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Some problems in the column apparatuses modeling  
Chr. B. Boyadjiev1*, M. D. Doichinova1, B. Chr. Boyadjiev 

1Institute of Chemical Engineering, Bulgarian Academy of Sciences, 
Acad. St.Angelov str., Bl. 103, 1113 Sofia, Bulgaria 

Received October 15, 2013,   Revised September 25, 2014 

The solutions of some theoretical problems of the column apparatuses modeling in the cases of one-, two- and three- 
phase processes are presented in the approximation of the mechanics of continua. The effect of the radial non-
uniformity of the velocity distribution, the effect of the tangential flow and simultaneous mass and heat transfer 
processes in one-phase column are analyzed. The possibility for obtaining the interphase distribution of the mass 
transfer resistances in two-phase columns is shown. An iterative numerical algorithm for non-stationary processes 
modeling in three-phase columns is also presented. 

Key words: modeling, column apparatus, one phase, two phases, three phases, mass transfer, heat transfer.

INTRODUCTION 

The fundamental modeling problems in column 
apparatuses are a result of the complicated 
hydrodynamic behavior of the flows in the 
columns. The presence of different phases (gas, 
liquid and solid) leads to the necessity for 
formulation of two or three phases hydrodynamic 
problem. At the other side the equations of the 
interphase surface, where boundary conditions must 
be formulated, are practically unknown. As a result 
the solution of the interphase mass transfer problem 
is not possible because the velocity function in the 
convection-diffusion equation is unknown.  

The interphase mass transfer problem in column 
apparatuses may be modeled using a new approach 
based on the approximations of the mechanics of 
continua [1-4], where the mathematical point is 
equivalent to a small (elementary) physical volume, 
sufficiently small with respect to the apparatus 
volume, but at the same time sufficiently large with 
respect to the intermolecular volumes of the 
medium. As a result the mathematical description 
of the processes presents the mass balance in this 
elementary volume in the form of a convection-
diffusion type of model, using the convection-
diffusion equations. These types of models [1-4] 
allow a qualitative analysis of the process in order 
to obtain the main, small and slight physical effects 
(mathematical operators in the models), and to 
reject the slight effects (operators). 

The use of the convection-diffusion type of 
models for modeling (quantifying) of the processes 
in column apparatuses is not possible because the 
velocity function in the convection-diffusion 

equations is unknown. The problem can be avoided 
if the average values of the velocities and 
concentrations over the cross-sectional area of the 
column are used, i.e. the medium elementary 
volume (in the physical approximations of the 
mechanics of continua [1-4]) will be equivalent to a 
small cylinder with radius r0 and a height, which is 
sufficiently small with respect to the column height 
and at the same time sufficiently large with respect 
to the intermolecular distances in the medium.  

The main part of the problems in one-phase 
columns is the decrease of the processes efficiency 
as a result of the effect of radial non-uniformity of 
the velocity distribution. This problem can be 
avoided by using a tangential inlet of the flow in 
the column, which is very useful in the cases of 
simultaneous mass and heat transfer processes. 

Theoretical analysis of the interphase 
distribution of the mass transfer resistances in two-
phase columns allows obtaining the optimal gas-
liquid dispersion, i.e. a system of gas-liquid drops 
(liquid-gas bubbles) in the case when the main part 
of the interphase mass transfer resistance is in the 
gas (liquid) phase. 

ONE-PHASE MODEL 

Let’s consider a liquid motion in a column 
reactor with radius r0 (m) and height l (m), where a 
homogeneous chemical reaction between two liquid 
components is realized. If the difference between 
the component concentrations is very large, then 
the chemical reaction will be of first order. 
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Convection–diffusion type of model 

If the velocity u [m.s-1] and concentration c 
[kg.m-3] distributions in the column are defined as: 

( ) ( ), , ,u u r c c r z= =                  (1) 
the convection–diffusion type of model [4] can be 
expressed as: 

2 2

2 2
1 ;c c c cu D kc

z z r r r
 ∂ ∂ ∂ ∂

= + + − ∂ ∂ ∂ ∂ 

( ) 0 0 00, ,0 , ;cz c r c u c uc D
z
∂

= ≡ ≡ −
∂

00, 0; , 0,c cr r r
r r
∂ ∂

= ≡ = ≡
∂ ∂    (2) 

where D [m2.s-1] is diffusivity, k [s-1] – chemical 
reaction rate constant, ū, c0 - input values of the 
average velocity and concentration. 
The qualitative analysis of the model (2) will be 
made using generalized variables: 

( ) ( ) ( )0 0, , ,r r R z lZ u r u r R uU R= = = =

( ) ( ) ( )
2

0
0 0, , , , ,rc r z c r R lZ c C R Z

l
ε  = = =  

 
 (3) 

Where r0, l, ū, c0  are the characteristic (inherent) 
scales (maximal or average values) of the variables. 
Introducing the generalized variables (3) in (2), the 
convection–diffusion type of model can be written 
as: 

( )
2 2

2 2
1Fo Da ;C C C CU R C

Z Z R R R
ε
 ∂ ∂ ∂ ∂

= + + − ∂ ∂ ∂ ∂ 
 

10, 1, 1 Pe ;CZ C U
Z

− ∂
= ≡ ≡ −

∂

0, 0; 1, 0,C CR R
R R
∂ ∂

= ≡ = ≡
∂ ∂                   (4) 

where ε=Fo-1Pe-1, 2
0

Fo , Pe , DaDl ul kl
ur D u

= = =  are the 

Fourier, Damkohler and Peclet numbers, 
respectively. 

