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Calculations of photonic crystal fibers by the Galerkin method with sine functions
without a refractive index approximation
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Results from the calculation of the basic characteristics of the photonic crystal fiber with two rings of holes are presented by the
approach which takes into account the exact distribution of the refractive index over the cross section of the photonic crystal fiber.
Formulae are theoretically derived for the calculation of holes with arbitrary shapes by dividing the material within them into rotated at
different angles rectangles.
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INTRODUCTION

Photonic crystal fibers (PCFs) attract consider-
able attention since their waveguiding structure pro-
vides possibilities for creation of new or improved
properties compared to that of the conventional op-
tical fibers. They can be prepared in such a way
that insures a single mode operation practically within
the whole range of transparency of the material from
which they are made (endlessly single mode fibers) at
the same time with a very small change in the mode
field diameter. The core diameter of the single mode
fiber can be very high – 20–30 µm, which allows a
transmission of high level optical power. Depend-
ing on the core diameter PCF can reveal very low or
very high optical nonlinearity. Single mode fibers can
be produced with unique dispersion properties – with
an ultra flattened dispersion over very wide spectral
range, a zero dispersion, realized at a chosen wave-
length (even in the visible range), a zero dispersion in
several chosen spectral ranges. The fibers can be eas-
ily prepared with very high birefringence - until one
order higher than the birefringence, achieved by the
standard anisotropic fibers by a suitable combination
of the locations and the sizes of the holes [1–12].

The high refractive index contrast of the mate-
rials of the PCF requires full-vector methods [13]
to model the fibers accurately. The most used nu-
merical methods are a plane wave expansion method
(PWM) [14–16], a localized function method (LFM)
[17, 18], a beam propagation method (BPM) [19, 20],
a finite-element method (FEM) [21, 22], a finite-
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difference method in the time domain (FDTD) [23],
a finite-difference method in the frequency domain
(FDFD) [24–31], a source-model technique (SMT)
[13, 32, 33], and a highly accurate semi-analytical
multipole method (MM) [34, 35]. A brief review of
their merits and drawbacks is given in [24].

The approximation of the refractive index of the
PCF is the major factor limiting the accuracy of the
calculated data [13]. The description of the refrac-
tive index profile of the fine structure of interfaces
between domains with high contrast in the refractive
indices must be very precisely because the effective
index of the mode critically depends on it. Another
drawback [24] of the Galerkin method is the great
number of double integrals which must be solved.

To overcome these drawbacks a development of
the application of the Galerkin method for PCF is
proposed. The main idea is presented in [36–38] to-
gether with results from a numerical calculation of the
fiber with one ring of circular holes and a comparison
of the values of the effective index of the fundamental
mode received by it and another numerical methods.
Here a numerical calculation is presented by the de-
velopment for PCF with two rings of circular holes.
More over, expressions are given for an analytical cal-
culation of the double integrals of the elements of the
matrices of the modes of the PCF with holes with
square and rectangular shapes and PCF with holes
with arbitrary shapes approximated by layers of par-
allel rectangles rotated at different angles.

The expressions are obtained by an approach
which considerably reduced the number of the dou-
bles integrals in the case of holes with symmetrical
shapes. The main idea for the proposed approach is
outlined in [36,37]. To overcome the loss of accuracy
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and to reduce the calculation time, all integrals in the
proposed development are analytically calculated in
the case of holes with circular, square and rectangular
shapes.

FORMULATION OF THE PROBLEM

A translationally invariant PCF consisting of Nh
holes located in an optical medium (a host medium)
is considered. Monochromatic light with angular fre-
quency ω and time dependence exp(iωt) propagates
along PCF in the direction of the axis z. It is looked
for transverse distributions of the electric and the
magnetic fields of the mode with respect to a Carte-
sian coordinate system xOy with an origin at the lower
left angle of a rectangular material domain with di-
mensions Lx (0 ≤ x ≤ Lx) and Ly (0 ≤ y ≤ Ly) com-
prising the cross-section of PCF with an arbitrary lo-
cation of the holes. It is assumed that the electric and
the magnetic fields are zero at the domain boundaries.
With an appropriate choice of its dimensions this ap-
proximation is reasonable due to the abrupt drop of
the fields of the guided modes outside the core.

The electric and the magnetic fields of the mode
are solutions of the vector wave equations:

∇2~E +∇
[
~E.

∇n2

n2

]
+n2k2~E = 0 (1)

∇2~H +

[
∇n2

n2 ×
(

∇× ~H
)]

+n2k2~H = 0 (2)

In the Cartesian coordinate system the vector equa-
tions are decomposed into x, y and z components,
where the fact that ∂n/∂ z = 0 is used. The depen-
dence of the components of the fields on the coor-
dinate z is assumed to be exp(iβ z), where β is the
longitudinal constant of propagation.

