Supplementary materials

DOI: 10.34049/bcc.53.2.5329

Theoretical investigation of inclusion complex of 2-methyl mercapto phenothiazine with hydroxy propyl β-cyclodextrin by DFT approaches

Y. Mezari¹, L. Nouar²*, F. Madi², A. Guendouzi^{3,4}, I. Djellala², I. Lafifi², R. Merdes¹, A. Bouhadiba⁵, B. Houari³

¹Laboratory of Applied Chemistry, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 Mai 1945, Guelma, Algeria

²Laboratory of Computational Chemistry and Nanostructures, Department of Material Sciences, Faculty of Mathematical, Informatics and Material Sciences, University of 8 Mai 1945, Guelma, Algeria

³ Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Sciences, University of Saïda, Algeria

⁴ Laboratory of Applied Thermodynamics and Molecular Modeling, University Abu Bekr Belkaïd of Tlemcen, Algeria

⁵Laboratory of Computational Chemistry and Nanostructures, University of Skikda, Algeria

Scheme S1. Chemical structure of 2-Methyl Mercapto Phenothiazine. The numerals correspond to proton positions mentioned to in the 1HNMR analysis and the numerals correspond to other atoms positions mentioned to in the IR analysis.

Fig. 1S. The variation of the binding energy for both complexes.

Fig 2S. The Frequency (cm^{-1}) shift as a function of kinetic energy density G(r) (au).

Table 1S. The optimized structures by B97-D3/6-31G(d,p) and BP86-D3/6-31G(d,p) methods in gas and in aqueous phases and intermolecular C-H...O distance for the both complexes.

B97-D3/6-31G(d,p) in gas phase for the two complexes								
d(A°)	C1	d(A°)	C2					
O(32) - H (237)	2.4	O(32) - H(234)	2.6					
O(62) - H(238)	2.4	O(73) - H(236)	2.6					
O(74) - H(234)	2.4	O(74) - H(237)	2.7					
O(80) - H(236)	2.8	O(121) - H(234)	2.1					
O(135) - H(244)	2.6	O(183) - H(244)	2.2					
O(183) - H(240)	2.6	/	/					
O(194) - H(241)	2.8	/	/					
BP86-	D3/6-31G(d,p) in gas p	hase for the two compl	exes					
d(A°)	C1	d(A°)	C2					
O(32) - H(237)	2.3	O(73) - H(236)	2.6					
O(62) - H(238)	2.3	O(74) - H(237)	2.7					
O(74) - H(234)	2.3	O(96) - H(243)	2.8					
O(80) - H(236)	2.6	O(106) - H(242)	2.7					
O(135) - H(244)	2.5	O(121) - H(234)	2.2					
O(183) - H(240)	2.5	/	/					
O(194) - H(241)	2.6	/	/					
B97-D3	/6-31G(d,p) in aqueous	s phase for the two comp	plexes					
d(A°)	C1	d(A°)	C2					
O(62) - H(238)	2.6	O(32) - H(234)	2.6					
O(22) - H(234)	2.4	O(73) - H(239)	2.4					
O(80) - H(236)	2.8	O(121) - H(237)	2.4					
O(133) - H(235)	2.7	/	/					
O(135) - H(244)	2.6	/	/					
O(183) - H(240)	2.3	/	/					
O(194) - H(241)	2.5	/	/					
BP86-D3/6-31G	(d,p) in aqueous phase	e for gas phase for the t	wo complexes					
d(A°)	C1	d(A°)	C2					
O(22) - H(234)	2.1	O(32) - H(235)	2.8					
O(80) - H(236)	2.7	O(73) - H(236)	2.4					
O(85) - H(238)	2.7	O(74) - H(237)	2.5					
O(96) - H(237)	2.5	O(115) - H(239)	2.9					
O(133) - H(235)	2.7	O(121) - H(234)	2.2					
O(135) - H(244)	2.4							
O(183) - H(240)	2.3	/	/					
O(194) - H(241)	2.1	/	/					

