Polycaprolactam crystal structure. I. Gamma–alpha polymorphic transition

S. Uzova¹, A. Popov², V. Velev³, T. Angelov⁴, S. Mihaleva², Ch. Uzov²

¹ PST "Prof. dr. Assen Zlatarov" – Burgas, 8000 Burgas, Bulgaria
 ² Assen Zlatarov University, 8010 Burgas, Bulgaria
 ³ Konstantin Preslavski University, 9712 Shumen, Bulgaria
 ⁴ Lukoil Neftochim Burgas JSC, Burgas, Bulgaria

Received February, 2013; Revised May, 2013

It was examined the polycaprolactam gamma–alpha transition as its major structural transformation. The specific behavior of the polymer in the reversible alpha–gamma transition was established. It was found that the transition progress was accompanied by a critical deformations of the crystal cells. The gamma–alpha transition is presented as the first stage of the polycaprolactam crystalline phase development by forming of a stable configuration in the package of the macromolecular chain segments. The influence of the quantitative accumulation of gamma phase and its development during the transition in the alpha phase has been also investigated. It is proposed a methodology for the realization of the study and criteria for evaluation. A mechanism of the structural transitions has been suggested.

Key words: polycaprolactam, crystal structure, polymorphism.

INTRODUCTION

Crystal structure of $poly(\epsilon$ -caprolactam) (PCL) examination has been intensified since 1942 [1, 2]. It is known for its polymorphic great diversity [1–21]. However, the results are very inconsistent, conflicting and sometimes controversial [1–35]. This applies particularly for thermal initiated polymorphic transitions. They are highly dependent on the conditions of implementation. Most of these conditions are difficult to be controlled precisely. This makes it difficult to predict the structure and performance properties of materials and products.

To establish the relation between structure and properties is necessary to know well the structure. The structural diversity to be well defined. To describe accurately and unambiguously polymorphism of PCL it is necessary to assess the quality of polymorphic forms. Only then its polymorphic transitions can be precisely clarified.

So, first, it is necessary to clarify the terms of the alpha–gamma transition, i.e. to assess the perfection

of the crystalline phase of PCL. Only then the perfection of the crystal forms can be evaluated and its structural diversity thoroughly described.

EXPERIMENTAL

Different types of polycaprolactam (PCL) with different molecular weight and molecular mass distribution (characteristic viscosity in 1%-ile sol. N₂SO₄ $\eta_{otn.} = 2.11-2.83$) were used with a content of low molecular weight compounds in the range 1.0–12.0% fat. and moisture content of 0.1 to 0.01% mass as a prerequisite to obtaining crystal structures of varying sophistication. Thin films were formed in a wide range of molding conditions: T_m = 215–240 °C and T_{cool} = -196–200 °C.

tions: $T_{m} = 215-240$ °C and $T_{cool} = -196-200$ °C. Using universal powder X-ray diffractometers URD-6 ("Präzisionsmechanik – Freiburg", Germany) and DRON-3 with a high temperature camera ATM-2000 ("Burevestnik – St. Petersburg", Russia) using Cu_{Ka}-radiation (β-filtered with Ni-Filter, $\lambda = 1,5418$ Å), low and high temperature X-ray diffraction at different temperature-time regimes of simultaneous modification was received

Software package "Origin 5.0" was used for decomposition multiply peaks in determining polymorphic forms of PCL.

^{*} To whom all correspondence should be sent: E-mail: hristo_uzov@abv.bg

RESULTS AND DISCUSSION

The experiment involves heating and cooling under different conditions of thin films of PCL. The main purpose of the experiment is to study the polymorphic forms of PCL and transitions between them, mainly gamma-alpha transition. This is the main polymorphic transition in PCL between the unstable gamma and the stable alpha-crystalline polymorphic modifications. The degree of completeness of the transition forms the structure that determines the operating properties of the polymer. This is the structure on which the possibility for further processing and modification of polymeric material depends in order to optimize its operational properties. The content of the unstable gamma form enhances the compressibility of the structures in terms of thermal, mechanical, heat-mechanical and others complex physical fields. This is extremely important for the tape, foil and fiber-forming materials.

According to recent literature and our data, the heat of a super cooled melt of PCL forms initially its gamma form. The continuation of the process leads to improvement of the crystal structure to the stable alpha form. In this transition, beta form inevitably presents in detectable amounts, regardless of its strong conditional dependence. The impression is of its buffer, intermediate, facilitating role in the gamma–alpha transition. On the other hand, its satellite presence in the advanced stable structure is observed after the apparent depletion of the gamma form. It is not certain that there no traces of the beta-form remain even after prolonged annealing, because it is structurally very similar to the alpha form[8, 24].

For the first time the beta-form is mentioned by Holmes and coworkers'1955 together with the alpha-form definition [8]. In this sense, the betaform can be called alpha-imperfect form. Because of its presence and influence on the determination of the partial coordinates of the basic alpha-form by Holmes it is necessary their later correction by Simon [24].

It is not accidental that some authors have assumed its presence in the form of a mixture from alpha and gamma forms. Thus, the transition delta– gamma–beta–alpha can be represented as a continuous process of improvement of the PCL crystalline phase. The whole structural reorganization occurs without cardinal displacement and geometrical modifications, while the delta–gamma and beta–alpha stages are realized permanently and almost unnoticed. Therefore, in first approximation, we can say that the compaction of the PCL structure through repacking of chain segments in the crystalline phase is realized by gamma–alpha transition. This transition is realized through the redistribution of hydrogen bonds (H-bonds) from the nearest neighboring segments in different crystallographic directions, especially in the plains of molecular folding.

The carried out experiments showed the presence of extremely rich possibilities of structural conversions. Depending on the type of polymer, the geometry of the samples, their starting structures, schemes and the conditions of temperature modification and simultaneous X-ray scanning and so on, get the impression of infinite structural diversity and ambiguous reorganization behavior.

