
Bulgarian Chemical Communications, Volume 52, Issue A (pp. 220-224) 2020 DOI: 10.34049/bcc.52.A.218

220

Implementation of cryptographic algorithms via multithreading

N. Sinyagina
1
, V. Todorov

2
, G. Kalpachka

1
*

1South-West University “Neofit Rilski”, 66 Ivan Mihailov Str., 2700 Blagoevgrad, Bulgaria
2Sofia University “St. Kliment Ohridski”, 15 Tsar Osvoboditel Blvd., 1504 Sofia, Bulgaria

Received August 11, 2019; Accepted November 08, 2019

Speed of the encryption and decryption processes is one of the main factors when it comes to implementation of

cryptographic algorithms. The use of multithreading can significantly decrease the time required for these processes.

The article describes a research on multithreaded execution of the RSA algorithm and proposes a conceptual model for

implementation, outlining the main points of its software design. The choice of resources, methods and tools for the

application deployment has been made as well as an assessment of the used operating system and programming

language.

Keywords: Multithreading, Cryptographic Algorithms, Asymmetrical Encryption Algorithm RSA.

INTRODUCTION

In today’s information age the cyber-attacks
become more and more frequent and dangerous.
The Internet (the biggest unsecured global system
for data transmission) carries large amounts of data
that should not be accessible by anyone.
Cryptography is a necessary element for most of
the current online applications.

Despite high level of security, the methods for
encryption and decryption of data are expected to
also have minimum execution delay. Unfortunately,
security and speed are inversely proportional –
faster algorithms have more vulnerabilities, while
the secure ones need more computational resources.
The main goal when selecting a cryptographic

algorithm is finding the optimal balance between
execution time and security.

Fortunately, the technologies are rapidly
improving. The computer components are always
being upgraded for faster handling of data and
computational tasks. The cryptographic algorithms
also need to improve along with the technology.

In the recent years the parallel programming has
been established as the best approach for getting
higher speed in data processing. Most of the current
CPUs use architecture with more than one
operational thread [1]. The operating systems are
also adapted to multicore technology.

Software development on a multicore hardware
requires additional effort. Existing serial algorithms

need to be adapted to parallel solutions. The
breaking down of a process to its main components
and running them simultaneously is the main
principle of modern programming. Unfortunately,
not all algorithms are adapted and optimized for the
multithread architecture.

Data encryption is a typical example for an
algorithm, usually executed as a serial program.
Serial programs are directly dependent on the
frequency of the used CPU core. Such algorithms
do not benefit from multiple cores or threads.

The aim of this article is to research and analyze
the pros and cons of RSA implementation on a
multithread architecture. The main focus will lay on
evaluating the speed when running the same task on
a different number of threads.

MAIN STATES OF THE MULTITHREAD

ARCHITECTURE AND THE RSA
CRYPTOGRAPHIC ALGORITHM

Multithread architecture – hardware allowing
using multiple CPU cores or threads in parallel.
Multithread (or parallel) programming is the
method of coding, utilizing hardware running with
multiple cores and/or threads [2].

Cryptographic algorithm – method for data
conversion using standardized encrypting and
decrypting operations, aiming to protect the data
from unauthorized access. The RSA algorithm is an
example for a cryptographic algorithm and more
specifically an asymmetrical one.

In the middle of the first decade of the 21st

century the multithreaded architecture started to
rapidly appear in personal computers.

The main strength of the multithread
architecture is the multitasking. It allows the system
processes and the user applications to be physically
separated. The different tasks can be run actually in
parallel. Additionally, different jobs can be

assigned with different priorities. A lot of the
multithread hardware also provides a separation of
the cache memory between the different cores.

* To whom all correspondence should be sent.

E-mail: kalpachka@swu.bg 2020 Bulgarian Academy of Sciences, Union of Chemists in Bulgaria

N. Sinyagina et al.: Implementation of cryptographic algorithms via multithreading

221

With the increasing popularity of the mobile
technologies the problem with power consumption

raises its priority. The multithread architecture has
better energy utilization. If a given core is not used,
it can be set to idle until it is needed again, which
drastically reduces its power consumption.

On top of that, modern technology has almost
reached the physical limits of single core clock
speed. The only way to get more computational
power is to use additional processing units.

The pros of a multithread architecture are many
and are undoubtedly more than enough to
overwhelm the single thread systems but the cons
should also be considered [3].

Using multiple threads definitely expands the
possibilities for software development but also
raises some complications. New issues appear that

were previously not present on serial programs.
One of them is the access to shared memory. In
serial programming memory conflicts (a process
modifying another process’ memory during its
execution) are rare. In parallel programming it is
common for two or more processes to share and
modify the same memory. If the threads are not

properly synchronized problems can occur. To
avoid them, mutual exclusions and semaphores
need to be implemented to ensure proper system
operation. However, their management requires
more complex software solutions, as well as
additional resources for their implementation [4].

