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This review aims to analyze and summarize the achievements to date, including some authors' results, in the field of 

analytical modeling of stresses and strains in layered nanocomposite structures, as well as the conditions under which 

delamination is observed in such structures. The work is organized as follows: Section 1: Brief review on papers for 

analytical modeling of nanocomposites (2000-2023): Section 2: Examples of analytical solutions applications to 

nanocomposites, Section 3: 2D analytical solutions for nanocomposites, and Conclusions.  
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BRIEF REVIEW ON PAPERS ABOUT 

ANALYTICAL MODELING OF 

NANOCOMPOSITES 

During the last two decades a boom in 

publications - 193,409 publications selected from 

Web of Science Core Collection, dedicated to 

nanocomposites [1] (Fig. 1 (a)) has been seen. It can 

easily be verified that the largest share is occupied 

by the works that are mainly experimental and 

investigate the methods of synthesis of new, mainly 

polymer nanocomposites. A significant part is 

devoted to the study of their properties and 

characteristics (mechanical, optical, electrical and 

thermal conductivity, etc.). Another reference shows 

that only 392 out of 16,152 articles include modeling 

in addition to the experiment [2]. Given the 

increasingly wide application of nanocomposites in 

various industrial areas, the number of publications 

concerning modeling of the behavior of 

nanocomposites is also increasing - 21,776 

according to Web of Science, 570 of which are 

review articles [3]. In most cases, commercial 

software products such as ANSYS, Abaqus, 

COSMOS, etc., are used in the modeling of 

nanocomposites, as complex geometries can be 

simulated under different types of loads on the 

nanocomposite; the disadvantages of this type of 

modeling are the time for mesh preparation and 

execution, sometimes the convergence of the chosen 

numerical method in the software; modeling a so-

called "jump" in any of the sought-after quantities in 

a given cell/s of the mesh also creates a problem. 

From a total of 1,326 published articles matching the 

keywords “nanocomposites” and “finite element 

modeling” [4], 27 are review articles. 

In contrast to numerical methods, analytical 

methods for obtaining solutions for stresses, strains 

and other characteristics in nanocomposites are 

much faster, easier and convenient to use. Their 

disadvantages are usually the low dimensionality of 

the solutions, as well as the simplification of the 

geometry of the considered nanocomposite and the 

types of loads. 

As far as the author’s of the present work 

knowledge, there is no published review specifically 

dedicated to analytical methods for stress/strain 

modeling in nanocomposite structures, especially 

those in which the nanomaterial is considered as a 

separate layer. Given the rapid pace of research in 

the field and the ever-widening application of 

nanocomposites in industry, such a summary, 

accompanied by relevant analysis, would be helpful 

in future applications of layered nanocomposite 

structures, especially under specific loads. 

A search was made in the available literature 

sources on the internet with keywords “analytical 

solution+nanocomposite” and “shear-

lag+nanocomposites”. The result after 2004 to the 

present (by year) is graphically displayed in Fig. 1 

(b). 
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Fig. 1. Number of articles found by keywords: (a) “nanocomposites”, (b) “analytical

solution+nanocomposites+shear-lag” during 2005-2023. 

In Fig. 1 (b) the articles with results of the author 

of the present work (co-authored with colleagues) 

during the considered period are also included. From 

the figure it can be seen that the interest in this type 

of modeling systematically increased from the 

discovery of graphene until 2016, followed by a 

slight decline and the interest resumed again in the 

last 4-5 years. Along with graphene and the created 

nanocomposite structures based on graphene, whose 

applications are numerous and in various fields such 

as electronics, medicine, automotive, construction, 

energy, optics, etc., new 2D nanomaterials are also 

entering the scene - such as black phosphorus 

(2014), borophene (2015), MoS2, WS2, as well as 

hybrid combinations thereof like graphene/MoS2 

[5], which have yet to be extensively studied and 

modeled. 

The classification of the types of analytical 

models covered in the reference can be done in 

several ways. If they are grouped by the 

dimensionality of the model, one-dimensional, two-

dimensional and three-dimensional models can be 

distinguished. If they are grouped according to the 

applicability in different zones –elastic and plastic 

for changes in stresses and deformations - the 

models can be divided into linear-elastic and 

cohesive (plastic). 