This sets the need for criteria and systems of quantitative evaluation of the crystalline phase perfection. The need for such qualifying of the crystalline phase quality at each stage and every moment of the structural adjustment comes from the need to assess the degree of completion of polymorphic transitions. Moreover, the characterization of the crystalline phase is necessary for elucidation of simultaneous presence of the possible PCL crystal forms with different amounts and perfection. This fact determines the possibility and necessity of the simultaneous running of the possible polymorphic transitions. Under different conditions, however, it can change the direction of the various processes and increase the ambiguity of the results and their interpretation.

Some of the results from the study on the gamma–alpha transition of PCL are shown in Fig. 1 and in Table 1. When heating the δ -form (super cooled melt) from 20–30 °C to 70–80 °C with heating rate of 50 °C/min no significant changes in its dust diffraction occur. It is observed the appearance of γ -form in the range from 80–90 °C to 100–110 °C. Its improvement continued up to 160 °C. The diffraction reflection (100 γ) is migrating into the diffraction of about 21.1 to about 22.6–22.7 θ . The gamma–alpha transition is realized within the interval 160–190 °C.

The intensity of overlaid reflections $(200)_{\beta,\alpha}$ and $(002)_{\beta,\alpha}/(202)_{\beta,\alpha}$ grows and their positions divide noticeably at a temperature about 180 °C. The angular positions at the time of occurrence are about 20, 60 °2 θ and 22.85 °2 θ , respectively. At the same time, the position of the reflection (100 γ) started reverse migration to the value of 21.15 ° θ . The probable cause of the observed effects is the started redistribution of the hydrogen bonds from all closest neighboring segments in different crystallographic directions only in the plains of folding of the macromolecular chains.

The position 21.15 °2 θ , of (100), corresponds to the largest (about 4.2 Å) achievable for gammaform distance between the segments axes in the crystalline phase. It is probably possible because of the optimal heating speed of 5 °C/min up to that temperature, the tempering during the X-ray scanning and the appropriate objects geometry. This dis-

←

Fig. 1. Some of the high-temperature powder X-ray diffraction, showing gamma-alpha transition in PCL: a) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93°C, scanned at 20 °C. The main single peak of the decomposed doublet, almost coinciding with the diffraction curve at the distribution about 21 $^{\circ}2\theta$ can be accepted as an equivalent to a 100, on the diffuse halo of the super cooled melt (δ -phase); b) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 120 °C, after heating from 20 °C with a speed of 5°/min and tempering for 3 min. Minor change of the profile of the multiple experimental peak after decomposition shows the appearance of additional peak (right to larger diffraction angles), corresponding to possible 202/002_{8.} c) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C and scanned at 140 °C (after 120 °C). Again, minor modification of the profile of the multiple peak does not hide, however, the possibility for significant structural changes through repackaging of chain segments and possible decomposition of $200_{\alpha\beta}$, 100_{γ} , $202/002_{\alpha\beta}$, respectively; d) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C and scanned at 160 °C (after 140 °C) shows a strong change in the proportion of co-existing with different perfection phases; e) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C and scanned at 180 °C (after 160 °C) already shows a strong increase with the temperature increasing of the amount of γ -crystalline form; f) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C and scanned at 190 °C (after 180 °C). It is observed a picture of approximation and intensity decrease of reflections of different phases at the expense of maintaining priority wheelbase of around 4.22 Å (priority baseline condition for obtaining α -perfect shape after polymorphic transition γ - β - α at sufficient cooling); g) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 180 °C (after cooling from 220, 200 and 190 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 $^{\circ}2\theta$) and quantitative growth of α -and β -forms; h) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 160 °C (after cooling from 220, 200, 190, 180 and 170 °C with a speed of 5° /min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °2 θ) and quantitative growth of α -and β -forms; i) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 150 °C (after cooling from 220 200, 190, 180, 170 and 160 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 $^{\circ}2\theta$) and quantitative growth of α -and β -forms; j) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 140 °C (after cooling from 220, 200, 190, 180, 170, 160 and 150 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °20) and quantitative growth of a-and β-forms; k) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 130 °C (after cooling from 220, 200, 190, 180, 170, 160, 150 and 140 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °2 θ) and quantitative growth of α -and β -forms; 1) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 120 °C (after cooling from 220, 200, 190, 180, 170, 160, 150, 140 and 130 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °20) and quantitative growth of α -and β -forms; m) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 110 °C (after cooling from 220, 200, 190, 180, 170, 160, 150, 140, 130 and 120 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °20) and quantitative growth of α -and β -forms; n) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 100 °C (after cooling from 220, 200, 190, 180, 170, 160, 150, 140, 130, 120 and 110 °C with a speed of 5°/min and tempering for 3 min). Shows improvement (away of the decomposed peaks corresponding to the reflections about 20 and 24 °20) and quantitative growth of α -and β -forms; o) Lorentz decomposition of part of the powder diffraction curve from thin isotropic PCL film, molded by pressing at 235 °C and tempered at -93 °C, scanned at 20 °C (after cooling from 220, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110 and 100 °C with a speed of 5°/min and tempering for 3 min). Multiply peaks observed in the geometry of the intensity distribution in the diffraction experiments are decomposed by Gaussian and Lorentzian distributions corresponding to the main polymorphic forms of PCL.; This allows control of the polymorphic composition of PCL during thermal modification.