The order of executing tasks on the different
threads is also a big problem in multithread

architectures. Often the processes depend on one
another, which requires timeouts and checks for the
completion and integrity of the results of a given
job.

The separation of the processes and the tracking
of their execution require additional system
resources. The use of two cores instead of one does

not mean double performance. The complexity of
the job synchronization increases with the number
of threads used. There even are cases where
dividing a process into multiple ones actually slows
down its execution. When developing a
multithreaded software there always are resource
losses because of the needed bandwidth for the

communication and management of the sub tasks.
The multithread architectures fit the modern

requirements for development of processor
technologies but on the other hand they put more
weight on the software developers. Additionally, to
optimize any existing serial algorithms, they need
to be adapted for the new hardware architectures.
The task execution time does not depend as much

on the hardware as on the software optimizations
[5].

Published in 1977, the RSA algorithm remains
one of the most widely spread and secure
algorithms for data transfers over unsecured
channels.

The basic implementation of the RSA
algorithms does not require complex software
design but executing it with a high security level
requires significant computation power. Its

relatively slow run speed is the main reason why it
is not more widely spread [6].

The main plus of the RSA algorithm is the fact
that it is asymmetric. By definition it does not
require exchange of private information between
the parties at any point during the data transfer.
This is important because any sharing of private

information has a risk of directly violating the
security. On top of that, if the public key is big
enough in length, the cypher becomes virtually
impossible to crack.

METHOD OF IMPLEMENTING RSA ON
MULTITHREAD ARCHITECTURE

Proposal for speeding up the RSA process via
multicore architecture

The RSA algorithm is implemented in 4 steps
[7]:

1. Key generation – the recipient of the
encrypted messages should generate a pair of keys:
public and private. The public key can be freely
distributed while the private key should not be
shared. The public key is used for encryption while

the private key is used for decryption.
2. Sharing of public keys – after generating

the key pair, the public key should be delivered to
the sender of the encrypted messages. The sharing
can occur over unsecured channels because the
public key by itself does not present any security
risks.

3. Encryption of the message – anyone having
the public key can generate encrypted messages
using the RSA procedure [8].

4. Decryption of the message – the encrypted
message can be decrypted only with the private
key, which should only be available for the
recipient.

Method for multithreaded implementation of the
RSA algorithm

1. Creating a number of threads – a number (n)
of threads is created at the begging of the task. The
number n is predefined and corresponds to the

number of threads to be used. They cannot exceed
the number of threads the operating system can

N. Sinyagina et al.: Implementation of cryptographic algorithms via multithreading

access. All threads should be able to work in
parallel with each other.

2. Splitting the data for encryption or
decryption into chunks – the input for encryption
should be split in relatively even blocks, the
number of which should be the same as the number
of threads. Verifications need to be implemented to
make sure all data are collected and false data are
not accidentally added.

3. Passing the split data blocks for processing –

at the beginning of the execution of every thread
the position of the processed data needs to be
marked. This makes it possible to put the data back
in order when merging the output of all threads.

4. Running and managing the threads – all
threads are independent from each other. There
should not be any resource conflicts between them.

A process is created to check the state of the
separate threads during their execution: not started,
running or finished. This process should be highly
optimized and need minimum amount of computing
resources.

5. Data collection – the parallel executing of the
different tasks does not ensure that the processes

will finish in the same order they were started. The
data from all treads need to be collected and
assembled in the same order they were split. After a
thread finishes its task, its output is being saved in
its corresponding place according to the input
order. Once all threads are done and all data are
assembled, the process has successfully finished.

CONCEPTUAL MODEL

The main aim in the current article is a
presentation of the created application for
evaluating the speed during encryption and
decryption, using the asymmetrical RSA algorithm

on a multicore platform. Such task requires
implementation of multiple different sub blocks,
working successively.

The sub blocks are divided as follows:

 Starting block (input data set up) – this
block sets up the input parameters, which is

important for fast and easy modification of the
initial parameters for the different tests. The
comparison analysis requires a large number of
various tests with different input variables. The
input parameters consist of: size of the encryption
data, number of threads used, size of the encryption
key, number of consecutive tests to run with these
settings. This module lays the base for the

execution of the actual encryption and decryption
procedures.

 Test block (management of the testing

functions)–the comparison analysis of the test is

222

based on measuring the executing speed of the
encryption and decryption processes using different

hardware resources with the same input parameters.
It is responsible for running and managing all tests
with the requested input parameters.

 RSA process management block – connects
the actual RSA algorithm implementation with the
test functionalities. The main task of the block is

splitting the data, creation of encryption and
decryption threads, managing, collecting and
arranging the output data from the threads.

 Results block (time measurement and result
calculation) – measures the time needed for all
tasks, calculation of average result scores

(minimizing errors), output of the final test results.
The final result analysis is made based on the
output of this module.