According to the dimensionality classification of 

the models covered in the reference, one-

dimensional analytical models occupy a major share, 

and they are also those that refer to modeling 

primarily in the field of elasticity. A previous 

publication asset with the participation of the author 

of the present work contributes to this by using 

analytical one-dimensional model solutions to 

describe the behavior of two-layer composites 

subjected to static/dynamic loads under conditions 

of varying temperature, humidity and electric field 

[6-17]. Especially for nanocomposites, the 

developments with the author's participation cover 

one-dimensional solutions of a cohesion model for 

statically loaded graphene nanocomposites [13, 17] , 

as well as two-dimensional solutions obtained by the 

2D stress-function variational method [18-24] for 

statically loaded nanocomposites incorporating 

graphene, WS2, MoS2 to different polymer matrices. 

The obtained solutions were studied by parametric 

analysis regarding the influence of different factors 

on delamination in the different types of composites 

and nanocomposites. 

The models that give an analytical solution for 

higher dimensionality and/or outside the elastic 

region are very few, which is explainable due to the 

complexity in the formulation of the boundary value 

problems and in the computations in deriving the 

solutions, for example [25-28]. With the exception 

of [29], no other publications were found offering 

analytical solutions for the stresses/strains in 

nanocomposites under combined (mechanical and 

temperature) loading. An example of the joint use of 

analytical and/or numerical solutions for more than 

1D in elastodynamics can be seen in [30-33]. 

In the present review, the emphasis is placed on 

the one- and two-dimensional analytical solutions 

derived for the stresses and strains in statically 

loaded nanocomposites. In the following sections, 

various examples of the available analytical models 

– 1D and 2D, in both the elastic and cohesive

domains – will be reviewed and discussed.

EXAMPLES OF ANALYTICAL SOLUTIONS 

APPLIED TO NANOCOMPOSITES 

The most common used one-dimensional and 

linear elastic model for both composite and 

nanocomposite structures is the so-called shear-lag 

model or method. Its first appearance in the literature 

was the work of Volkersen [34], who gave an 

analytical description of the stress transfer σ in a 

joint-type structure (single-lap joint) loaded on both 

sides as follows (Fig. 2). 

Here, the main idea is that the connecting 

adhesion layer serves to transfer the load to the 

individual parts (arms) of the structure, and this 
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happens at the expense of the shear stresses , which 

distribute the load along the length of the arm 

connecting part l (Fig. 2). 

(с) 

Fig. 2. Illustrative scheme of (a, b) Volkersen's shear-

lag model, and (c) the stress-strain diagram [35]. 

In the scheme of Fig. 2 (a) and (b), it is 

graphically shown how the predictions of this model 

look analytically for the stress σ in the two arms of 

the structure, as well as the interfacial shear stress  

in the cases of materials with different flexibility. 

Volkersen offers the following analytical solution 

for the interphase shear stress  for the joint structure 

(Fig. 2): 
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As can be seen, the one-dimensional analytical 

solution (1) depends only on x, but it also depends 

nonlinearly on the material characteristics of the 

structure - Young's modulus E, the shear modulus G, 

and also on the geometry of the structure - the 

thicknesses of the two arms t1 , t2 and the connecting 

part h, the length of the connecting (total) part l, as 

well as on the magnitude of the applied force P. This 

solution is derived under specific assumptions – 

neglecting torsion and bending, as well as normal 

stresses in the structure, also the effects of shrinkage 

due to different values of Poisson's number, as well 

as assuming perfect fit in l and linear-elastic 

properties for the materials in the structure. Despite 

the idealized formulation, this solution has its place 

in hundreds of publications and has been 

successfully validated with other models and, most 

notably, with experimental data in the elastic domain 

of applied loads [35].  

Later, Cox [36], based on Volkersen's solution, 

revised and derived the shear-lag model and, 

accordingly, an analytical solution for σ and  for 

fiber-matrix composite structures (composite 

materials containing threads or fibers, with in order 

to increase their resistance and strength). From Fig. 