$ \begin{array}{ $	$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				A lab	- f.,		Angle	deviation on	thermal m	nodification	of the diffr	action refle	ctions of th	le PCL				Gommo	freese	
$ \begin{array}{ $	L V = 5 + 7 cmm V = 6 + 7 cmm V = 9 + 7 cmm V = 10 + 7 cmm V = 10 + 7 cmm <th> F</th> <th></th> <th></th> <th>India</th> <th>a-10111</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Dela-L</th> <th>. IIIIO</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-101111</th> <th></th>	 F			India	a-10111							Dela-L	. IIIIO						-101111	
T Thermat T	C Membra c membra	L _{ck.} ,	= \	= 5 °C/min			$V = 10^{\circ}$	°C/min			$V = 5^{\circ}$	C/min			$V = 10^{-6}$	^c /min		$V = 5^{\circ}$	C/min	$V = 10^{\circ}$	C/min
Top Top <th>100 100 100 10</th> <th>ç</th> <th>heating</th> <th>ð</th> <th>ooling</th> <th>hea</th> <th>nting</th> <th>c00</th> <th>ling</th> <th>heat</th> <th>ing</th> <th>cooli</th> <th>ing</th> <th>heat</th> <th>ing</th> <th>cool</th> <th>ing</th> <th>heating</th> <th>cooling</th> <th>heating</th> <th>cooling</th>	100 100 100 10	ç	heating	ð	ooling	hea	nting	c00	ling	heat	ing	cooli	ing	heat	ing	cool	ing	heating	cooling	heating	cooling
30 30<	30 30<	(20	0) (002)/(20	02) (200)	(002)/(202)	(200)	(002)/(202)	(200)	(002)/(202)	(200)	(002)/(202)	(200)	(002)/(202)	(200)	(002)/(202)	(200)	(002)/(202)	(100)	(100)	(100)	(100)
0 0 0 0 0 0 1 0	0 010 23:	2(θ 2θ	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
0 2010 2390 0371 2349 2010 2390 2301 2349 2304 23	9 0 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	20 20.	10 23.90) 20.36	23.50	20.10	23.90	20.36	23.49	20.00	24.11	20.08	24.11	20.00	24.10	20.09	24.09	22.30	22.28	22.30	22.31
0 010 2130 037 2149 010 2140<	0 0	30 20.	10 23.90) 20.37	23.49	20.10	23.90	20.37	23.48	20.00	24.10	20.08	24.10	20.00	24.10	20.09	24.09	22.30	22.28	22.30	22.31
9 011 133 033 234 010 2348 2348 031 2349 2347 201 2348 201 2449 201 2408 2339 2347 201 2349 2349 2341 2341 201 2449 201 2447 2301 2349 2349 2349 2349 2341 2341 2341 2341 2341 2341 2341 2341 2341 2341 2341 2341 2341 2342 2342 2342 2342 2342 2342 2342 2342 2342 2342	0 011 330 0331 334 010 339 231 239 233 234 2010 349 2010 349 2010 349 234 233 234 231 0 2011 238 2347 2011 238 2347 2011 238 2347 2011 238 2347 2011 238 2347 2011 249 2011 249 2012 249 2011 249 229 234 231 232 232 231 232 232 232 232 232	40 20.	10 23.90) 20.37	23.49	20.10	23.90	20.37	23.48	20.00	24.10	20.09	24.10	20.00	24.10	20.09	24.09	22.40	22.28	22.33	22.31
0 011 23.89 018 21.48 011 23.89 03.81 23.47 011 23.89 03.81 23.47 011 23.89 03.81 23.47 011 23.89 03.81 23.47 0111 23.89 03.81 23.47 0111 23.89 03.81 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 23.87 03.91 23.47 0111 24.97 23.91 23.92 23.78 101 23.87 20.40 23.47 20.11 23.87 20.91 23.47 20.11 23.87 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 23.91 <td>0 2011 238 038 248 011 249 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2011 2307 2334 2011 2335 2334 2010 2406 2010 2406 2010 2406 2011 2407 2201 2307 2307 2334 2031 2334 2031 2334 2031 2346 2311 2307 2407 2010 2407 2010 2407 2010 2407 2011 2407 2301 2302 2346 2331 2334<td>50 20.</td><td>11 23.90</td><td>) 20.37</td><td>23.48</td><td>20.10</td><td>23.90</td><td>20.37</td><td>23.48</td><td>20.01</td><td>24.09</td><td>20.09</td><td>24.09</td><td>20.01</td><td>24.09</td><td>20.10</td><td>24.08</td><td>22.40</td><td>22.28</td><td>22.38</td><td>22.31</td></td>	0 2011 238 038 248 011 249 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2010 2406 2011 2307 2334 2011 2335 2334 2010 2406 2010 2406 2010 2406 2011 2407 2201 2307 2307 2334 2031 2334 2031 2334 2031 2346 2311 2307 2407 2010 2407 2010 2407 2010 2407 2011 2407 2301 2302 2346 2331 2334 <td>50 20.</td> <td>11 23.90</td> <td>) 20.37</td> <td>23.48</td> <td>20.10</td> <td>23.90</td> <td>20.37</td> <td>23.48</td> <td>20.01</td> <td>24.09</td> <td>20.09</td> <td>24.09</td> <td>20.01</td> <td>24.09</td> <td>20.10</td> <td>24.08</td> <td>22.40</td> <td>22.28</td> <td>22.38</td> <td>22.31</td>	50 20.	11 23.90) 20.37	23.48	20.10	23.90	20.37	23.48	20.01	24.09	20.09	24.09	20.01	24.09	20.10	24.08	22.40	22.28	22.38	22.31