In the cases of big values of the average velocity 
(0=Fo≤10-2), from the convection–diffusion type of 
model (4) may obtain a convection type of model: 

( ) Da ; 0, C 1CU R C Z
Z
∂

= − = ≡
∂ .  (5) 

The effect of the chemical reaction rate is 
negligible if 0=Da≤10-2  and as a result C≡1. 
When a fast chemical reaction takes place (Da≥10-

2), the terms in the model must be divided by Da 
and the approximation 0=Da≤10-2 has to be applied. 

The result is: 
2

2
Fo 10 ;
Da

dC d C C
R dR dR

 
= + − 

 

0, 0; 1, 0dC dCR R
dR dR

= = = = ,            (6) 

i.e. the model (6) is diffusion type. 

Average concentration model 

The average velocity and concentration at the 
column cross-sectional area can be presented as 

 ( ) ( ) ( )
0 0

2 2
0 00 0

2 2, , .
r r

u ru r dr c z rc r z dr
r r

= =∫ ∫  (7) 

The convection–diffusion type of model (2) 
assumes the velocities and concentration 
distributions to be presented [3, 4] by the average 
functions (7): 

( ) ( ) ( ) ( ) ( ), ,  , ,u r u u r c r z c z c r z= =          (8) 
where ũ(r) and c (r,z) represent the radial non-
uniformity of both the velocity and the 
concentration distributions, satisfying the 
conditions: 

( ) ( )
0 0

2 2
0 00 0

2 21,  , 1.
r r

ru r dr r c r z dr
r r

= =∫ ∫      (9) 

An average concentration model may be 
obtained [1-4] if the expressions (8) were placed 
into the model equations (2) and then multiplied by 
r and integrated with respect to r over the interval 
[0, r0]. The result is: 

2

2 ;c d cu u c D kc
z dz z

αα ∂ ∂
+ = −

∂ ∂

( ) 00, 0 , 0,cz c c
z

∂
= = =

∂                            (10) 

where  

( )
0

2
0 0

2 .
r

z rucdr
r

α α= = ∫                                      (11) 

The use of the generalized variables: 

( ) ( ) ( )
0

, , ,z cZ C z lZ A Z
l c

α α= = = =   (12) 

leads to: 
2

1
2Pe Da ;dC dA d CA C C

dZ dZ dZ
−+ = −

0, 1, 0.dCZ C
dZ

= = =                                  (13) 
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In the cases  

0=Fo≤10-2, 0=Pe-1=εFo≤10-2, ε<1 

(see (5)) the model (13) has the convective form: 

Da ; 0, 1.dC dAA C C Z C
dZ dZ

+ = − = =   (14) 

The function A(Z) in (13, 14) represents the 
effect of the velocity radial non-uniformity on the 
mass transfer efficiency in the column apparatus: 

( ) ( )
0

2
0 0

2 ,
r

A Z z rucdr
r

α= = ∫                              (15) 

where  

( ) ( ) ( ) ,u r
u r U R

u
= =

( ) ( )
( )

( )
( )

, ,
, ,

c r z C R Z
c r z

c z C Z
= =

( ) ( ) ( )
1

0 0

2 ,
c z

C Z RC R Z dR
c

= = ∫                    (16) 

and as a result one can obtain the following 
equation: 

( ) ( ) ( )
( )

1

0

,
2

C R Z
A Z RU R dR

C Z
= ∫ .                    (17) 

Effect of the radial non-uniformity of the velocity 
distribution 

The case of parabolic velocity distribution 
(Poiseuille flow) will be used as an example: 

( )
2

22 2 .
o

ru r u
r

 
= − 

 
                                        (18) 

From (3, 18) follows: 

( ) 2U R 2 2R= − .                                              (19) 
The model (4) may raise several particular cases 

that permit to obtain C(R,Z), C (Z) and to present 
results for A(Z)≥1, using different approximations: 

( ) 0Fo 1, Da 1, 2, ,A Z a= = =

( )0
1

1 ;
N

n
n

a A Z
N =

= ∑
( )Fo 0, 0.1, Da 1, 2, 1 ,A Z aZ= = = +

( )
1

11 ; 0 1.
N

n
n

n n

A Z
a Z

N Z=

−
= < <∑                  (20) 

The obtained values of α, α0 in (20) are shown in 
Table 1.  

The equations (13, 14) allow to obtain 
expressions for the concentration axial gradient: 

2
1 1 1 1

2Pe Da ;dC dA d CA C A A C
dZ dZ dZ

− − − −= − + −  

1 1 Da .dC dAA C A C
dZ dZ

− −= − −                          (21) 

From (8) follows that ũ=1 if the velocity radial 
non-uniformity is absent (u=ū), i.e.  A=α=1 (see (9, 
11, 15)). The presence of a radial non-uniformity of 
the axial velocity in the columns leads to A>1, i.e. a 
decrease of the concentration axial gradient and 
process efficiency [4]. In Table 1 are shown the 
process efficiencies (conversion degree) in the 
cases of presence (G) and absence (G0) of a radial 
non-uniformity of the axial velocity in the column: 

( ) ( ) ( )
1

0
0

1 2 ,1 , 1 1G RU R C R dR G C= − = −∫ . (22) 

Table 1. Parameter values and values of process 
efficiencies (conversion degree) 

 a a0 G G0 
Da=1, Fo=0 0.5511  0.5568 0.6734 
Da=1, Fo=0.1 0.2463  0.5938 0.6452 
Da=1, Fo=1  1.02 0.6211 0.6281 
Da=2, Fo=0 1.3623  0.7806 0.8516 
Da=2, Fo=0.l 0.4547  0.8115 0.8502 
Da=2, Fo=1  1.04 0.8481 0.8538 

The values in Table 1 demonstrate that the radial 
non-uniformity of the axial velocity component 
leads to a substantial decrease of the conversion 
degree. 