3 it can be seen that the solutions for σ and  again 

depend on the applied external deformation 1, on 

the material properties of the thread and the matrix 

(substrate) Еf, Gm, as well as on the geometry of the 

object – length L, radius of the thread a and the 

substrate R (a cylindrical representative volume of 

the composite was considered), the thread size ratio 

s=L/a. This model obeys the same assumptions as 

the previous one and has been used just as widely, 

especially in composite structures [35]. After the 

emergence of nanocomposites with embedded nano-

threads/fibers, especially the embedding of carbon 

nano-tubes in various matrices, we can trace the use 

of the Cox model in the following several works [37-

40]. In [37], Fig. 4, left, the solutions for the stresses 

σ and  are in cylindrical coordinates and in 

exponents, with respect to the carbon nanotube 

length (along the z-axis), which is mathematically 

similar to Cox (Fig. 3), since as hyperbolic sines and 

cosines are expressed with exponents, which is also 

confirmed by the graphical representation of σ and  

in both figures. In the work [38], to the analytical

solution for the interfacial shear stress =(q0-

q1+q2) the effects of additional residual stresses q0, 

q1 and q2, arising respectively due to the different 

coefficients of thermal expansion of the two 

materials, are added, from the difference in Poisson 

numbers, and from the action of cohesive Van der 

Waals (WdW) forces (Fig. 4, right). In both 

examples, the solutions contain the geometric and 

material characteristics of the materials making up 

the nanocomposites, as well as the external load, and 

in [38] other characteristics such as thermal 

expansion coefficients, Poisson's ratios and cohesive 

forces are also considered. It is worth to note, that in 

[38] an external influence other than mechanical is
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considered and accounted for in the model solution. 

The use of a simpler basic model to which analytical 

solutions can be added/ quantifying additional 

effects is a well-known mathematical approach that 

gives great results, but is unfortunately too rarely 

used, mostly due to difficulties in finding data on 

additional effects and quantifying them. Kundalwal 

et al. [39] presented a three-phase (three types of 

materials) shear-lag model for a polyamide 

nanocomposite containing a carbon filament to 

which carbon nanotubes were attached in a brush-

like manner; the nanocomposite is subjected to a 

three-dimensional static load (Fig. 5, left).  Here the 

solutions for the stresses σ and  are again expressed 

as a combination of hyperbolic sines and cosines and 

integration constants. In the same work, a 

comparison of the results obtained by the authors 

with results of the finite element method (FEM) is 

made; the agreement is more than good, confirming 

the use of analytical solutions in modeling even for 

three-phase nanotube/matrix nanocomposites. 

In the publication of Hu et al. [40], one can again 

observe the addition of additional modeling of the 

interfacial shear stress  to the basic shear-lag 

solutions. In particular, the interphase boundary is 

modeled by a spring layer model with its own 

stiffness coefficient K, which is reflected in the 

coefficient α of the exponents in the solutions (Fig. 

5, right).  

In practice, this means that the interphase shear 

stress does not transmit the transfer of the applied 

external stress directly and proportionally, but is 

limited by the value of the coefficient K. 

After the discovery of the stable two-

dimensional form of graphene (2004, although its 

existence is known since 1930), attempts were made 

to model the behavior of graphene nanocomposites, 

where the nanomaterial is a 2D two-dimensional 

lattice/flake with an atomic thickness of 0.35 nm, 

incorporated or deposited in/on other material/s. The 

beginning of the modeling of graphene and other 

nanocomposites by the application of the shear-lag 

model to analytically describe the behavior of σ and 

 was laid with the pioneering works of Nobel Price 

Laureates Novoselov and Geim. In their works [41, 

42], shear-lag was applied for the first time to a 

Graphene/SU-8/PMMA nanocomposite subjected to 

static axial external deformation (Fig. 6). 

The solutions for the interfacial tension  and for 

the strain in the graphene layer ef  are again described 

by hyperbolic sines and cosines for external loading 

up to 0.4% successfully with the shear-lag model. At 

an external strain of 0.6%, however, the graphene 

begins to wrinkle, that is, the behavior becomes non-

linear and the model cannot correctly describe the 

experimental data. 

Fig. 3. Cox model and solution for fiber/filament-incorporated composites [35]. 

Fig. 4. Application of the Cox model to fiber nanocomposites: left [37], right [38]. 

Gao and Li, 2005 – SWCNT/polymer

Solutions for axial and shear stresses in the reinforced region (-Lt < z < Lt), 

Solution in the pure matrix 

regions 

(-L < z < -Lt and Lt < z < L)
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Fig. 5. Application of the Cox model to fiber nanocomposites: left [39], right [40]. 

Fig. 6. Illustrative scheme of σ and  solutions and nanocomposite–shear-lag [41,42]. 

α depends now on the parameter K –
interface spring stiffness parameter
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Fig. 7. Illustrative scheme of ε and  solutions and graphics - shear-lag [43].  