0 2011 2389 2347 2011 2389 2347 2011 2409 2011 2409 2011 2409 2011 2409 2011 2409 2011 2409 2240 22	7 7	60 20.	11 23.85	ə 20.38	23.48	20.11	23.89	20.38	23.47	20.01	24.09	20.09	24.09	20.01	24.09	20.10	24.08	22.50	22.28	22.45	22.31
0 011 218 038 244 010 240 011 240 011 240 210 240	3 3	70 20.	11 23.85	ə 20.38	23.47	20.11	23.89	20.38	23.47	20.01	24.09	20.10	24.09	20.01	24.09	20.11	24.07	22.50	22.29	22.46	22.31
	0 011 2387 030 2146 011 2388 2039 2344 010 2400 2400 2011 2406 2101 2406 2209 2239 2239 2334 2012 2388 2039 2344 2013 2407 2016 2406 2011 2406 2013 2406 2201 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2239 2234 2239 2234 2231 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2239 2234 2234 2234 2234 2234 2234 2234 2234 2234 2234 2234 2234 2234 2239 2234 2234 </td <td>80 20.</td> <td>12 23.85</td> <td>3 20.38</td> <td>23.47</td> <td>20.11</td> <td>23.89</td> <td>20.38</td> <td>23.47</td> <td>20.01</td> <td>24.08</td> <td>20.10</td> <td>24.08</td> <td>20.01</td> <td>24.08</td> <td>20.11</td> <td>24.07</td> <td>22.50</td> <td>22.29</td> <td>22.47</td> <td>22.31</td>	80 20.	12 23.85	3 20.38	23.47	20.11	23.89	20.38	23.47	20.01	24.08	20.10	24.08	20.01	24.08	20.11	24.07	22.50	22.29	22.47	22.31
10 213 2337 2039 2345 2010 2337 2039 2345 2010 2336 2039 2346 2039 2347 2039 2347 2030 2336 2336 2334 2010 2336 2039 2344 2012 2338 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2040 2343 2340 2340 2343 2340 2340 2340 2340 23	10 213 238 203 2345 2013 2345 2013 2345 2013 2345 2013 2345 2013 2345 2014 2355 2346 2013 2346 2013 2345 2014 2345 2014 2345 2014 2345 2040 2344 2014 2345 2040 2344 2014 2345 2040 2341 2014 2345 2040 2341 2014 2345 2040 2341 2014 2345 2040 2341 2014 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2041 2345 2346 2346 2346 2346 2346 2345 2346 2345 2345 2345 2345 2345 2345 2345 2345 2345 2346 2345 2345	90 20.	12 23.87	7 20.39	23.46	20.11	23.88	20.39	23.46	20.02	24.07	20.10	24.08	20.02	24.07	20.12	24.06	22.60	22.29	22.51	22.31
	10 0.14 2.36 0.39 2.44 2.012 2.38 2.040 2.34 2.010 2.400 <td>100 20.</td> <td>13 23.87</td> <td>7 20.39</td> <td>23.45</td> <td>20.12</td> <td>23.87</td> <td>20.39</td> <td>23.45</td> <td>20.03</td> <td>24.07</td> <td>20.10</td> <td>24.08</td> <td>20.02</td> <td>24.07</td> <td>20.13</td> <td>24.05</td> <td>22.70</td> <td>22.29</td> <td>22.55</td> <td>22.31</td>	100 20.	13 23.87	7 20.39	23.45	20.12	23.87	20.39	23.45	20.03	24.07	20.10	24.08	20.02	24.07	20.13	24.05	22.70	22.29	22.55	22.31
10 20.15 23.85 20.40 23.45 20.40 23.45 20.40 23.45 20.40 23.45 20.40 23.45 20.40 23.45 20.40 23.45 20.40 23.47 20.40 23.47 20.40 23.47 20.40 23.40 20.40 23.40 20.40 23.40 20.40 23.40 20.40 23.40 20	10 213 2336 2040 2343 2060 2446 2013 2407 2016 2405 2016 2239 22	110 20.	14 23.86	5 20.39	23.44	20.12	23.86	20.39	23.44	20.04	24.06	20.11	24.07	20.02	24.06	20.14	24.05	22.80	22.29	22.66	22.32
	10 2020 2330 2040 2341 2014 2380 2040 2341 2014 2380 2040 2341 2014 2330 2324 2300 2330 2331 2	120 20.	15 23.85	5 20.40	23.42	20.12	23.85	20.40	23.43	20.06	24.05	20.13	24.07	20.03	24.05	20.16	24.05	22.81	22.29	22.72	22.32
	10 20.35 23.70 20.40 23.40 23.40 20.40 23.40 20.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.40 23.41 23.45 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.41 23.35 20.31 23.40 20.40 20.45 23.40 20.41 23.35 23.34 20.35 23.34 20.35 23.34 20.35 23.34 20.35 23.34 20.35 23.34 20.35 23.34 20.35 23.34 23.36 23.34 23.36 23.34 23.36 23.34 23.36 23.34 23	130 20.	20 23.80	0 20.40	23.41	20.14	23.80	20.40	23.42	20.08	24.00	20.15	24.07	20.04	24.00	20.17	24.04	22.83	22.29	22.74	22.33
	130 23.36 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.41 23.55 20.31 23.55 20.31 23.55 20.31 23.55 20.31 23.55 23.30 24.00 20.25 23.90 20.25 23.90 23.95 23.90 23.95 2	140 20.	25 23.70) 20.40	23.40	20.23	23.70	20.40	23.40	20.09	24.00	20.17	24.07	20.05	24.00	20.18	24.03	22.85	22.29	22.76	22.33
	100 20.35 23.36 20.41 23.35 20.11 24.00 20.01 24.01 24.00 24.01 22.90 22.90 22.91 23.93 23.34 176 24.46 23.34 20.41 23.35 20.31 23.35 20.12 24.00 20.90 23.95 23.95 23.34 20.35 23.34 20.35 23.34 20.35 23.34 20.35 23.90 20.35 23.95 23.95 23.95 23.95 23.95 23.95 23.95 23.96 23.95 23.95 23.94 20.35 23.34 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 20.35 23.94 23.95 23.94 23.95 23.94 23.95 23.94 23.95 23.94 23.95 </td <td>150 20</td> <td>30 23.60</td> <td>0 20.41</td> <td>23.35</td> <td>20.27</td> <td>23.60</td> <td>20.41</td> <td>23.35</td> <td>20.10</td> <td>24.00</td> <td>20.19</td> <td>24.06</td> <td>20.06</td> <td>24.00</td> <td>20.19</td> <td>24.02</td> <td>22.87</td> <td>22.30</td> <td>22.78</td> <td>22.36</td>	150 20	30 23.60	0 20.41	23.35	20.27	23.60	20.41	23.35	20.10	24.00	20.19	24.06	20.06	24.00	20.19	24.02	22.87	22.30	22.78	22.36