Effect of the tangential flow 

Let’s consider a cylindrical column with axial 
input of gas (liquid) flow (Fig.1a). The axial and 
radial velocity components uz=uz(r,z), ur=ur(r,z) 
satisfy the continuity equation: 

0z r ru u u
z r r

∂ ∂
+ + =

∂ ∂ ;

( ) ( ) ( )0
0 00, ,0 , , , 0,z z rz u r u r r r u r z= = = ≡ (23) 

where uz
0(r) is the input distribution of the axial 

velocity component as a result of the geometric 
conditions at the axial input of the column. The 
velocity components uz(r,z), ur(r,z) can be obtained 
as a solution of the Navier-Stokes equations in 
boundary layer approximation, i.e. to solve the 
problem of the gas (liquid) jet in immobile gas 
(liquid). As a result the radial non-uniformity of the 
axial velocity component exists for the columns 
with limited height. In these conditions the 
conversion degree increase is related to the 
decrease of the radial non-uniformity of the axial 
velocity component (special geometric conditions 
at the axial input of the column). 
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A possibility for a partial reduction of the radial 
non-uniformity of the axial velocity component is 
to use a column with tangential enter [5] of the gas 
(liquid) flow (Fig.1b) in the column input. 

 
Fig. 1. Cylindrical column with: a - axial gas (liquid) 

flow; b - tangential gas (liquid) flow in column inlet; c- 
tangential gas (liquid) flow in the column working area. 

A maximal reduction of the radial non-
uniformity of the axial velocity component is to use 
a column with tangential enter [6] of the gas 
(liquid) flow (Fig.1c) in the column working area. 
In the cases of tangential input of the flow in the 
column, the velocity components uz=uz(r,z,φ) 
ur=ur(r,z,φ),  uφ=uφ(r,z,φ) satisfy the continuity 
equation: 

1 0;z r ruu u u
z r r r

ϕ

ϕ
∂∂ ∂

+ + + =
∂ ∂ ∂

00, 0 , 0 2 ,z r r ϕ π= ≤ < ≤ ≤    

( ) 2
0

0, , ;z
Qu r u
r

ϕ
π

≡ =  

( )0 0, 0 , 0 2 , , , 0;rr r z l u z rϕ π ϕ= < ≤ ≤ ≤ ≡

( ) 0
0 2

00

0, 0, ,0 Qu r u
rϕ ϕϕ

π
= ≡ = ,                     (24) 

where Q (m3.s-1) is gas (liquid) flow rate in the 
column and r00  is the column inlet radius. 

The applying of generalized variables: 

0

00

, , 2 ,

, ,z z r r

z lZ r r R
ru uU u u U u u U
l ϕ ϕ ϕ

ϕ π= = = Φ

= = =
,                        (25) 

leads to 

0
0

1 2 ( ) 0;z r rU ur U U U
R u l Z R R

ϕ

ϕ

π
ϕ

∂ ∂ ∂
+ + + =

∂ ∂ ∂  

( )0, 0 1, 0 1, 0, , 1;zZ R U R= ≤ < ≤ Φ ≤ Φ ≡

( )1, 0 1, 0 1, ,1, 0;rR Z U Z= < ≤ ≤ Φ ≤ Φ ≡

( )0, 0,1,0 1UϕΦ = ≡ .                                    (26) 
Practically 0u uϕ  and the following 

approximation can be used: 
20

00 2 10ur
u lϕ

π −= ≤ ,                           (27) 

i.e. 0
Uϕ

ϕ
∂

=
∂                            (28) 

and from (26) follows: 

0;z r rU U U
Z R R

∂ ∂
+ + =

∂ ∂  

( )0, 0 1, 0, 1;zZ R U R= ≤ < ≡

( )1, 0 1, ,1 0rR Z U Z= < ≤ ≡ .             (29) 

From model (29) follows that practically 
Uz(R,Z)≡1, Ur(Z,R)≡0 (except for the thin boundary 
layer at the wall).  

The presented theoretical analysis shows that 
using tangential input of the flow in the column 
area leads to a significant decrease of the velocity 
radial non-uniformity and as a result to an increase 
of the conversion degree in the columns. 

Simultaneous mass and heat transfer processes 

The heat and mass transfer kinetics theory 
shows [3], that the process rate depends on the 
characteristic velocity in the boundary layer. The 
big difference between these velocities leads to a 
substantial increase of the heat transfer rate through 
the column wall in the cases of axial and tangential 
input of the flows ( 0u uϕ ). 