 

Shortly thereafter, Xu et al. [43] investigated the 

influence of the length of the graphene flake/layer on 

the value of the interfacial shear stress and on the 

strain in the layer, again with shear-lag (Fig. 7). They 

found with parametric analysis that the length of the 

graphene layer significantly affects the stress 

transfer between the layers of the nanocomposite and 

specifically,  and the strain in graphene . As the 

loading in the PET substrate increases, the strain  in 

the graphene linearly increases until reaching a 

sliding mode and a retention plateau, after which 

exfoliation of the graphene flake/layer follows. As 

the length of the graphene flake/layer increases from 

20 to 10000 m, the interfacial tension  decreases 

until complete exfoliation occurs. The interfacial 

mechanical properties of graphene less than 20 μm 

long are extremely sensitive to its length, while for 

graphene longer than 1000 μm they are no longer 

size dependent. After Gong's breakthrough, more 

researchers are still successfully using the shear-lag 

model to describe the behavior of σ and  in 

nanocomposites with a combination of different 2D 

nanomaterials and polymer matrices (PET, PMMA): 

tungsten disulfide WS2 [44], hybrid nanocomposites 

– a combination of MoS2 and graphene [5], boron 

nitride hBN [45], as well as the titanium carbide 

Ti3C2 known in the literature as Mxene [46]. An 

overview of the obtained results can be briefly 

followed in Figs. 8 ÷10. As can be seen from the 

figures, the solutions of the shear-lag model for the 

deformations in the nanomaterial layer successfully 

describe the experimentally measured data in the 

elastic region of the externally applied mechanical 

loads. Given the different mechanical properties of 

the investigated nanocomposites, and in particular, 

the choice of materials in the nanocomposite, the 

applicability limits of the model will also depend on 

this. It also turns out that the thickness of the 

nanomaterial layer is significant – for example, in 

[44] for the same applied external strain of 0.55%, 

the model solution for the strain in the WS2 

monolayer well describes the experimental data, but 

with several WS2 layers this is no longer so, as a 

tendency to form wrinkles in the middle of the layer 

appears (Fig. 8, right, (d)), because of the 

interactions between the nanomaterial layers.  

In Fig. 9 the effect of the interaction of two 

different nanomaterials – graphene and molybdenum 

disulfide – on the transfer of stress from the PET 

polymer layer to the upper two layers is observed. It 

can be seen that in sample I of Fig. 9 the transfer is 

100% from polymer to MoS2 for loadings up to 

1.2%, while in sample II with two nanolayers, the 

transfer drops to 75% from MoS2 to graphene even 

at 1% external loading; as the external load 

increases, the stress transfer between the layers 

continues to decrease. This effect, found 

experimentally, is due to the presence of a second 

L=50m

L varies between 
20 m – 1 cm
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interphase layer in sample II [5]. Du et al. [5] 

confirmed their experimental observations with 

simple model, based on the force balance equations 

and superposition of solutions. In Fig. 10, top, it can 

be seen for the Ti3C2M-XENE/PMMA 

nanocomposite that the model deformation in the 

Ti3C2 layer matches well with the experimental data 

for 0.2% external loading; at 0.4%, however, more 

substantial differences begin to appear in the plateau 

region for  [46]. When modeling the deformation in 

a 50-layer (17 nm) boron nitride nanocomposite 

hBN /PMMA (Fig. 10, bottom), the limits of the 

external load, up to which the model well describes 

the experiment, are even lower - up to 0.15% 

external load [45]. 

 

 
Fig. 8. Illustrative scheme of ε and  solutions and graphics - shear-lag [44].  

 

 
Fig. 9. Illustrative scheme of ε and  solutions and graphics - shear-lag [5].  

Specimen I: MoS2

Specimen II: Gr/MoS2
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Fig. 10. Illustrative scheme of ε and  solutions and graphics - shear-lag, (top - [46], bottom – 

[45]).  
 

As mentioned, the shear-lag model and its 

variations considered so far give solutions valid in 

the elastic region of external loads. When loading 

above this zone (up to 0.2 ÷ 0.4%, depends on the 

material) a different behavior is observed - the 

materials begin to slip and slide and the relationship 

between stresses and deformations is no longer 

linear (Fig. 2 (c), stress-strain diagram [47]). After 

this yield point, the stresses again non-linearly 

increase until the so-called fracture mode of the 

respective material/structure is reached. In order to 

analytically describe the stresses and strains outside 

the elastic zone, one-dimensional models operating 

in the yield zone were created. These are the so-

called partial debonding model and total debonding 

model [48]. These models were developed to 

describe the stresses in fiber/matrix reinforced 

composites and were later used for nanocomposites 

[49]. In the partial debonding model, debonding is 

assumed to start at a distance ml/2 from the matrix 

ends, where m is a number between 0 and 1, and 

represents the dimensionless length of the debonded 

portion. Perfect adhesion is assumed in the central 

part of the thread. The stresses - axial σf and shear , 

are determined by equations (2), and are graphically 

presented in Fig. 11. 
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                        (2) 
In the total debonding model, when the fiber is 

detached from the supporting matrix along its entire 

length, i.e., m=1, and if s is the quotient of the length 

and diameter of the fiber, we will have the following 

expressions for σ and  , and respectively the graphs 

(Fig. 11): 

                                                       (3) 

 

 
Fig. 11. Illustrative scheme of σ and  solutions for the 

partial debonding (top) and total debonding models 

(bottom) [48]. 