	165 20.40 23.40 20.41 23.35 20.40 24.00 20.88 24.00 20.25 23.95 22.30 23.95 2	160 20	35 23.50) 20.41	23.35	20.31	23.50	20.41	23.35	20.11	24.00	20.21	24.05	20.07	24.00	20.20	24.01	22.90	22.30	22.82	22.34
	170 20.45 23.30 20.44 23.35 20.41 23.30 20.45 23.30 20.45 23.30 20.45 23.30 20.45 23.30 23.35 23.36 20.30 23.37 23.36 23.36 23.36 23.36 23.370 20.36 23.370 23.47 23.30 23.47 23.30 23.47 23.30 23.36 23.370 20.36 23.370 23.36 23.370 23.36 23.370 23.36 23.36 23.36 23.370 23.36	165 20	40 23.40	0 20.41	23.35	20.35	23.40	20.49	23.35	20.12	24.00	20.22	24.00	20.08	24.00	20.22	23.95	22.92	22.30	22.88	22.34
	175 20.50 23.30 20.45 23.20 20.45 23.34 20.25 23.80 20.11 23.80 20.37 23.36 23.37 23.36 23.37 23.36 23.37 23.36 2	170 20.	45 23.30	0 20.44	23.35	20.41	23.30	20.52	23.34	20.16	23.90	20.25	23.90	20.09	23.90	20.25	23.82	22.95	22.30	22.90	22.35
180 20.55 23.10 20.51 23.70 20.65 23.70 20.35 23.70 20.16 23.70 20.35 23.60 20.35 23.60 20.35 23.60 20.35 23.60 20.35 23.60 20.36 23.50 23.60 23.35 23.60 23.35 23.50 23.60 20.35 23.50 23.60 20.35 23.50 23.60 20.35 23.50 20.35 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 23.60 23.30 23.60	180 20.55 23.10 20.61 23.70 20.36 23.70 20.37 23.70 23.61 23.01 23.01 23.01 23.01 23.01 23.01 23.01 23.01 23.01 23.01 23.02 23.03 23.30 23.01 23.05 23.01 23.01 23.01 23.01 20.65 23.00 20.65 23.01 20.65 23.01 20.67 23.03 23.30 2	175 20	50 23.20	0 20.48	23.30	20.45	23.20	20.58	23.34	20.22	23.80	20.29	23.80	20.11	23.80	20.30	23.75	22.98	22.31	22.95	22.35
185 20.60 23.00 20.58 23.00 20.56 23.00 20.56 23.00 20.56 23.00 20.55 23.00 23.56 23.05 23.56 23.05 23.56 23.05	185 20.60 23.00 20.65 23.00 20.65 23.00 20.55 23.00 20.35 23.50 23.50 23.50 23.50 23.50 23.37 23.30 23.31 23.30 23.30 23.30 2	180 20	55 23.10	0 20.51	23.20	20.49	23.10	20.65	23.24	20.28	23.70	20.32	23.70	20.16	23.70	20.32	23.61	23.01	22.31	23.00	22.36
	190 20.65 22.90 20.62 22.90 20.69 22.90 20.70 22.80 20.74 23.40 23.50 20.36 23.30	185 20.	60 23.00	0 20.58	23.00	20.65	23.00	20.69	23.05	20.33	23.60	20.39	23.60	20.25	23.60	20.35	23.50	23.03	22.31	23.03	22.36
195 20.70 22.80 20.74 22.80 20.74 22.80 20.74 22.80 20.74 22.80 20.75 23.74 23.07 23.07 23.37 23.07 <th< td=""><td>195$20.70$$22.80$$20.74$$22.80$$20.74$$22.80$$20.74$$22.80$$20.74$$22.30$$23.75$$23.77$$23.76$$23.30$$22.50$$23.75$</td><td>190 20.</td><td>65 22.90</td><td>0 20.62</td><td>22.90</td><td>20.69</td><td>22.90</td><td>20.70</td><td>22.95</td><td>20.39</td><td>23.50</td><td>20.44</td><td>23.50</td><td>20.36</td><td>23.50</td><td>20.46</td><td>23.39</td><td>23.05</td><td>22.33</td><td>23.05</td><td>22.35</td></th<>	195 20.70 22.80 20.74 22.80 20.74 22.80 20.74 22.80 20.74 22.30 23.75 23.77 23.76 23.30 22.50 23.75	190 20.	65 22.90	0 20.62	22.90	20.69	22.90	20.70	22.95	20.39	23.50	20.44	23.50	20.36	23.50	20.46	23.39	23.05	22.33	23.05	22.35
200 20.75 22.70 20.80 22.71 20.49 23.30 20.61 23.30 20.48 23.31 23.49 23.50 23.50 23.50 23.50 23.51 23.09 22.50 23.09 23.51 23.09 23.11 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	195 20.	70 22.80) 20.68	22.80	20.74	22.80	20.79	22.82	20.44	23.40	20.51	23.40	20.43	23.40	20.55	23.27	23.07	22.35	23.07	22.36
205 20.80 22.60 20.87 22.60 20.87 22.66 20.55 23.20 20.50 23.20 20.78 23.09 23.11 22.71 23.11 210 20.85 22.50 20.87 22.50 20.87 22.50 20.88 22.54 20.60 23.10 20.69 23.10 20.73 23.03 23.14 22.85 23.14 215 20.90 22.40 20.88 22.42 20.60 23.10 20.65 23.10 20.65 23.10 20.77 23.13 23.13 23.14 22.85 23.14 28.85 23.14 28.85 23.14 28.85 23.14 28.85 23.14 28.85 23.14 28.85 23.14 28.95 23.14 28.95 23.14 28.95 23.14 28.95 23.14 28.95 23.14 28.95 23.14 28.95 23.14 28.96 23.14 28.96 23.14 28.96 23.14 28.96 23.14 28.96 23.14 28.96 28.17 28.96 29.96 29.96 29.96 29.96 29.96 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>200 20.</td> <td>75 22.70</td> <td>0 20.71</td> <td>22.70</td> <td>20.80</td> <td>22.70</td> <td>20.85</td> <td>22.77</td> <td>20.49</td> <td>23.30</td> <td>20.61</td> <td>23.30</td> <td>20.48</td> <td>23.30</td> <td>20.63</td> <td>23.15</td> <td>23.09</td> <td>22.50</td> <td>23.09</td> <td>22.51</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200 20.	75 22.70	0 20.71	22.70	20.80	22.70	20.85	22.77	20.49	23.30	20.61	23.30	20.48	23.30	20.63	23.15	23.09	22.50	23.09	22.51