 Blocks for RSA encryption and decryption
– executing of the base RSA encryption and
decryption functions.

The connections between the blocks are marked
on the algorithm flowchart (Fig. 1).

The algorithm starts with setting up the input
parameters. They are used for initial setting of the
test environment and do not change during the test
execution. The input variables are also used for pre-
calculation of other values that will remain constant

during all tests. These include: generation of a key
pair with a given length and generation of a random
character string (used for encryption), again with a
predefined length. The key pair, the data for
encryption (the message) and the input parameters
create the test environment. After creating it, the
actual test can begin.

After the Starting block has finished its task it

calls the Test block, passing all test environment
variables to it. Based on those parameters the Test
block prepares the tests for execution. For each test
the block calls the RSA process management block
once to encrypt and once to decrypt the data. Apart
from starting the tasks, the Test block also aims to
minimize the measurement error of the procedure.

To accomplish that it replays each test multiple
times allowing a possibility to even out any errors
caused by outside factors. After all tests are done,
the Results block is called to give the final test
results.

The most complicated part of the application is
the RSA process management block. It prepares the

input data and passes them in parallel to the
working threads. The flow of the block can be
summarized in four steps: splitting of the input data
in relatively equal chunks depending on the number
of used threads; creation of the threads; starting and
managing of the threads; collection and

N. Sinyagina et al.: Implementation of cryptographic algorithms via multithreading

223

arrangement of the output data of each thread.
These steps are similar for both encryption and

decryption functions.

Fig. 1. Algorithm flowchart.

Additionally, the RSA process management
block also has to communicate with the Results

block. The time needed for each step has to be
measured and saved. Since the steps are created
inside the RSA modules, time measuring functions
from the test blocks need to be implemented in the
RSA modules. The blocks for encryption and
decryption contain the main computing
functionalities of the RSA processes. The
possibility to use multiple processes for encoding

and decoding at the same time is a requirement for
the current implementation. The parallel processes
should not have any conflicts between them. The
encryption and decryption modules do not call out
other blocks after their completion. Instead, they
just notify their management block when their task
is completed.

The last part of the test application is the Results
block. It gathers the time information during the
execution of the program and outputs its final
version at the end of all tests. All results need to be
recorded, averaged and presented in an easy to read
form.

The output information consists of: a number of

threads for completing the task, time for
encryption/decryption and preparation of the test
environment. The end results can be used for
additional calculations and studies.

CONCLUSIONS

The implementation of the asymmetric
cryptographic RSA algorithm on multithread
architecture proves that using multiple parallel

threads for data encryption and decryption leads to
significant speed improvement of the algorithm.

The time for encryption and decryption is
reduced almost twice when executing the task on
two threads instead of just one. At eight threads, the
speed is more than three times faster than at one.
Even though the needed time does not decrease
linearly with the number of threads used, the results
show quite an improvement.

The only downside of the implementation is the

lack of improvement when working with small in
size messages. In that case the resources lost for
thread management actually slow down the actual
execution of the task.

Even with the proposed speed improvements,
the RSA algorithm still remains on the slow end of
cryptographic algorithms, especially compared to

the symmetrical ones. The reached level of
optimization might not make it a preferred choice
over its rivals but it will definitely make it a better
option for the cases where a high level of security is
required.

REFERENCES

1. J. Stokes, Introduction to Multithreading,
Superthreading and Hyperthreading, 2002,

https://arstechnica.com/features/2002/10/hyperthrea

ding/.

2. D. Marr, F. Binns, D Hill, G. Hinton, D. Koufaty, J.

Miller, M. Upton, Intel Technology Journal, 6(1), 4

(2002).

3. S. Casey, How to Determine the Effectiveness of

Hyper-Threading Technology with an Application,

2011, https://software.intel.com/en-us/articles/how-

N. Sinyagina et al.: Implementation of cryptographic algorithms via multithreading

224

to-determine-the-effectiveness-of-hyper-threading-

technology-with-an-application.

4. J. Hruska, Maximized Performance: Comparing the

Effects of Hyper-Threading, Software Updates,

2012.

5. Hyper-Threading Technology – Operating Systems

That Include Optimizations for Hyper-Threading

Technology, Intel, 2011.

6. H. Fadhil, M. Younis, International Journal of

Computer Applications, 87(6), 15 (2014).

7. J. Jonsson, B. Kaliski, Public-Key Cryptography

Standards (PKCS) #1: RSA Cryptography

Specifications Version 2.1, 2003,

https://www.ietf.org/rfc/rfc3447.txt.

8. B. Aleksandrov, Hybrid Cryptographic Methods

And Tools For Information Protection in the

Computer Networks and Systems, in:

UNITECH’2012 (Proc. Int. Sci. Conf.), Technical

University of Gabrovo, part I, p. 382, 2012.

