Goldberg, A New Max-Flow Algorithm. MIT
Technical Report MIT/LCS/TM-291, Laboratory for
Computer Science, MIT, 1985.

10. A Goldberg, R. Tarjan, Proceedings of the
eighteenth annual ACM symposium on Theory of
computing – STOC '86, 136, (1986).

11. S. Even, R. Tarjan, SIAM Journal on Computing, 4,
507, (1975).

12. A. Karzanov, Matematicheskie Voprosy
Upravleniya Proizvodstvom, 5, 81, (1973).

13. F. Sapundzhi, M. Popstoilov, Proc. 27th National
Conference with International Participation
"TELECOM 2019", Sofia, Bulgaria, 2019, p. 62.

14. F. Harary, Graph Theory, Addison-Wesley, 1969.
15. D. West, Introduction to Graph Theory, Prentice

Hall, 1996.
16. F. Sapundzhi, M. Popstoilov, Bulgarian Chemical

Communications, 50, Special Issue B, 115 (2018).
17. M. Kyi, L. Naing, International Journal of Scientific

and Research Publications, 8(12), 306 (2018).
18. M. Negnevitsky, Artificial Intelligence: A Guide to

Intelligent Systems, Addison-Wesley, 2011.
19. B. Johnson, Professional Visual Studio, 2015.
20. F. Sapundzhi, International Journal of Online and

Biomedical Engineering, 15 (11), 139 (2019).
21. F. Sapundzhi, T. Dzimbova, P. Milanov, N.

Pencheva, International Journal Bioautomation, 17
(1), 5 (2013).

22. F. Sapundzhi, T. Dzimbova, N. Pencheva, P.
Milanov, Der Pharma Chemica, 8, 118 (2016).

23. F. Sapundzhi, T. Dzimbova, N. Pencheva, P.
Milanov, Bulg. Chem. Commun., 50, Special Issue
B, 44 (2018).

24. R. Mavrevski, M. Traykov, I. Trenchev, M.
Trencheva, WSEAS Transactions on Systems and
Control ,13, 242 (2018).

25. F. Sapundzhi, T. Dzimbova, N. Pencheva, P.
Milanov. Bulg. Chem. Commun., 50, Special Issue
B, 15 (2018).

26. F. Sapundzhi, International Journal of Online and
Biomedical Engineering, 15 (12), 88 (2019).

27. F. Sapundzhi, T. Dzimbova, International Journal
of Online and Biomedical Engineering, 15 (15), 39
(2019).

28. F. Sapundzhi, K. Prodanova, M. Lazarova AIP
Conference Proceedings, 2172, 100008 1-6 (2019).

29. V. Kralev, R. Kraleva, IJACR, 7 (28), 1 (2017)

	Maximum-flow problem in networking
	Introduction
	Simulation Results