Let’s consider simultaneous mass and heat 
transfer processes in a column chemical reactor, 
where the velocity, concentration and temperature t 
(deg) distributions in the column are denoted as: 

( ) ( ) ( ), , , ,u u r c c r z t r z= = .             (30) 

The mass and heat transfer model in the physical 
approximations of the mechanics of continua [1-4] 
can be expressed as: 

2 2

2 2
1 ;c c c cu D kc

z z r r r
 ∂ ∂ ∂ ∂

= + + − ∂ ∂ ∂ ∂ 
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( ) 0 0 00, ,0 , ,cz c r c u c uc D
z
∂

= ≡ ≡ −
∂

00, 0; , 0.c cr r r
r r
∂ ∂

= ≡ = ≡
∂ ∂               (31) 

2 2

2 2
1 ;

p p

t t t t qu kc
z c z r r r c

λ
ρ ρ

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂   

( ) 0 0 00, ,0 , ;
p

tz t r t u t u t
c z
λ
ρ

∂
= ≡ ≡ −

∂

0 0, ; ,s
tr r t t k
r

λ ∂
= ≡ − ≡

∂                           (32) 

where ρ (kg.m-3) is density, cp [J.kg-1.deg-1] – 
specific heat at constant pressure, λ  [J.m-1.s-1.deg-1] 
– thermal conductivity, q [J.kg-1] – heat effect of 
the chemical reaction, k0 [J.m-2.s-1] – local heat 
transfer flux. In the model (31, 32) D,k,λ,ρ,cp,q,k0 
are temperature functions, where t0 ≤ t≤ ts or ts ≤ t ≤ 
t0 in the case of endothermic (q<0) or exothermic 
(q>0) chemical reaction. Practically the difference | 
t0- ts  | is not so big and in (31, 32) may use constant 
values of D,k,λ,ρ,cp,q,k0 at t*=(t0+ts)/2. 
From the condition ts=const follows that the volume 
heat generation in the column is equal to the 
interface heat transfer through the column wall: 

0

0

0
0

2 2
r

r r

trqkcdr r
r

π π λ
=

∂ = −  ∂ ∫ ,

( ) ( )
0

0
02r r

r qkt c z k z
r

λ
=

∂ − = = ∂  .             (33) 

A qualitative analysis of the model (31, 32) will 
be made using generalized variables: 

( ) ( ) ( )0 0, , ,r r R z lZ u r u r R uU R= = = =

( ) ( ) ( )0 0, , , ,c r z c r R lZ c C R Z= =  

( ) ( ) ( )*
0, , , ,t r z t r R lZ t T R Z= =                     (34) 

where r0,l,ū,c0,t* are the characteristic (inherent) 
scales (maximal or average values) of the variables. 
The introduction of generalized variables (34) in 
(31, 32) leads to: 

( )
2 2 2

0
2 2 2 2

0

1 ;rC Dl C C C klU R C
Z ur l Z R R R u

 ∂ ∂ ∂ ∂
= + + − ∂ ∂ ∂ ∂ 

 

( ) ( )0, ,0 1, 1 ;D CZ C R U R
ul Z

∂
= ≡ ≡ −

∂

0, 0; 1, 0.C CR R
R R
∂ ∂

= ≡ = ≡
∂ ∂            (35) 

( )
2 2 2

0 0
2 2 2 2 *

0

1 ;
p p

r qlkcT l T T TU R C
Z u c r l Z R R R u c t

λ
ρ ρ

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

( ) ( ) 0
0 0 *

0

0, ,0 , 1 , .
p

tTZ T R T U R T
T u c l Z t

λ
ρ

∂
= ≡ ≡ − =

∂
 

( )
2

0 0
* *1, ; , .

2
s

s s
r qkc tTR T T C Z T

R t tλ
∂

= ≡ ≡ − =
∂

(36) 

In the cases of very high columns it may use the 

approximation 
2

20
20 10r

l
−= ≤  and the models (35, 

36) are of parabolic type. If the average velocity ū 
is very high, it may use the approximations 

2
2

0

0 10Dl
ur

−= ≤  and 2
2

0

0 10
p

l
u c r
λ
ρ

−= ≤ , i.e. the models 

(32, 33) are of convective type: 

( ) ( ); 0, ,0 1.C klU R C Z C R
Z u
∂

= − = ≡
∂ (37) 

( ) ( )0
0* ; 0, ,0 .

p

qlkcTU R C Z T R T
Z u c tρ
∂

= = ≡
∂ (38) 

Average temperature model 

The average temperature at the column cross-
sectional area can be presented as 

( ) ( )
0

2
0 0

2 , .
r

t z rt r z dr
r

= ∫                                   (39) 

The velocities and temperature distributions can 
be presented by the average functions (7, 39): 

( ) ( ) ( ) ( ) ( ), , , ,u r u u r t r z t z t r z= =          (40) 

where ũ(r,z) and t (r,z) represent the radial non-
uniformity of both the velocity and the temperature 
distributions, satisfying the conditions: 

( ) ( )
0 0

2 2
0 00 0

2 21, , 1.
r r

ru r dr r t r z dr
r r

= =∫ ∫      (41) 

An average temperature model may be obtained 
if the expressions (40) are put into the model 
equations (32) and then multiplied by r and 
integrated with respect to r over the interval [0,r0]. 
The result is: 

2

2 ;t
t

p

ddt d tu u t
dz dz c dz

α λα
ρ

+ =

( ) 00, 0 , 0dtz t t
dz

= = = ,                           (42) 
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where 

( )
0

2
0 0

2 .
r

t t z rut dr
r

α α= = ∫                                   (43) 

The use of generalized variables: 

( ) ( ) ( )
0

, , ,t t t
z tZ T z lZ A Z
l t

α α= = = =   (44) 

leads to: 
2

0
2 2 ;t

t
p

dA tdT d TA T
dZ dZ c ul dZ

λ
ρ

+ =

0, 1, 0.dTZ T
dZ

= = =                                (45) 

Similar to (17) the function At(Z) may be 
obtained after solution of the problems (35) and 
(36): 

( ) ( ) ( )
( )

1

0

,
2t

T R Z
A Z RU R dR

T Z
= ∫ ,

( ) ( ) ( )
1

*
0

2 ,
t z

T Z RT R Z dR
t

= = ∫ .                   (46) 

TWO-PHASE MODEL 

The convection-diffusion models are used [6-11] 
for qualitative analysis of the processes in two-
phase columns. A new possibility is the 
determination of the interphase distribution of the 
mass transfer resistances in gas-liquid systems. 