Atoms	$\rho_{\rm N}({f r})$	<i>ρ</i> _{N-1} (r)	$\rho_{\rm N+1}({\bf r})$	$f(\mathbf{r})$	$f^{+}(\mathbf{r})$	<i>f</i> °(r)	$\Delta f(\mathbf{r})$
S1	0.319	0.207	0.546	0.227	0.112	0.170	-0.115
S2	0.282	0.226	0.416	0.134	0.056	0.095	-0.078
N3	-0.590	-0.595	-0.493	0.097	0.005	0.051	-0.092
C4	0.159	0.086	0.179	0.020	0.073	0.047	0.053
C5	0.144	0.083	0.162	0.018	0.061	0.039	0.042
C6	-0.245	-0.310	-0.199	0.046	0.065	0.055	0.018
C7	-0.231	-0.307	-0.216	0.015	0.076	0.046	0.061
C8	-0.301	-0.314	-0.279	0.022	0.013	0.017	-0.009
C9	-0.242	-0.255	-0.230	0.012	0.013	0.012	0.001
C10	-0.197	-0.259	-0.181	0.016	0.062	0.039	0.046
C11	-0.276	-0.291	-0.248	0.029	0.014	0.022	-0.014
C12	-0.252	-0.269	-0.237	0.015	0.017	0.016	0.002
C13	-0.281	-0.359	-0.201	0.080	0.078	0.079	-0.003
C14	-0.246	-0.331	-0.213	0.033	0.085	0.059	0.053
C15	-0.269	-0.334	-0.217	0.052	0.065	0.059	0.014
C16	-0.873	-0.869	-0.881	-0.008	-0.004	0.006	0.004

Table 2S. a. Condensed Fukui functions (fk^+, f_k^-) associated to the nucleophilic and electrophilic attacks, respectively for isoleted guest in aqueous phase.

Atoms	$\rho_{\rm N}({\bf r})$ C1/C2	$\rho_{N-1}(r) C1/C2$	$\rho_{N+1}(r) C1/C2$	f(r) C1/C2	<i>f</i> ⁺ (r) C1/C2	<i>f</i> °(r) C1/C2	$\Delta f(\mathbf{r}) = C1/C2$
S1	0.332 / 0.331	0.227 / 0.248	0.563 / 0.564	0.232 / 0.233	0.105 / 0.083	0.168 / 0.158	-0.127 / -0.149
S2	0.211 / 0.269	0.135 / 0.203	0.313 / 0.375	0.103 / 0.107	0.075 / 0.066	0.089 / 0.086	-0.027 / -0.041
N3	-0.586 / -0.584	-0.592 / -0.586	-0.481 / -0.481	0.105 / 0.103	0.007 / 0.002	0.056 / 0.053	-0.098 / -0.101
C4	0.161 / 0.156	0.117 / 0.090	0.177 / 0.175	0.016 / 0.019	0.044 / 0.066	0.030 / 0.043	0.027 / 0.047
C5	0.141 / 0.142	0.087 / 0.077	0.164 / 0.162	0.023 / 0.020	0.054 / 0.066	0.038 / 0.043	0.031 / 0.046
C6	-0.238 / -0.238	-0.346 / -0.319	-0.204 / -0.201	0.034 / 0.038	0.108 / 0.081	0.071 / 0.059	0.074 / 0.043
C7	-0.234 / -0.229	-0.266 / -0.296	-0.212 / -0.211	0.021 / 0.018	0.033 / 0.068	0.027 / 0.043	0.011 / 0.050
C8	-0.280 / -0.295	-0.309 / -0.308	-0.248 / -0.268	0.032 / 0.027	0.029 / 0.014	0.031 / 0.020	-0.002 / -0.013
С9	-0.244 / -0.248	-0.280 / -0.263	-0.228 / -0.232	0.016 / 0.016	0.036 / 0.015	0.026 / 0.016	0.021 / -0.001
C10	-0.199 / -0.206	-0.296 / -0.284	-0.179 / -0.186	0.020 / 0.020	0.098 / 0.078	0.059 / 0.049	0.078 / 0.058
C11	-0.274 / -0.275	-0.290 / -0.289	-0.244 / -0.244	0.030 / 0.031	0.016 / 0.014	0.023 / 0.023	-0.014 / -0.018
C12	-0.250 / -0.256	-0.262 / -0.270	-0.236 / -0.238	0.015 / 0.018	0.012 / 0.014	0.013 / 0.016	-0.003 / -0.004
C13	-0.272 / -0.280	-0.328 / -0.355	-0.198 /-0.206	0.074 / 0.073	0.057 / 0.075	0.065 / 0.074	-0.017 / 0.002
C14	-0.246 / -0.249	-0.290 / -0.326	-0.210 / -0.214	0.035 / 0.036	0.045 / 0.077	0.040 / 0.056	0.010 / 0.042
C15	-0.267 / -0.269	-0.325 / -0.337	-0.209 / -0.215	0.058 / 0.054	0.058 / 0.069	0.058 / 0.061	0.000 / 0.015
C16	-0.848 / -0.869	-0.857 / -0.867	-0.851 / -0.873	-0.003 / -0.005	0.009 / -0.002	0.003 / 0.003	0.012 / 0.003

Table 2S. b. Condensed Fukui functions (fk^+, f_k^-) associated to the nucleophilic and electrophilic attacks for guest in the two complexes C1/C2 in aqueous phase.