210 20.85 22.50 20.87 22.50 20.88 22.54 20.60 23.10 20.69 23.10 20.73 23.03 23.14 22.85 23.14 215 20.90 22.40 20.88 22.42 20.66 23.00 20.77 23.00 20.76 23.17 23.02 23.16 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.23 23.31 23.31 23.31 23.31 23.31 23.31 23.31 23.31 23.31 23.31 23.31 23.31	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	205 20.	80 22.60	0 20.74	22.60	20.85	22.60	20.87	22.66	20.55	23.20	20.69	23.20	20.52	23.20	20.78	23.09	23.11	22.71	23.11	22.73
215 20.90 22.40 20.88 22.42 20.66 23.00 20.77 23.00 20.65 23.00 20.74 22.97 23.17 23.02 23.17 220 20.95 22.05 20.77 23.00 20.65 23.00 20.74 22.97 23.17 23.02 23.17 220 20.95 20.95 20.79 22.95 20.79 22.95 20.71 22.95 23.21 23.22 23.21 23.22 220 20.95 20.79 22.95 20.79 22.95 20.71 22.95 20.71 22.95 23.31	215 20.90 22.40 20.88 22.40 20.88 22.42 20.66 23.00 20.77 23.00 20.65 23.00 20.74 22.97 23.17 23.02 23.17 23.02 220 20.95 20.95 20.79 22.95 20.71 22.95 20.71 22.95 23.21 23.22 23.21 23.22 23.21 23.31	210 20.	85 22.50	0 20.85	22.50	20.87	22.50	20.88	22.54	20.60	23.10	20.72	23.10	20.69	23.10	20.73	23.03	23.14	22.85	23.14	22.86
220 20.95 22.35 20.94 22.35 20.89 22.35 20.72 22.95 20.79 22.95 20.71 22.95 20.76 23.21 23.21 23.22 225 21.00 22.30 20.90 22.30 20.79 22.90 20.79 22.90 20.77 22.90 23.31 23.31 23.31 23.31 225 21.00 22.30 20.90 22.30 20.79 22.90 20.77 22.90 20.77 23.91 23.31 23.31 23.31 23.31	220 20.95 22.35 20.94 22.35 20.89 22.35 20.72 22.95 20.71 22.95 20.76 22.93 23.21 23.21 23.23 23.21 225 21.00 22.30 20.90 22.90 20.77 22.90 20.77 22.90 20.77 22.90 23.31 23.31 23.31 23.31 Often the angular deviations of the beta-form are within the boundaries of the method uncertainty and methodology of recording of the peak positions as compared with the same peaks of the alpha-form. Often the angular deviations of the intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta form the coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta form the contracted intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta form the contracted intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta form the contracted intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta form the contracterized the position of the gamma form peak.	215 20.	90 22.40	0 20.84	22.40	20.88	22.40	20.88	22.42	20.66	23.00	20.77	23.00	20.65	23.00	20.74	22.97	23.17	23.02	23.17	23.02
225 21.00 22.30 21.00 22.30 20.90 22.30 20.90 22.30 20.79 22.90 20.79 22.90 20.77 22.90 20.77 22.90 23.31 23.31 23.31	225 21.00 22.30 20.10 22.30 20.90 22.30 20.90 22.30 20.90 22.30 20.79 22.90 20.77 22.90 20.77 22.90 20.77 22.90 23.31 23.31 23.31 23.31 23.31 23.31 Chen the angular deviations of the beta-form are within the boundaries of the method uncertainty and methodology of recording of the peak positions as compared with the same peaks of the alpha-form. Therefore, beta control of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta control of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta control of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta control of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta control of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure.	220 20.	95 22.35	5 20.94	22.35	20.89	22.35	20.89	22.35	20.72	22.95	20.79	22.95	20.71	22.95	20.76	22.93	23.22	23.21	23.22	23.21
	Often the angular deviations of the beta-form are within the boundaries of the method uncertainty and methodology of recording of the peak positions as compared with the same peaks of the alpha-form. gravity center of the integrated intensity of the delta-form coincides with the position of the gamma form peak. Furthermore, gamma and alpha forms fully characterized the PCL structure. Therefore, beta	225 21.	00 22.30	0 21.00	22.30	20.90	22.30	20.90	22.30	20.79	22.90	20.79	22.90	20.77	22.90	20.77	22.90	23.31	23.31	23.31	23.31