Interphase distribution of the mass transfer 
resistances 

Let’s consider a physical absorption in a co-
current gas–liquid bubble column with a radius r0 
and working zone height l, where the interphase 
mass transfer rate across the gas-liquid boundary is 
k(c1-χc2) and χ is the Henry’s constant. If ε1 and ε2 
are the gas and liquid parts of the medium 
elementary volume (ε1+ ε2 =1) in the column (gas 
and liquid holdup coefficients), the convection-
diffusion equations have the forms: 

( )
2 2

1 1 1 1
1 1 1 1 1 22 2

1 ,c c c cu D k c c
z z r r r

ε ε χ
 ∂ ∂ ∂ ∂

= + + − − ∂ ∂ ∂ ∂ 

( )
2 2

2 2 2 2
2 2 2 2 1 22 2

1 ,c c c cu D k c c
z z r r r

ε ε χ
 ∂ ∂ ∂ ∂

= + + + − ∂ ∂ ∂ ∂ 
(47) 

where u1(r), u2(r) are velocity distributions in the 
gas and liquid phases, ci(z,r) and Di(i=1,2) are the 
concentration distributions and the diffusivities of 
the absorbed substance in the gas and liquid. The 
boundary conditions of the model equations have 
the form: 

( ) ( )0 0 0 1
1 1 1 1 1 1 1

0

 0, 0, , ;
 z

cz c r c u c u r c D
z =

∂ = ≡ ≡ −  ∂ 

( ) ( )0 0 0 2
2 2 2 2 2 2 2

0

 0, 0, , ;
 z

cz c r c u c u r c D
z =

∂ = ≡ ≡ −  ∂ 

1 2 1 2
00, 0; , 0,c c c cr r r

r r r r
∂ ∂ ∂ ∂

= = ≡ = = ≡
∂ ∂ ∂ ∂

(48) 

where  ūi, ci
0, i=1,2 are the average velocities and 

the input concentrations in the gas and liquid 
phases. Practically c2

0=0. 
A qualitative analysis of the model may be 

made, using dimensionless (generalized) variables: 

1 2 1 2
1 2 1 20 0

0 1 2 1 1

, , , , , .u u c cr zR Z U U C C
r l u u c c

χ
= = = = = =         

                                                                           (49) 
The model (47, 48) in generalized variables (49) 

has the form: 

( ) ( )
2 2

1 1 1 1
1 1 1 22 2

1Fo ;C C C CU R K C C
Z Z R R R

ε
 ∂ ∂ ∂ ∂

= + + − − ∂ ∂ ∂ ∂ 

( ) ( )
2 2

2 2 2 2 1 1
2 2 1 22 2

2 2

1Fo ;C C C C uU R K C C
Z Z R R R u

ε χε
ε

 ∂ ∂ ∂ ∂
= + + + − ∂ ∂ ∂ ∂ 

 

( ) ( ) 1 1
1 1 1

0

0, 0, 1, 1 Pe ;
Z

CZ C R U R
Z

−

=

∂ = ≡ = −  ∂ 

( ) 2
2

0

0, 0, 0, 0;
Z

CZ C R
Z =

∂ = ≡ ≡ ∂ 
 

0, 0; 1, 0; 1,2,i iC CR R i
R R

∂ ∂
= ≡ = ≡ =

∂ ∂
 (50) 

where
0 1

12
1 1 0 1

, Fo , Pe , 1,2.i
i

i

k l D l u lK i
u u r Dε

= = = = (51) 

If denote: 

1 1
0 1 2 0 1

2 2

, , ,u K
u

ε χρ ρ ρ ρ ρ
ε

= = =

0
1 2 1 2

0 0

11, ,
1 1

ρρ ρ ρ ρ
ρ ρ

+ = = =
+ + ,             (52) 

the parameters ρ1  and ρ2 can be considered as mass 
transfer resistances in the gas and liquid phases and 
from (50) it may obtain directly models of the 
physical absorption in the cases of highly (χ→0, 
ρ0→0, ρ2→0, C2≡0) and slightly (χ→∞, ρ0→∞, 
ρ1→0, C1≡1) soluble gases. The use of model (50) 
for prediction of the distribution of mass transfer 
resistances allows an optimal organization of the 
absorption process, i.e. absorption in gas-liquid 
drops systems, when the resistance is in the gas 
phase ( 2

2 10ρ −≤ , 2
0 10ρ −≤ ), or absorption in liquid-
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gas bubble systems, when the resistance is in the 
liquid phase ( 2

1 10ρ −≤ , 2
0 10ρ ≥ ). 

THREE-PHASE MODEL 

The convection-diffusion models in three -phase 
systems [12, 13] are very often characterized by a 
fixed solid phase, where there is no diffusion 
transfer. As a result, the process in the solid phase 
is usually non-stationary. One of the main problems 
in these cases is the solution of the set of model 
equations. 

Non-stationary processes modeling 

Let’s consider a non-stationary absorption-
adsorption process in column apparatuses in a 
cylindrical coordinate system (τ,z,r), where τ (s) is 
the time. A co-current liquid-gas bubbles flow 
moves through a fixed solid adsorbent particles 
bed. A component of the gas phase absorbs 
physically in the liquid phase and after that adsorbs 
physically in the adsorbent particles. A chemical 
reaction takes place in the adsorbent particles 
between adsorbed component and the active centers 
(AC) in the adsorbent.  