Atoms	$\rho_{\rm N}({ m r})$	$\rho_{\text{N-1}}(\mathbf{r})$	$\rho_{\rm N+1}({\bf r})$	<i>f</i> -(r)	$f^{+}(\mathbf{r})$	<i>f</i> °(r)	$\Delta f(\mathbf{r})$
S1	0.346	0.250	0.558	0.211	0.096	0.154	-0.115
S2	0.312	0.242	0.471	0.158	0.071	0.115	-0.088
N3	-0.584	-0.584	-0.504	0.080	0.000	0.04	-0.080
C4	0.163	0.100	0.176	0.013	0.063	0.038	0.050
C5	0.149	0.097	0.158	0.010	0.052	0.031	0.042
C6	-0.237	-0.291	-0.205	0.032	0.054	0.043	0.022
C7	-0.222	-0.285	-0.220	0.002	0.063	0.033	0.061
C8	-0.302	-0.309	-0.288	0.014	0.006	0.010	-0.008
C9	-0.234	-0.240	-0.226	0.008	0.007	0.007	-0.001
C10	-0.192	-0.255	-0.183	0.009	0.063	0.036	0.054
C11	-0.275	-0.285	-0.252	0.023	0.010	0.017	-0.014
C12	-0.243	-0.254	-0.230	0.013	0.010	0.012	-0.003
C13	-0.271	-0.348	-0.197	0.074	0.077	0.075	0.003
C14	-0.241	-0.323	-0.200	0.041	0.082	0.062	0.042
C15	-0.261	-0.328	-0.207	0.054	0.067	0.060	0.012
C16	-0.876	-0.868	-0.888	-0.012	-0.008	0.010	0.005

Table 3S. a. Condensed Fukui functions (fk^+, f_k^-) associated to the nucleophilic and electrophilic attacks, respectively for isoleted guest in gas phase

Table 3S.b. Condensed Fukui functions (fk+, fk-) associated to the nucleophilic and electrophilic attacks for guest in the two complexes C1/C2 in gas phase.

Atoms	$\rho_{\rm N}({f r})$	<i>ρ</i> _{N-1} (r)	$ ho_{\rm N+1}({ m r})$	$f(\mathbf{r})$	<i>f</i> ⁺ (r)	$f^{\circ}(\mathbf{r})$	$\Delta f(\mathbf{r})$
S1	0.335 / 0.352	0.244 / 0.260	0.562 / 0.562	0.227 / 0.210	0.09 / 0.092	0.159 / 0.151	-0.137 / -0.118
S2	0.256 / 0.286	0.163 / 0.204	0.427 / 0.427	0.169 / 0.142	0.096 / 0.082	0.132 / 0.112	-0.073 / -0.060
N3	-0.604 / -0.578	-0.611 / -0.577	-0.497 / -0.497	0.107 / 0.081	0.007 / -0.001	0.057 / 0.040	-0.100 / -0.082
C4	0.162 / 0.157	0.164 / 0.114	0.167 / 0.167	0.006 / 0.010	-0.002 / 0.043	0.002 / 0.027	-0.008 / 0.033
C5	0.146 / 0.142	0.124 / 0.102	0.164 / 0.164	0.018 / 0.011	0.023 / 0.052	0.021 / 0.032	0.005 / 0.041
C6	-0.230 / -0.227	-0.299 / -0.295	-0.203 / -0.203	0.026 / 0.024	0.069 / 0.068	0.048 / 0.046	0.043 / 0.044
C7	-0.218 / -0.225	-0.211 / -0.279	-0.219 / -0.219	-0.001 / 0.007	-0.007 / 0.054	0.004 / 0.030	-0.006 / 0.047
C8	-0.286 / -0.285	-0.349 / -0.295	-0.267 / -0.267	0.020 / 0.018	0.062 / 0.010	0.041 / 0.014	0.043 / -0.008
C9	-0.233 / -0.239	-0.298 / -0.252	-0.228 / -0.228	0.005 / 0.012	0.065 / 0.012	0.035 / 0.012	0.06 / 0.001
C10	-0.190 / -0.223	-0.266 / -0.279	-0.188 / -0.188	0.002 / 0.015	0.075 / 0.076	0.039 / 0.046	0.073 / 0.060
C11	-0.267 / -0.278	-0.339 / -0.289	-0.250 / -0.250	0.017 / 0.038	0.073 / 0.011	0.045 / 0.020	0.056 / -0.017
C12	-0.238 / -0.247	-0.309 / -0.257	-0.234 / -0.234	0.004 / 0.013	0.071 / 0.010	0.038 / 0.012	0.067 / -0.004
C13	-0.265 / -0.265	-0.277 / -0.327	-0.198 /-0.198	0.068 / 0.068	0.011 / 0.061	0.040 / 0.067	-0.056 / -0.006
C14	-0.240 / -0.242	-0.262 / -0.314	-0.202 / -0.202	0.038 / 0.040	0.022 / 0.072	0.030 / 0.056	-0.016 / 0.032
C15	-0.257 / -0.263	-0.301 / -0.325	-0.203 / -0.203	0.054 / 0.060	0.044 / 0.062	0.049 / 0.061	-0.010 / 0.002
C16	-0.855 / -0.865	-0.867 / -0.866	-0.872 / -0.872	-0.018 / -0.007	0.012 / 0.001	0.003 / 0.003	0.029 / 0.008

Table 4S. The calculated excitation energies, oscillator strength (*f*) and wavelength (λ) and configurations of excitations.