tance is close to the thermodynamic advantageous fold width during the PCL chains folding. Thus it makes possible to create H-bonds between the opposite targeted segments in the folding planes that forms its alpha form.

After this point, the amount of the gamma form reduces and it loses its perfection. The smaller the peak of the diffraction reflection $(100)\gamma$ is, so much the visual reporting position is inaccurate.

In the geometry of the intensity distribution of the high-temperature powder diffraction, it is highly overlapping with $(200)_{\beta,\alpha}$. If the heating rate is higher, the gamma–alpha transition is realized later and on smaller average statistically distances between the segments in the polymer volume. Then it gets mainly the beta form that improved in alpha.

This is indicated by the increased intensity of the $(002)_{\beta,\alpha}/(202)_{\beta,\alpha}$ [8]. Then, the near located peak $(100)_{\gamma}$ overlaps and geometric "draws" from the higher intensity. Decomposition, however, shows the true positions of the diffraction reflections in the Table. They allow the definition of some, albeit rel-

Table 2. An illustrative example of the formation of same structures (Fig. 1, h) by differed	nt ways
--	---------

			Thermal modif	ication	
Object formation and measurement	V _{modification} , °C/min	τ _{tempering} , min	n, number of ful cycles	↑↓, heating cooling processes	~α:β:γ:δ, %
$T_{modd} = 235 PCL - 1_{T_{scann}}^{T_{modif}} = 120 - 220$	5	3	3	3	9:37:45:9
$T_{mold.} = 235 PCL - 1_{T_{scann.}}^{T_{modif.}} = 120 - 220 T_{crystall.} = 20$	4	4	2	2	9:37:45:9
$T_{mold} = 235 PCL - 1_{T_{scann}}^{T_{modif}} = 120 - 220$	3	5	1	1	9:37:45:9
$T_{mold.}=235 PCL - 2T_{modif.}=120-220 T_{rystall.}=-93$	5	3	3	3	9:37:45:9
$T_{mold} = 235 \\ T_{crystall} = 20 \\ PCL - 2T_{modif} = 120 - 220 \\ T_{scann} = 185 \\ T_{scann} = 18$	4	4	2	2	9:37:45:9
T_{mold} = 235 $T_{crystall}$ = 200 $PCL - 2T_{modif}$ = 120-220 T_{scann} = 185	3	5	1	1	9:37:45:9

Table 3. An illustrative example of the formation of different structures by the same ways

			Thermal modifi	cation	
Object formation and measurment	V _{modif} ., °C/min	τ _{tempering} , min	n, number of ful cycles	↑↓, heating cooling processes	~α:β:γ:δ, %
$T_{mold.} = 235 PCL - 1_{T_{scann.}}^{T_{modif.}} = 120 - 220$	10	1	5	2	34:34:24:8
$T_{modd} = 235 \ T_{crystall} = 20 \ PCL - 1_{T_{scann}}^{T_{modif}} = 120 - 220 \ T_{scann} = 170$	10	1	5	2	36:33:23:8
T_{mold} = 235 $PCL - 1_{T_{scann}}^{T_{modif}}$ = 120-220 $T_{scann}^{T_{modif}}$ = 175	10	1	5	2	38:36:19:7
$T_{mold.} = 235 PCL - 2T_{modif.} = 120 - 220 T_{crystall.} = -93$	10	1	5	2	37:33:22:8
$T_{mold.}=235 \\ T_{crystall.}=20 PCL - 2 T_{modif.}=120-220 \\ T_{scann.}=185$	10	1	5	2	38:34:21:7
$T_{mold.} = 235 PCL - 2T_{modif.} = 120 - 220 T_{cystall.} = 200 PCL - 2T_{scann.} = 185$	10	1	5	2	39:35:19:7

ative temperature-time intervals of the transitions. We can come in many other ways to similar reflections positions, for example, via other schemes, speeds of heating and X-ray scan, other times and exposures of tempering, using other PCL, source structures and geometry of its objects, other combinations etc.

The best justifications for that are the different results by different authors [1-35]. It is therefore necessary to create a unified system for study of the structural reorganization of PCL, with the ability to quantitative assessment of the crystalline phase quality. This would allow an unambiguous and accurate assessment of the implementation of the polymorphic transition.

CONCLUSION

1. It was found that the structural diversity in PCL temperature modification in a wide range of conditions is difficult to be realized by X-ray diffraction interpretation and evaluation. It is proposed simultaneous control with a high temperature powder diffraction and interpretation of information obtained from the structural studies of thin films of PCL with different initial structure after the necessary corrections and decomposition of multiple intensity distribution.

2. Detailed information about the temperature dependence of the possible angular deviations, intensity proportions and profile changes of the polymorphic diffraction reflections in the observed experimental peaks has been obtained. An attempt to analyze the polymorphic reorganizations and especially the main alpha-gamma transition in PCL has been made. Difficulties in the interpretation of the observed effects related to their qualitative and quantitative ambiguities have been shown.

3. The impossibility for precise and positive interpretation of the diffraction (powder diffraction) results from the structural changes in PCL without satisfactory quantitative evaluation of the quality and quantity of polymorphic forms has been assumed. It is very difficult without a quantitative assessment of their perfection as a measure of the completeness of the polymorphic transitions.

4. A conclusion has been drawn about the need to establish the basis of criteria and methodology for practical assessment of the crystalline phase perfection of the main polymorphic forms.

Acknowledgements: The authors are grateful to the Fund "Scientific investigations" of the Projects NIH-244 from University "Prof. Dr. Assen Zlatarov", Burgas and № 8268 from the University of Shumen, for the support.