The concentrations of the absorbed component 
in the gas (i=1) and liquid (i=2) phases are ci(τ,z,r), 
while c3(τ,z,r) and c0(τ,z,r) are the concentrations of 
the absorbed component and AC in the solid phase, 
respectively. The interphase mass transfer rates of 
the physical absorption and adsorption are k(c1-χc2) 
and kα(c2-c3).  

The chemical reaction rate in the solid phase is 
k0c3c0. As a result the convection-diffusion model 
of this absorption-adsorption process has the form: 

( )

1 1
1 1 1

2 2
1 1 1

1 1 1 22 2
1 ,

c cu
z

c c cD k c c
z r r r

ε ε
τ

ε χ

∂ ∂
+ =

∂ ∂
 ∂ ∂ ∂

= + + − − ∂ ∂ ∂ 

 

( ) ( )

2 2
2 2 2 2 2

2 2 2 2 2 2 2

1 2 2 3

1

,a

c c c c cu D
z z r r r

k c c k c c

ε ε ε
τ

χ

 ∂ ∂ ∂ ∂ ∂
+ = + + + ∂ ∂ ∂ ∂ ∂ 

+ − − −
 

( )3
0 2 3 0 3 0

0
0 0 3 0 0 1 2

,

, 1,

a
c k c c k c c

c k c c

ε
τ

ε ε ε ε
τ

∂
= − −

∂
∂

= − + + =
∂

 (53) 

with initial and boundaries conditions 
0 0

1 1 2 3 0 00, , 0, 0, ;c c c c c cτ ≡ ≡ ≡ ≡ ≡  

( )0 0 0 1
1 1 1 1 1 1 1

0

0, , ;
z

cz c c u c u r c D
z =

∂ = ≡ ≡ −  ∂    

  
2

2
0

0, 0, 0;
z

cz c
z =

∂ = ≡ ≡ ∂   

1 2 1 2
00, 0; , 0.c c c cr r r

r r r r
∂ ∂ ∂ ∂

= = ≡ = = ≡
∂ ∂ ∂ ∂  

                                                                            (54) 
In the presented model (53, 54) εi, Di are phase 

part and diffusivity in the solid (i=0), gas (i=1) and 
liquid (i=2) phases (D0=0), k,kα,k0- absorption and 
adsorption interphase mass transfer coefficients and 
a chemical reaction rate constant, respectively. 
The use of dimensionless (generalized) variables 
permit a qualitative analysis of the model (53, 54) to 
be made, where as characteristic scales average 
velocities, initial concentrations, characteristic time 
τ0 (s) and column parameters (r0,h) are used: 

( ) ( )

( ) ( )
0 0

0
0 1
20

, , , ,

, ,
, , , ,

i
i

i

i
i

i

u rr zT R Z U R
r l u

c z r cC T Z R c
c

τ
τ

τ
χ

= = = =

= =
 

( ) ( ) ( ) ( )3 0
3 00 0

3 0

, , , ,
, , , , , ,

1, 2.

c z r c z r
C T Z R C T Z R

c c
i

τ τ
= =

=
                                                        (55) 

The convection-diffusion model in dimensionless 
variables can be written in the following way: 

( )

1 1
1

1 0

2 2 2
01 1 1 1

1 22 2 2 2
1 0 1 1

1 ,

C Cl U
u T Z

rD l C C C kl C C
u r l Z R R R u

τ

ε

∂ ∂
+ =

∂ ∂

 ∂ ∂ ∂
= + + − − ∂ ∂ ∂ 

 

( )

2 2
2

2 0

2 2 2
02 2 2 2

2 2 2 2
2 0

0
3

1 2 2 30
2 2 2 2 1

1

,a

C Cl U
u Z

rD l C C C
u r l Z R R R

k l ckl C C C C
u u c

τ τ

χχ
ε ε

∂ ∂
+ =

∂ ∂

 ∂ ∂ ∂
= + + + ∂ ∂ ∂ 

 
+ − − − 

 

 

00
3 0 0 0 01

2 3 3 00
0 3 0

0
0 0 0 3

3 0
0

,

.

aC k k cc C C C C
T c

C k c C C
T

τ τ
ε χ ε

τ
ε

 ∂
= − − ∂  

∂
= −

∂

 

                                                       (56) 
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1 2 3 00, 1, 0, 0, 1;T C C C C= ≡ ≡ ≡ ≡  

( ) 1 1
1 1

01

C0, 1, 1 ;
Z

DZ C U R
u l Z =

∂ = ≡ ≡ −  ∂       

2
2

0

0, 0, 0;
Z

CZ C
Z =

∂ = ≡ ≡ ∂   

1 2 1 20, 0; 1, 0.C C C CR R
R R R R

∂ ∂ ∂ ∂
= = ≡ = = ≡

∂ ∂ ∂ ∂
                    (57) 

The presented model (56, 57) is the basis for a 
qualitative analysis of the mass transfer processes in 
three- phase column apparatuses, i.e. the role of the 
different physical effects in the complicated 
absorption-adsorption process. 

One of the main problems in three-phase systems 
is the long-time process. In this case approximations 
must be used: 

2

1 0

0 10l
u τ

−= ≤ ,    
2

2 0

0 10l
u τ

−= ≤   

                    (58) 

and the model (56, 57) has the form: 

( )
2 2 2

01 1 1 1 1
1 1 22 2 2 2

1 0 1 1

1 ;rC D l C C C klU C C
Z u r l Z R R R uε

 ∂ ∂ ∂ ∂
= + + − − ∂ ∂ ∂ ∂ 

 

( ) 1 1
1 1

01

1 1

C0, 1, 1 ;

0, 0; 1, 0.