In cases where we are between the yield and 

failure limits, other models are applied to predict the 

stresses and strains in nanocomposites - the so-called 

cohesive or plastic models, also nonlinear shear lag 

type, which also provide analytical solutions in these 

areas [50-54]. The next few figures illustrate the 

results obtained by the aforementioned researchers. 

Given the rather voluminous output of solutions for 

these models, they are presented schematically here. 

,max 2f is =
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Fig. 12. Illustrative scheme of ε and  solutions and graphics – non-linear shear-lag for graphene/PET, [50]. 

 

As can be seen from Fig. 12, the solutions for  

and  closely resemble those of ordinary shear-lag as 

combinations of hyperbolic sines and cosines. The 

difference is in the value of the β parameter in the x 

argument. Here, an additional constant km is also 

included in the parameter, which represents the 

effective stiffness of the polymer surface. The 

analogous parameter ns in shear-lag (see Fig. 6) does 

not take into account this effect, and here the sliding 

of the interfacial boundary is also taken into account 

when the interfacial tension exceeds a certain critical 

value (for the considered nanocomposite it is at 1.2% 

external load). The graphs for the deformations in 

the graphene layer above the elastic zone are 

described very well by the nonlinear shear-lag at 

values of the external strain up to 3%. A similar 

result was achieved with the same nonlinear model 

in [51] for a graphene/cobalt nanocomposite (Fig. 

13). In this work, the parameter β is again used, but 

in it, in addition to the km-like constant C, the 

material characteristics of the substrate (cobalt) are 

also included. This model accounts for the onset of 

sliding and, accordingly, the formation of wrinkles 

in graphene after a rather low level of external 

loading of 0.2%, due to the poor adhesion between 

graphene and cobalt. An application of two 

nonlinear models, as well as the finite element 

method to describe the deformations in graphene 

above the yield zone can be seen in the work [52] 

(Fig. 14). A cohesive model with shear-lag analysis 

was combined, and 5 behavior modes were 

established for the strain distribution for an external 

load of up to 3.3%. Applying this modeling approach 

allows determining important characteristics for the 

nanocomposite above the elastic limit such as 

interface stiffness, shear strength, and fracture 

toughness. A parametric analysis was also 

performed, which showed that higher interface 

stiffness and/or shear strength lead to higher stress 

transfer efficiency, while higher fracture toughness 

can delay debonding (delamination). 

As can be seen from the graphical comparison of 

the solutions in Figs. 15 and 16 with the 

experimental data or with the FEM, the analytical 

solutions created to model the deformations and 

interfacial stresses in different types of 

nanocomposites outside the elastic zone do very 

well. As can be seen from Fig. 12, the solutions for 

 and  closely resemble those of ordinary shear-lag 

as combinations of hyperbolic sines and cosines. The 

difference is in the value of the β parameter in the x 

argument. 
 

2D ANALYTICAL SOLUTIONS FOR 

NANOCOMPOSITES 
 

In contrast to the variety of 1D models and 

analytical solutions, described in the preceding 

section, the 2D models offering analytical solutions 

for layered nanocomposite structures are counted on 

the fingers. There are a lot of two-dimensional 

analytical solutions, offered by continuum 

mechanics, plate theory, etc., used for describing the 

behavior in layered composite structures (single lap-

joint, double lap-joint) [55-57] at mechanical and/or 

temperature loading, but not for those incorporating 

2D nanoadditives as layers. 

Jiang et al., 2013 – Graphene/PET
Non-linear shear-lag
- Take into account interfacial sliding when the 
interfacial shear stress exceeds a critical value

where km is the effective surface stiffness 
of the elastomer (assumed to be a constant).



T. St. Petrova: Analytical modeling of stresses and strains in layered nanocomposite structures - opportunities and … 

358 

 
 

Fig. 13. Illustrative scheme of ε and  solutions and graphics – non-linear shear-lag for graphene/cobalt [51]. 

 
Fig. 14. Illustrative scheme of ε solutions and graphics – cohesive model, shear-lag and FEM for graphene/PET [52].  