REFERENCES

- R. Bril, Zeitschrift fur physikalische Chemie (DDR), B, 53, 61 (1942).
- 2. R. Brill, J. Prakt. Chem., 161, 49 (1942).
- 3. I. Sandeman, A. Keller, J. Polym. Sci., 19, 401 (1956).
- 4. H.-J. Radusch, M. Stolp, R. Androsch, *Polymer*, **35**, 3568 (1994).
- 5. C. W. Bunn, E. V. Garner, *Proc. Roy. Sot.*, A189, 39 (1947).
- 6. R. Brill, Makromol. Chem., 18/19, 294 (1956).
- 7. L. G. Wallner, Makromol. Chem., 79, 279 (1948).
- D. R. Holmes, C. W. Bunn, D. J. Smith, *Journal of Polymer Sci.*, XVII, 159 (1955).
- 9. W. P. Slichter, *Journal of Polymer Sci.*, XXXVI, 259 (1959).
- 10. I. Kinoschita, Makromol. Chem., 33, 1 (1959).
- 11. Ch. Ruscher, V. Gröbe, H. Versaumer, *Faserforsch. und Textiltechn.*, **12**, 214 (1961).
- D. C. Vogelsong, *Journal of Polymer Sci.*, A, 1, 1055 (1963).
- H. Arimoto, M. Ishibashi, M. Hirai, J. Polym. Sci., A, 3, 317 (1965).
- 14. P. F. Dismore, W. O. Statton, *J. of Polym. Sci. Part C.*, **13**, 133 (1966).
- 15. J. Tomka, J. Šebenda, O. Wichterle, *J. Polym. Sci. Part C: Polym. Symp.*, **16**, 53 (1967).
- 16. J. Baldrian, *Faserforschung und Textiltechnik*, 18 (4), 174 (1967).
- 17. A. Sh. Goikhman, G. A. Osokin, A. A. Konkin, *Polymer Science U.S.S.R.*, **10** (7), 1903 (1968).
- Sh. Goyihman, T. P. Tantstyura, in: Visokomol. Soed., A, T. 10, 1968, p. 724; (*Polym. Sci. U.S.S.R.*, 10, 4, p. 839).
- 19. F. Danausso, in: Uspehi Himii, т. **39**, 1970, р. 304.
- K.-H. Illers, H. Haberkorn, *Die Macromolare Chemie*, **142**, Nr. 3463, 31 (1971).
- J. Baldrian, Z. Pelzbauer, J. of Polym. Sci. Part C., 38, 289 (1972).
- V. A. Marikhin, L. P. Myasnikova, Journal of Polymer. Sci., Polym. Symp., 58, 97 (1977).
- 23. J. P. Parker, J. Appl. Polym. Sci., 21, 821 (1977).
- 24. P. Simon, G. Avgay, J. Polym. Sci., Polym. Phys. Ed., 16 (5), 935 (1978).
- 25. K.-H Illers, Makromol. Chem., 179, 497 (1978).
- 26. H. M. Heuvel, R. Huisman, J. Polym. Sci., Polym. Phys. Ed., 19 (1), 121 (1981).
- 27. H. H. Chush, R. S. Porter, Polymer, 27, 241 (1986).
- N. S. Murthy, H. Minor, R. A. Latif, *Journal of Macromolecular Sci.*, B 26 (4), 427 (1987).
- 29. O. V. Startsev, A. L. Yordanskiy, G. E. Zaykov, Visokomol. Soed. A, XXX, 1539 (1988).
- J. Koszkul, Archiwum Nauki o Materialach, 9 (2), 115 (1988).
- T. Karstens, V. Rossbach, *Macromol. Chem.*, 190, 3033 (1989).
- 32. N. Avramova, S. Fakirov, Polymer, 31 (6), 1025 (1990).
- H. J. Biangardi, J. Macromol. Sci., Phys. B, 29, 139 (1990).
- 34. C. Ramesh, Macromolecules, 32, 3721 (1999).
- Y. Liu, L. Gui, F. Guan, Y. Gao, N. Hedin, L. Zhu, H. Fong, *Macromolecules*, 40 (17), 6283 (2007).

КРИСТАЛНА СТРУКТУРА НА ПОЛИКАПРОЛАКТАМА. І. ГАМА–АЛФА ПОЛИМОРФЕН ПРЕХОД

С. Узова¹, А. Попов², В. Велев³, Т. Ангелов⁴, С. Михалева², Х. Узов²

¹ ПГТ "Проф. д-р Ас. Златаров", 8000 Бургас, България ² Университет "Проф. д-р Ас. Златаров" – Бургас, 8010 Бургас, България ³ Университет "Еп. Константин Преславски", 9712 Шумен, България ⁴ Лукойл Нефтохим Бургас АД, Бургас, България

Постъпила февруари, 2013 г.; приета май, 2013 г.

(Резюме)

На база предположението за перманентна реорганизация на опаковката на макромолекулните верижни сегменти на поликапролактама, вследствие динамично изменящите се равновесни мрежи от водородни връзки при температурна или термомеханична модификация, е изучаван богатия му полиморфизъм в интервала 20–240 °С.

Изследван е основният гама–алфа полиморфен преход на поликапролактама. Установено е специфично поведение на полимера при обратимия алфа–гама преход. Установено е, че прехода се съпровожда с достигане на критични деформации на елементарните кристални клетки. Гама–алфа преходът е представен като първи етап от развитието на кристалната фаза на поликапролактама при формирането на стабилна конфигурация в опаковката на макромолекулните верижни сегменти. Изследвано е влиянието на количественото натрупване и усъвършенстване на гама формата върху прехода и в алфа форма. Предложена е методика за провеждане и критерии за оценка на изследванията. Предположен е механизъм за реализиране на структурните преходи.

Установено е едновременното съвместно съществуване в различно количествено съотношение и с различно съвършенство на алфа, бета, гама и делта формите му в комплексни структури в зависимост от вида на полимера, предисторията на обектите, начина и условията на водене на кристализационния или рекристализационния процес. В зависимост от начина и пътя на температурна модификация е разгледана възможността за получаване на подобни комплексни структури при различни условия или различни комплексни структури при еднакви условия на формирането им. Това затруднява силно изучаване на полиморфизма и полиморфните му преходи.