Z

DZ C U R
u l Z

C CR R
R R

=

∂ = ≡ ≡ −  ∂ 
∂ ∂

= ≡ = ≡
∂ ∂

 

                    (59) 

( )

2 2 2
02 2 2 2 2

2 2 2 2 2
2 0

0
3

1 2 2 30
2 2 2 2 1

1

;a

rC D l C C CU
Z u r l Z R R R

k l ckl C C C C
u u c

χχ
ε ε

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

 
+ − − − 

 

 

2
2

0

2 2

0, 0, 0;

0, 0; 1, 0.

Z

CZ C
Z

C CR R
R R

=

∂ = ≡ ≡ ∂ 
∂ ∂

= ≡ = ≡
∂ ∂

  

                   (60) 
00

3 0 0 0 01
2 3 3 00

0 3 0

;adC k k cc C C C C
dT c

τ τ
ε χ ε

 
= − − 

 
  

30, 0.T C= ≡                (61) 
0

0 0 0 3
3 0

0

;dC k c C C
dT

τ
ε

= −   00, 1.T C= ≡  

                   (62) 

Considering problems (59, 60) T is parameter, 
while in (61, 62) the parameters are Z and R. 
The presented convection-diffusion model (59-62) 
may be used for qualitative analysis only, but it is 
the base for the creation of average concentration 
model. 

Average concentration model 

Using the dimensionless form of average 
concentrations the concentrations in (59-62) can be 
written as: 

( ) ( ) ( ), , , ,i i iC T Z R C T Z C R=   

( ) ( )

( )

1

0
1

0

, 2 , , ,

2 1, 0,1,2,3.

i i

i

C T Z RC T Z R dR

RC R dR i

=

= =

∫

∫ 

              (63) 

The average concentration model can be 
obtained if the expressions (63) are put into the 
model equations (59-62) and then multiplied by R 
and integrated with respect to R over the interval [0, 
1]. The result is: 

( )
2

11 1 1
1 1 1 1 1 22Pe ;dC dA d CA C K C C

dZ dZ dZ
−+ = − −   

1
10, 1, 0.dCZ C

dZ
= ≡ ≡                (64) 

( ) ( )

2 2
2 2

2
1 2

2 2 1 2 2 3 32Pe + ;a

dC dAA C
dZ dZ

d C K C C K C K C
dZ

−

+ =

= − − −

 

2
20, 0, 0.dCZ C

dZ
= ≡ ≡                 (65) 

( )1 03
0 3 2 3 0 0 3 0

0

;adC kK K C C K c BC C
dT k

−= − −   

30, 0.T C= ≡                 (66) 

00
0 3 3 0;dC K c BC C

dT
= − 00, 1.T C= ≡               (67) 

In the problems (64-67) the expressions are used: 

( ) ( ) ( )
( )

1

0

, ,
2 , Pe , 1,2,

,
i i

i i
i

C T Z R u lA Z RU R dR i
C T Z D

= = =∫  

( ) ( )
( )

( )
( )

1
3 0

3 0 2 20

, , , ,
2 , ,

, ,
a

a

C T Z R C T Z R k lB Z R dR K
C T Z C T Z uε

= =∫  

0
0 0 3

0 1 2 3 0
0 1 1 2 2 1

, , , .k ckl klK K K K
u u c

τ χχ
ε ε ε

= = = =

                    (68) 
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In the problems (64, 65) T is parameter, while in 
(66, 67) the parameter is Z and for solution of the set 
of equations (64-67) will be used a numerical 
iterative algorithm. 

Iterative algorithm 

The solution of (64-67) may be obtained as four 
matrix forms: 

( ) ( )1 1 2 2, , , ,C Z C C Z Cθζ θζΤ Τ= =   

( ) ( )3 3 0 0, , , ;C Z C C T Z Cθζ θζΤ = =  
0.01 , 1,2,...,100;Τ θ θ= =  0.01 , 1,2,...,100Z ζ ζ= =

.                                                                      (69) 

A multi-step approach for different values of 
0.01 ,Τ θ=  ( 1 2 100, ,...,θ = ) will be used, where 

the upper index (θ) will be the step number too. As a 
zero step (θ=0) will be used: 

( ) ( ) ( ) ( )

( ) ( ) ( )

0 0
1 21 0 2 0

0 0
3 03 0 0 0

, , , ,

0, , 1

C T Z C C T Z C

C C C T Z C

ζ ζ

ζ ζ

= =

= ≡ = ≡

0.01 , 1,2,...,100Z ζ ζ= = ,               (70) 
where ( ) ( ) ( ) ( )

0 0
1 21 0 2 0, , ,C T Z C C T Z Cζ ζ= =  are 

solutions of (64, 65) for ( )
0
3 3 0 0C C ζ= ≡ : 

( )
0 2 0

0 1 0 01 1 1
1 1 1 1 1 22Pe ;dC dA d CA C K C C

dZ dZ dZ
−+ = − −    

 
0

0 1
10, 1, 0.dCZ C

dZ
= ≡ ≡  

( )
0 2 0

0 1 0 0 02 2 2
2 2 2 2 1 2 22Pe + ;a

dC dA d CA C K C C K C
dZ dZ dZ

−+ = − −  

0
0 2
20, 0, 0.dCZ C

dZ
= ≡ ≡                (71) 