The interfacial shear strength critical 
τc of 2.2±0.3 MPa

There is a critical strain level of 0.2% beyond 
which sliding will occur, β = 1⋅106 m-1.

Gs - the shear modulus of the substrate, 

ts - the thickness of the substrate =50 m
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Fig. 15. Illustrative scheme of ε solutions and graphics – non-linear shear-lag for Graphene/PMMA [53]. 

 

 
 

Fig. 16. Illustrative scheme of ε and  solutions and graphics – non-linear shear-lag, bi-linear shear-lag , FEM, for 

elastoplastic nano-fiber AgNW/PDMS [54].  
 

Several works were also found on so-called nano-

adhesives (nanoclays), nano-additions of graphene 

and other 2D nanomaterials to various adhesives, in 

order to strengthen single-lap joint structures [58-

60]. For some biological materials such as bone or 

nacre (generic nanocomposite structure with 

staggered alignment of mineral platelets in protein 

matrix) [61] a perturbation method was applied for 

analytically solving the 2D displacement and stress 

fields of such type of nanocomposite structure under 

uniaxial tension. The disadvantage of all these 

models is that interface layer between matrix and 

nano-layer are not taken into account. In 1D models 

like shear-lag the interface is represented as a line 

without considering its thickness and material 

properties. Meanwhile, it is proved that this interface 
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layer exists and should not be ignored when 

modeling layered nanocomposites, analytically or 

numerically [62-64]. 

From 2019, our team started to work trying to fill 

this gap and our contribution to the 2D analytical 

modeling of stresses and strain fields in layered 

nanocomposites with interface layer is expressed by 

the publications [19-24]. A detailed description of the 

2D method (stress-function variational method) used 

to obtain analytical solutions for the two-dimensional 

stresses and strains in three-layer nanocomposite 

structures is given therein. In short, the applied 

method allows to obtain and solve an analytical 

differential equation of 4th order with respect to the 

unknown axial stress in the first layer (nanolayer). 

All other stresses in the layers are expressed by this 

solution/s and its derivatives. Two types of model 

solutions for the axial stress in the nanolayer are 

derived, depending on the geometry of the three-

layer nanocomposite and its material properties: 
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All other stresses in the layers are expressed by 

one of the abovementioned solutions and its 

derivatives, as:  
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          (6) 

The 2D strains in each layer are expresses by 

equations (4)÷(6) as: 

( )( ) ( )

( )

( )

1 i i

xyi

xy iE

 


+
=

                                                   (7) 

  

 

For convenience, only the main results and the 

validation of our model solutions with literature 

experimental and model data will be given below. 

The results of the parametric analysis are also 

presented, which, based on the study of the 

sensitivity of the model solutions, makes it possible 

to determine the factors affecting the delamination in 

the investigated nanocomposite structures, given 

their wide application in various industrial sectors.  

Validation 

The validation of the model results obtained by 

us for the stresses and strains, with data from 

literature, is performed for the following 

nanocomposite structures: graphene/SU-8/PMMA – 

Gong [42], WS2/SU-8/PMMA – Wang [44], 3-

layered graphene/SU-8/PMMA - Androulidakis et 

al. [65] and Du et al. [5] for MoS2/interface/PET and 

graphene/MoS2/ PET. The results of the comparison 

of the obtained solutions can be seen below in Figs. 

17 ÷21. 

The validity of the proposed method and 

analytical solutions is only within the elastic region. 

It is worth mentioning that this region varies for 

different types of 2D nanomaterial. At 0.6% external 

load (Fig. 17 (b)) both model solutions - ours and the 

shear-lag one used in [42] cannot describe Gong's 

experimental data for graphene strain sufficiently 

accurately. The explanation for this is Gong's 

experimental observation that when the external load 

varies in the range of 0.4% to 0.7%, a creep and 

relaxation zone is recorded in the graphene, which is 

the cause of the drop (approximately in the middle 

of the flake, to 0.4%) in the distribution of the 

measured axial strain in graphene. According to 

Gong, it seems that the interface between the 

graphene and the polymer is not efficient enough and 

the transfer of the applied external load occurs 

through interfacial friction in this range. The strain 

in the graphene does not drop to zero in the middle 

of the flake, however, indicating that the flake 

remains unbounded. Further evidence to support this 

claim can be found in Polyzos et al. [66]. They 

experimentally investigated the behavior of stresses 

and strains in a suspended graphene flake between 

two PMMA layers subjected to an axial external 

load. It is reported that up to 0.8% external load 

"there is evidence that axial loading of graphene is 

always accompanied by the formation of orthogonal 

wrinkles/folds, similar to what is observed in a thin 

macroscopic membrane subjected to axial tension". 

