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Maximum-flow problem in networking 
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The communication network is made up of nodes and links. It carries traffic where traffic flows from a start node 
(source) to an end node (sink). In general, a communication network can be represented as: (1) a directed network - the 
flow is directional from one node to another and the links are considered as directional links; or (2) an undirected 
network - there is no differentiation between the directions of flow. The aim of the maximal flow problem is to find the 
maximum flow that can be sent from a specified start node to a specified end node through the edges of the network. 
The maximum flow problem asks for the largest amount of flow that can be transported from one vertex to another. 
Network flow modelling is used for traffic engineering of networks. It can help in determining routing decisions.  
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INTRODUCTION 

The graphs theory plays a significant role in 
many fields of applications in real world such as 
travelling, transportation, various computer 
applications, traffic control, communications, and 
so on [1-4]. We can consider the graph as a 
mathematical representation of a network that 
describes the relationship between a finite number 
of points connected by lines. The maximum flow 
problem and its dual, the minimum cut problem, are 
classical combinatorial optimization problems with 
many applications in science and engineering. 

The algorithm for finding the maximum flow 
models several important problems as the traffic in 
transportation networks and the data packets in a 
communication network. A widely used algorithm 
for finding the maximum flow problem based on 
the augmenting path method was developed by 
Ford and Fulkerson [5,6]. The Ford–Fulkerson 
algorithm (FFA) is a greedy algorithm that 
computes the maximum flow in a flow network. 
Later Edmonds and Karp introduced the shortest 
augmenting path method [7]. To define path 
lengths, their method uses the unit length function 
that sets the length of each edge to one. Other 
popular maximum flow algorithms are Dinic's 
blocking flow-based algorithm [8], and the 
Goldberg-Tarjan push-relabel algorithm [9,10]. A 
special case of the maximum flow problem 
involving all arcs having unit capacities was 
reported by Even-Tarjan [11] and Karzanov [12].  

The main purposes of this study are: (a) to 
determine and identify the concepts of the 
maximum flow problem in networking; (b) to 
determine the representation of graphs in the 
computer in order to solve this path problem, as 

well as to explore and understand he different basic 
terms of graphs; (c) to explain the general concepts 
and the C# implementations of the algorithms for 
finding the maximum flow in networking. 

METHODS 

We consider a directed 𝐺𝐺= (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a 
set of vertices and 𝐸𝐸 is a set of connections (edges) 
between the vertices, 𝑒𝑒 = (𝑥𝑥,𝑦𝑦)  consists of two 
vertices such that 𝑥𝑥,𝑦𝑦 𝜖𝜖 𝑉𝑉 . Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸)  is 
connected and loopless, 𝐺𝐺 has only one start node, 
named 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 (𝑠𝑠) and only one end node, named 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡).  

The weight 𝑠𝑠(𝑒𝑒) of the arc  𝑒𝑒 ∈  𝐸𝐸 is called the 
𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡𝑦𝑦 and it is a nonnegative real number, i.e. 
we have a mapping.  

A flow 𝑓𝑓 of a network is a weight mapping 𝐸𝐸 →
ℝ0 , which satisfies for each arc 𝑒𝑒 , we have the 
capacity constraint 𝑓𝑓(𝑒𝑒)  ≤  𝑠𝑠(𝑒𝑒),  and each vertex 
𝑣𝑣 ≠  𝑠𝑠, 𝑡𝑡. In this notation 𝑣𝑣𝑐𝑐𝑣𝑣(𝑓𝑓𝑒𝑒) denotes the value 
of the flow for the arc 𝑒𝑒(𝑠𝑠, 𝑣𝑣). With  𝑓𝑓∗ we denote a 
maximum flow, if the value is the largest possible 
and for every flow is in effect 𝑣𝑣𝑐𝑐𝑣𝑣( 𝑓𝑓𝑒𝑒

∗) ≥ 𝑣𝑣𝑐𝑐𝑣𝑣(𝑓𝑓𝑒𝑒). 

�𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑦𝑦, 𝑥𝑥)
𝑦𝑦∈𝑉𝑉

  = 0,    𝑥𝑥 ≠ 𝑠𝑠, 𝑡𝑡 (1)

0 ≤ 𝑓𝑓(𝑥𝑥,𝑦𝑦) ≤ 𝑠𝑠(𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸  (2) 

�𝑓𝑓(𝑠𝑠,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑦𝑦, 𝑠𝑠)
𝑦𝑦∈𝑉𝑉

  = 0,  (3) 

�𝑓𝑓(𝑦𝑦, 𝑡𝑡)
𝑦𝑦∈𝑉𝑉

−�𝑓𝑓(𝑡𝑡,𝑦𝑦)
𝑦𝑦∈𝑉𝑉

  = 0,  (4) 

Here 𝑓𝑓(𝑥𝑥,𝑦𝑦),  (𝑥𝑥,𝑦𝑦) ∈ 𝐸𝐸  is named flow if and 
only if the equations (1) - (4) are in effect.  
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The idea of the Ford-Fulkerson algorithm is 
simple [7]. As long as there is a path from the 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 (𝑠𝑠) to the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡), with available capacity 
on all edges in the path, we send flow along one of 
these paths. Then we find another path, and so on. 
A path with available capacity is called an 
augmenting path. According to the algorithm the 
flow in a network is a collection of chain flows 
which has the property that the sum of the number 
of all chain flows that contain any edge is no 
greater than the capacity of that edge [13-16]. A 
flowchart illustrating the maximum flow network is 
shown in Figure 1 [17]. A pseudocode of Ford-
Fulkerson algorithm is given below (Figure 2). 

On Figure 3 a simple web architecture is 
presented, with users, web servers, databases and 
data where the ends should be considered in an 
abstract way. We can consider this diagram as an 
example of flow networking with source (users) 
and sink (data) (Figure 2).  Fig. 1. Flowchart for the maximum flow problem in 

network.

Algorithm: Ford-Fulkerson 
1: Input: 𝐺𝐺= (𝑉𝑉,𝐸𝐸), 𝑠𝑠, 𝑡𝑡. Any network flow from 𝑠𝑠 to 𝑡𝑡 is selected. Initially, label the source. If there is no 

such flow, a flow of 0 is set for each arc (𝑥𝑥, 𝑦𝑦), 𝑓𝑓(𝑥𝑥, 𝑦𝑦) =  0. 
2: By the ordered pair (−,∞) the source 𝑠𝑠 is coloured. 
3: If there is a non-coloured vertex 𝑦𝑦 in coloured 𝑥𝑥: 

• If (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸 and 𝑓𝑓(𝑥𝑥,𝑦𝑦) < 𝑠𝑠(𝑥𝑥,𝑦𝑦) then color the arc (𝑥𝑥, 𝑦𝑦) and mark the node 𝑦𝑦 by the pair (𝑥𝑥+,△𝑦𝑦),
where ∆𝑦𝑦 = min{∆𝑥𝑥, 𝑠𝑠(𝑥𝑥,𝑦𝑦) − 𝑓𝑓(𝑥𝑥,𝑦𝑦)} , forward label.

• If (𝑥𝑥, 𝑦𝑦) ∈ 𝐸𝐸 and 𝑓𝑓(𝑦𝑦, 𝑥𝑥) > 0 then color the arc (𝑦𝑦, 𝑥𝑥) and mark the node  𝑦𝑦  by the pair (𝑥𝑥+,∆𝑦𝑦) ,
where ∆𝑦𝑦 = min{∆𝑥𝑥, 𝑓𝑓(𝑥𝑥,𝑦𝑦)}, backward label.
After that go to step 4, else return to step 2.

4: If 𝑦𝑦 =  𝑡𝑡, go to step 5. Else, return to step 3. 
5: Let the node 𝑦𝑦 is labeled by pair (𝑑𝑑𝑦𝑦 ,∆𝑦𝑦). Then: 

• If 𝑑𝑑𝑦𝑦 = 𝑥𝑥+ then  𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) + ∆t.
• If 𝑑𝑑𝑦𝑦 = 𝑥𝑥+ then  𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦) − ∆t.

6: If 𝑥𝑥 = 𝑠𝑠, remove all labels and go to step 2. Else apply 𝑦𝑦 = 𝑥𝑥 and go back to step 5. 
7: Output: The value of the maximum flow 𝑓𝑓∗. 

Fig. 2. Ford-Fulkerson algorithm. 

Fig. 3. Diagram for example of flow networking with source (users) and sink (data). 
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SIMULATION RESULTS 

The maximum-flow problem in networking has 
been investigated by many researchers because of 
its importance for many areas of applications [3]. 
Max-flow and min-cut are widely applicable 
algorithms for solving the following problems: 
network reliability, network connectivity, 
distributed computing, data mining, bipartite 
matching, image segmentation, and more.  

Popular algorithms for finding the max-flow in a 
network are Ford-Fulkerson algorithm, Edmonds-
Karp algorithm, Dinic’s algorithm and Goldberg-
Tarjan algorithm. The values of execution time and 
different number of vertices for these are presented 
in Table 1. It depends on the number of 𝑠𝑠,𝑚𝑚 and 𝑠𝑠 
(number of nodes, edges and capacities) 
respectively.  

The main task of the present work was the 
design, implementation and analysis of the Ford-
Fulkerson algorithm for finding max-flow in 
network (Figure 4). The C# implementation was 

developed by using Visual Studio Community 
2018. The developed program was tested in the PC 
with following parameters: Intel® Pentium® 
Processor N3710, 1.6 GHz (4 CPUs), 4096 MB 
RAM [18,19]. The experimental results are shown 
on Figure 5.  

The algorithms of Edmonds-Karp and Goldberg-
Tarjan use breath-first-searches and are performed 
from the sink, labelling each vertex with the 
distance to the sink, while the algorithm of Ford-
Fulkerson can be applied to find the maximum flow 
between a single source and a single sink in a 
network [20, 21-29]. 

As can be seen, the time complexity for Ford-
Fulkerson algorithm is higher than for other 
algorithms, it is simple to implement in finding the 
maximum flow. The algorithm of Edmonds-Karp is 
a version on the Ford-Fulkerson algorithm. 
Goldberg-Tarjan algorithm manipulates the preflow 
rather than an actual flow in a graph. 

Table 1. Comparison for time complexity of maximum flow algorithms. 

Maximum-flow algorithms Method Asymptotic Time Year 
Ford-Fulkerson Augmenting path 𝑂𝑂(𝑠𝑠𝑚𝑚 𝑠𝑠) 1955 
Edmonds-Karp Shortest path 𝑂𝑂(𝑠𝑠𝑚𝑚2) 1970 
Edmonds-Karp Fattest path O(mlog ∪ (mlogn)) 1970 
Dinic Improved shortest path 𝑂𝑂(𝑚𝑚𝑠𝑠2) 1970 
Goldberg-Tarjan FIFO preflow-push 𝑂𝑂(𝑚𝑚𝑠𝑠log(𝑠𝑠2/𝑚𝑚))   1986 

Fig. 4. Diagram for example of flow networking with source (users) and sink (data). 
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Fig. 5. Results of the C# implementation of the maximum-flow algorithm for different nodes, edges and capacities 
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When the capacities of the edges are integers, 
the runtime of Ford-Fulkerson algorithm is 
bounded by the following notation: 𝑂𝑂(|𝐸𝐸|𝑓𝑓), where 
|𝐸𝐸| is the number of edges in the graph and 𝑓𝑓 is the 
maximum flow in the graph. In this case each 
augmenting path can be found in 𝑂𝑂(|𝐸𝐸|)  time. 
Other modified algorithms for finding the 
maximum flow in networking are developed to 
reduce computation time, but they require high- 
speed processors such as supercomputers to 
simulate the problem and calculate the optimal 
flow. In conclusion, we can say that the algorithm 
of Ford-Fulkerson guarantees to stop work if the 
edge capacity has a non-negative real value. 
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