The first step is the solutions of (66, 67) 
( ) ( ) ( ) ( )

1 1 1 1
3 03 0, , ,C T Z C C T Z Cθζ θζ= =  for 

( ) ( )
0

2 2 2 0, ,C C T Z C ζ= = 0.01 , 1,2,...,100Z ζ ζ= = : 

( )
1

1 0 1 0 1 13
0 3 2 3 0 0 3 0

0

;adC kK K C C K c BC C
d k

−= − −
Τ

  

 1
30, 0.CΤ = ≡  

1
0 1 10

0 3 3 0;dC K c BC C
d

= −
Τ

 
1
00, 1.CΤ = ≡      (72) 

As a result the solutions for T=0.01 – Ĉ0
1(Z) and 

the polynomial approximation Ĉ3
1(Z)  may be 

obtained: 

( ) ( ) ( )
1 1 1
3 3 3 1

ˆ 0.01,C Z C Z C ζ= = =
( )5 1 j 1
j

j 1
Zθ −

=
∑ , 

( ) ( ) ( )
1 1 1
0 0 0 1

ˆ 0.01,C Z C Z C ζ= = ,   
0.01 , 1,2,...,100.Z ζ ζ= =               (73) 

The solution of (64, 65) at the first step leads to: 

( )
1 2 1

1 1 1 11 1 1
1 1 1 1 1 22Pe ;dC dA d CA C K C C

dZ dZ dZ
−+ = − −   

1
1 1
10, 1, 0.dCZ C

dZ
= ≡ ≡  

( ) ( )

1
12 2

2 2

2 1 5
11 1 1 1 12

2 2 1 2 22
1

Pe + ;j
a j

j

dC dAA C
dZ dZ

d C K C C K C Z
dZ

θ− −

=

+ =

 
= − − − 

 
∑

 

1
1 2
20, 0, 0.dCZ C

dZ
= ≡ ≡                (74) 

The step (θ) is the solutions of (66, 67) 
( ) ( ) ( ) ( )3 03 0, , ,C T Z C C T Z Cθ θ θ θ

θζ θζ= =  for 

( ) ( )( )
1

2 2 2 1,C C T Z Cθ
θ ζ

−
−= = ,    

0.01 , 1,2,...,100Z ζ ζ= = : 

( )1 1 03
0 3 2 3 0 0 3 0

0

;adC kK K C C K c BC C
d k

θ
θ θ θ θ− −= − −

Τ  

( )1
3 3

ˆ0,T C C Zθ θ −= = . 

00
0 3 3 0 ;dC K c BC C

d

θ
θ θ= −

Τ
 ( )1

0 00 ˆT , C C Zθ θ −= = .

                    (75) 
As a result the solutions for T=0.01  - Ĉ0

θ(Z)  and 
the polynomial approximations Ĉ3

θ(Z)  may be 
obtained: 

( ) ( ) ( )3 3 3
ˆ 0.01,C Z C Z Cθ θ θ

θζ= = =
( )5

j 1
j

j 1
Zθθ −

=
∑ ,  

 ( ) ( ) ( )0 0 0
ˆ 0.01,C Z C Z Cθ θ θ

θζ= = , 
0.01 , 1,2,...,100Z ζ ζ= = .               (76) 

At the step θ the solution of (64, 65) leads to: 

( )
2

11 1 1
1 1 1 1 1 22Pe ;dC dA d CA C K C C

dZ dZ dZ

θ θ
θ θ θ−+ = − −  

1
10, 1, 0.dCZ C

dZ

θ
θ= ≡ ≡  
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( ) ( )

2 2
2 2

2 5
1 12

2 2 1 2 22
1

Pe + ;j
a j

j

dC dAA C
dZ dZ

d C K C C K C Z
dZ

θ
θ

θ
θθ θ θ θ− −

=

+ =

 
= − − − 

 
∑

 

2
20, 0, 0.dCZ C

dZ

θ
θ= ≡ ≡                (77) 

The stop criterion is θ=100. 

The obtained results can be presented as: 

( ) ( )
( )

1 1 ,C C θ
θζ θζ=


( ) ( )

( )
2 2 ,C C θ
θζ θζ=


 

( ) ( )
( )

( ) ( )
( )

3 3 0 0,C C C Cθ θ
θζ θζ θζ θζ= =

 
; 

1,...,100;θ =   1,...,100ζ = . 

CONCLUSIONS 

The solutions of some theoretical problems of 
the column apparatuses modeling in the cases of 
one-, two- and three-phase processes are presented 
in the approximation of the mechanics of continua.  
In the cases of one-phase processes the effect of the 
radial non-uniformity of the velocity distribution, 
the effect of the tangential flow and the 
simultaneous mass and heat transfer processes are 
shown.  

A possibility to obtain the interphase 
distribution of the mass transfer resistances in two-
phase columns is shown.  

The modeling of three-phase processes in 
column apparatuses is analysed. An iterative 

numerical algorithm for non-stationary processes 
modeling is presented. 

The presented approach is used for solution of 
the SO2 problem in power engineering [14, 15]. 
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(Резюме) 

В приближенията на механиката на непрекъснатите среди са представени теоретични решения при 
моделирането на колонни апарати в случаите на една, две и три фази. Анализирани са ефектите от 
разпределението на радиалната неравномерност на скоростта, наличието на тангенциален поток, както и топло 
и масопреносните процеси в колона с една фаза. Показана е възможността за получаване на съпротивленията 
при междуфазно масопренасяне в колона с две фази. Представен е числен алгоритъм за моделиране на 
нестационарни процеси в колона с три фази. 

 