In [66] they also emphasize that the limitations in 

their research method require a linear relationship 

between stress and strain, that is, within the elastic 

zone.   

( ) ( )( )
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From Fig. 18 it is seen, that for WS2 this depends 

not only on external load magnitude, but on the 

thickness of the +nano layer, too. As is illustrated on 

Fig. 19, both solutions for axial stress in WS2 are in 

good agreement with shear-lag predictions, 

especially Case 2, may be because both shear-lag 

and Case 2 are expressed by hyperbolic sines and 

cosines. The similar dependence is observed for 

multi-layer graphene when external load is out of 

elastic range (Fig. 20). Here the main deviations are 

in the right end of the flakes for both external loads 

considered. Probably, this is due to the defect in the 

flake itself or to an error in measurement method in 

[65].  

Our latter model strain predictions for hybrid 

nanocomposite structure with 2 interfaces 

(graphene/MoS2/PET) at external load 0.5% are in 

good accordance with experimental data (Fig. 21 

(b)). For nanocomposite sample with one interface 

(MoS2/interface/PET) the coincidence is quite good 

(Fig. 21 (a)); probably, the existence of two 

interfaces in the first sample between both 

nanomaterials (graphene and MoS2) and (MoS2 and 

PET) did not positively influence the stress transfer 

efficiency in this sample. 

 
Fig. 17. Comparison of model predictions [19] for the   in graphene with shear-lag model data and experimental data 

[42]; (a) at external load 0.4%, (b) – at 0.6%. 

 

 

  
(а)                                             (b)                                               (c) 

Fig. 18. Comparison of the two model solutions for  in monolayer WS2 , according to equations (4) and (5) and (7) 

[21], with experimental and model shear-lag data of [44] at (a) external load 0.35%, ( b) same at 0.55%, (c) multilayer 

WS2 at 0.55%.  

 

 

 
Fig. 19. Comparison of model σ solutions [24] in layer WS2,  with shear-lag model results of [44], for 0.35% external 

load.
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Fig. 20. Comparison of the model axial deformations [22] in 3-layer graphene with experimental data of [65], at 

external mechanical loading of 0.3% and 0.8 %.  

 
(a)                                                              (b)   

Fig. 21. Comparison of the model axial  in the graphene layer (a), and in the MoS2 layer (b), with experimental data 

of [5] at an external mechanical load of 0.5%. 

 
Our future goal is to create a two-dimensional 

model for a three-layer nanocomposite with two 

interfacial layers. 

 

Parametric analysis 
 

For the nanostructures considered in the previous 

sub-section, a parametric analysis was made to 

determine which factors influence the delamination 

in them. The criterion for delamination is that the 

interface shear stress (ISS) calculated by the model 

in the second layer exceeds the critical value of the 

shear stress at tension (ultimate tensile shear 

strength), 
( ) ( ) a a

xy USS .  

For each of the structures in the previous sub-

section, a parametric analysis of 
( ) a

xy for both two 

solutions was performed, since each of them 

corresponds to a combination of different 

thicknesses of the layers. Thus, in addition to the 

influence of the length, the influence of the layer 

thickness on the delamination was also investigated. 

As can be seen from the figures below, the geometry 

of the nanocomposite is a significant factor in 

debonding. 

Graphene/SU-8/PMMA 

The two solutions (4) and (5) for the axial stress 

were considered, respectively, with the help of 

equation (6) the shear stress 
( ) a

xy in the second layer 

was calculated, as well as the abovementioned 

delamination criterion. For convenience, depending 

on the solution used, they are referred to as Case 1 

(4) and Case 2 (5) in the following text. It was found 

that in the thinner layers (Case 1) of considered 

nanocomposite graphene/SU-8/PMMA, 

delamination can be observed at values of the 

external load 
0 350MPa  , while in the thicker 

layers (Case 2) it occurs for 
0 750MPa  , at a 

fixed value of the length l (Fig. 22). As the length 

increases and other parameters are fixed, 

delamination starts at lower values of the external 

load (Table 1). Also, the magnitude of 
0  affects 

strongly the value of the debond length. The latter 

one is the solution of the equation ( ) ( )( ) aa

xy USSx = with 

the ultimate shear strength of the SU-8 adhesive 

(USS) on the right ( )
30

a

cr USS MPa = = . The 

delamination starts simultaneously from both ends 

of the structure and graphically its length 

corresponds to the intersection of the model ( )a

xy

with the critical value (red line). The obtained data 
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for the distance of the maximum value of ( )a

xy from 

the edges of the layer are respectively 1.5 μm and 3.5 

μm for Case 1 and Case 2 at maximum load, which 

values agree very well with the experimentally 

obtained data in [67] for the same structure – about 

2 μm.   