	λ(nm)	E(eV)	f	Configuration
C1 complex	492.51	2.9414	0.0078	H - 1→L (97.24%)
	368.95	3.3605	0.0599	H-3→ L (4.10%)
				H→L+1 (97.24%)
C2 complex	410.59	3.0196	0.0046	H→L (96.97%)
	387.30	3.2013	0.0721	H-1→ L (7.47%)
				H→L+1 (89.72%)
	362.81	3.4174	0.0549	H→L+1 (90.53%)

Table 5S. Experimental and calculated of Wave numbers (cm⁻¹) and assignments for the bands

Wave numbers (cm ⁻¹)								
Peak assignments	2MMPT calculated	2MMPT experimental	HPβ-CD calculated	HPβ-CD experimental	C1 calculated	C2 calculated	2MMPT@HPβCD experimental	
Aromatic O-H stretching	/	/	3398	3404	3430	3435	/	
Aromatic C-H stretching	2982	2925	2950	2931	2960	2952	2928	
Aromatic C-O stretching	/	/	1120	1160	1121	1122	/	
Aromatic C=C stretching	1453	1468	/	/	1457	1462	1466	
Aromatic C-C stretching	1423	1425	1378	1370	1424	1424	1424	
Aromatic C-H bending	900	802	921	/	920	920	/	
Aromatic C-N stretching	1335	1309	/	/	1337	1333	/	
Aromatic N-H stretching	3500	3384	/	/	3373	3369	3393	
Aromatic N-H bending	1584	1590	/	/	1590	1570	1642	
Aromatic C-S stretching	550	594	/	/	536	523	/	
Aliphatic C-S-CH ₃ stretching	690	615	/	/	665	706	615	

observed in the FTIR spectra of 2MMPT, HPβ-CD and 2MMPT@HBCD inclusion complexes.

Å	ΔE _{Pauli}	ΔE _{Elstat}	ΔE _{Orb}	ΔE_{Disp}	$\Delta E_{ ext{Total Bonding}}$				
C1 Complex									
6	2459.37	-26728.69	-2115.08	-298.83	-26683.23				
5	2454.28	-26732.76	-2278.46	-300.54	-26857.48				
4	2450.91	-26718.74	-2270.58	-292.88	-26831.29				
3	2448.68	-26705.61	-2273.07	-294.69	-26824.69				
2	2474.15	-26757.11	-2215.30	-315.71	-26813.97				
1	2470.94	-26765.77	-2167.82	-313.71	-26776.36				
0	2468.60	-26727.19	-2179.23	-309.82	-26747.64				
-1	2448.64	-26700.56	-2345.36	-290.80	-26888.08				
-2	2468.31	-26722.32	-2172.67	-307.49	-26734.17				
-3	2470.84	-26731.38	-2183.06	-312.46	-26756.06				
-4	2475.48	-26731.85	-2165.12	-312.21	-26733.7				
-5	2464.34	-26734.20	-2174.28	-307.38	-26751.52				
-6	2463.42	-26718.62	-2207.64	-304.49	-26767.33				
			C2 Complex						
6	2439.21	-26702.09	-2347.90	-284.76	-26895.54				
5	2438.63	-26709.98	-2307.15	-287.38	-26865.88				
4	2426.62	-26683.60	-2425.12	-277.32	-26959.42				
3	2447.55	-26727.71	-2320.42	-292.21	-26892.79				
2	2461.39	-26706.51	-2313.99	-299.74	-26858.85				
1	2462.01	-26729.10	-2263.70	-306.23	-26837.02				
0	2474.42	-26726.47	-2148.36	-313.60	-26714.01				
-1	2469.86	-26719.15	-2268.07	-309.50	-26826.86				
-2	2460.83	-26722.59	-2259.02	-303.85	-26824.63				
-3	2458.61	-26721.30	-2247.54	-301.99	-26812.22				
-4	2461.62	-26727.34	-2221.97	-304.79	-26792.48				
-5	2457.51	-26722.57	-2230.32	-302.33	-26797.71				
-6	2471.13	-26741.01	-2182.99	-310.91	-26763.78				

Table 6S. The EDA analysis at functional BP86-D3/6-31G(d,p) for the both complexes.