WS2/SU-8/PMMA 

 

For the WS2/SU-8/PMMA nanocomposite, the 

parametric analysis follows the same algorithm, 

again using both solutions, and the results are given 

in Figs. 23 and 24. Results were also obtained for the 

delamination length at different geometries (Fig. 

24). As the length of the structure increases, so does 

the delamination length. 

 
Table 1 

Case l =6 μm l = 12 μm l = 20 μm l = 30 μm 

Case 1 σ0≥2.5×108 Pa σ0≥3.5×108 Pa σ0≥8.5×108 Pa σ0≥3.3×109 Pa 

Case 2 σ0≥7.5×108 Pa σ0≥7.5×108 Pa σ0≥7.2×108 Pa    σ0≥8×108 Pa 

 

 

 

 
Fig. 22. Influence of the magnitude of the external load on the ISS for two different geometries (solutions) [20]; left, 

Case 1, right, Case 2, for monolayer graphene/SU-8/PMMA. 

 

 

 
 

Fig. 23. Influence of the magnitude of the external load on the ISS at two different geometries (solutions) [23]; left, 

Case 1, right, Case 2, for the monolayer WS2/SU-8/PMMA nanocomposite structure. 
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A similar result was also observed by Wang et al. 

[68] for the delamination length – 2 µm, for a 

WS2/PVA nanocomposite structure. 

Fig. 24. Relationship between the debond length and 

the length l at a fixed load of 3 GPa, for Case 2, monolayer 

WS2/SU-8/PMMA [23]. 

3-layered graphene/SU-8/PMMA 

The main emphasis in [22] is the comparison 

between the model solutions for the deformations 

(strains) in the layers of considered 3-layered 

graphene/SU-8/PMMA nanocomposite, under 

different types of external loads, as can be seen from 

Fig. 25. In the case of a purely thermal effect (the red 

line), the deformations are nearly three times smaller 

than in the case of a purely mechanical effect (the 

black line). In the thermomechanical (green line), a 

superposition effect is observed in the amplitudes of 

the two loads, or in other words, the behavior is the 

same as in the mechanical load, but stronger, with 

the addition of the temperature effect, and this is best 

seen in the axial and the normal stress. Also, the 

effect of temperature is more clearly visible for 

deformations in the polymer layer than in graphene. 

A similar observation is also found in the model 

results of Banaronei [29] obtained with finite 

elements. The work [29] is the first (to the best of our 

knowledge) to report results related to the 

distribution of stresses and longitudinal strains in 

graphene at different external temperatures. Since 

the simulation used in [29] is FEM, no direct 

quantitative comparison is possible, only a 

qualitative assessment.  

CONCLUSIONS 
 

After this review on the analytical models for 

layered nanocomposites in the literature, the 

following conclusions and remarks could be 

proposed:  

✓ Analytical “shear-lag” type models give simple 

1D solutions, validated by experiments and FEM, for 

prediction of stresses and strains in composite and 

nanocomposites structures, subjected generally in 

tension loading.  

✓ Analytical models allow adding of different 

effects to the stresses, especially to ISS, like 

interface spring stiffness constant, effects of residual 

stresses, due to the thermal and Poisson contraction, 

effect of WdW forces, effect of sliding, etc., and 

obtain analytical solutions to describe a complex 

combination of external and internal factors, acting 

on the stress transfer in nanocomposites. 

✓ The correct application of shear-lag models for 

matrix-fiber nanocomposites is constrained - firstly 

in the elastic zone only, secondly by the volume of 

added fibers, and also, by the fiber length and 

interaction between fibers. Different models are 

derived to cover these gaps. 

✓ Partial and total debonding models, as well as 

non-linear shear-lag create the “bridge” between 

predictions of stress transfer in elastic and plastic 

zone (cohesive shear-lag models and FEM 

simulations).  

✓ 2D analytical stress-function method allows 

deriving of 2D solutions for three-layer 

nanocomposite structure, subjected to mechanical 

(axial tension) and thermo-mechanical static 

loading. These solutions are successfully validated 

in elastic zone by experimental and shear lag data for 

different nanocomposite structures.  

(а)                                                (b)                                              (c) 
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Fig. 25. Comparison of axial (a), shear (b) and peel strains (c) in graphene/SU-8/PMMA layers, under different types 

of loading [22]. 
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