It is looked for solutions of the transverse compo-
nents of the electric and magnetic fields in the form:

Ex(x,y) =
∞

∑
µ=1

∞

∑
ν=1

AE
µνΦµν(x,y) (3)

Ey(x,y) =
∞

∑
µ=1

∞

∑
ν=1

BE
µνΦµν(x,y) (4)

Hy(x,y) =
∞

∑
µ=1

∞

∑
ν=1

AH
µνΦµν(x,y) (5)

Hx(x,y) =
∞

∑
µ=1

∞

∑
ν=1

BH
µνΦµν(x,y) (6)

where,

Φµν(x,y) =
[ 2
(LxLy)1/2

]
sin(σµx)sin(ρνy) (7)

is a complete orthonormal set of sine functions which
are orthogonal over the finite rectangular domain:
∫ Lx

0
dx
∫ Ly

0
dyΦµν(x,y)Φµ

′
ν
′ (x,y) = δ

µµ
′δνν ′ (8)

σµ = (µπ/Lx); ρν = (νπ/Ly); µ,ν are integers; AE
µν ,

BE
µν , AH

µν , BH
µν are unknown coefficients in the expan-

sions of the Ex, Ey, Hy and Hx respectively.
Using the Galerkin method, the two systems of

two partial differential equations are converted into
two systems each of 2mxmy coupled linear algebraic
equations (mx and my are the numbers of members in
the truncated sums over µ and ν) for the unknown
coefficients AE

µν , BE
µν , AH

µν , BH
µν [39]

mx

∑
µ=1

my

∑
ν=1

(ME
µ
′
ν
′
,µν

AE
µν +NE

µ
′
ν
′
,µν

BE
µν) = (β/k)2AE

µ
′
ν
′

(9)
mx

∑
µ=1

my

∑
ν=1

(RE
µ
′
ν
′
,µν

AE
µν +SE

µ
′
ν
′
,µν

BE
µν) = (β/k)2BE

µ
′
ν
′ ,

(10)

µ
′
= 1,2, ...,mx , ν

′
= 1,2, ...,my.

mx

∑
µ=1

my

∑
ν=1

(MH
µ
′
ν
′
,µν

AH
µν +NH

µ
′
ν
′
,µν

BH
µν) = (β/k)2AH

µ
′
ν
′

(11)
mx

∑
µ=1

my

∑
ν=1

(RH
µ
′
ν
′
,µν

AH
µν +SH

µ
′
ν
′
,µν

BH
µν) = (β/k)2BH

µ
′
ν
′ ,

(12)

µ
′
= 1,2, ...,mx , ν

′
= 1,2, ...,my ,

where:

ME
µ
′
ν
′
,µν

=
4
S

∫ Lx

0
dx
∫ Ly

0
dy
[
(n2−n2

µν)Pssss

+2
σ

µ
′

k2 ln(n)
(

σµPccss−σ
µ
′Pssss

)]
(13)

NE
µ
′
ν
′
,µν

=
8
S

σ
µ
′

k2

∫ Lx

0
dx
∫ Ly

0
dy ln(n)

× (ρνPsccs +ρ
ν
′Pscsc) (14)

RE
µ
′
ν
′
,µν

=
8
S

ρ
ν
′

k2

∫ Lx

0
dx
∫ Ly

0
dy ln(n)

× (σµPcssc +σ
µ
′Pscsc) (15)
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SE
µ
′
ν
′
,µν

=
4
S

∫ Lx

0
dx
∫ Ly

0
dy
[
(n2−n2

µν)Pssss

+2
ρ

ν
′

k2 ln(n)(ρνPsscc−ρ
ν
′Pssss)

]
(16)

MH
µ
′
ν
′
,µν

=
4
S

∫ Lx

0
dx
∫ Ly

0
dy
[
(n2−n2

µν)Pssss

+2
σµ

k2 ln(n)(σ
µ
′Pccss−σµPssss)

]
(17)

NH
µ
′
ν
′
,µν

=−8
S

ρν

k2

∫ Lx

0
dx
∫ Ly

0
dy ln(n)

× (σµPcscs +σ
µ
′Psccs) (18)

RH
µ
′
ν
′
,µν

=−8
S

σµ

k2

∫ Lx

0
dx
∫ Ly

0
dy ln(n)

× (ρνPcscs +ρ
ν
′Pcssc) (19)

SH
µ
′
ν
′
,µν

=
4
S

∫ Lx

0
dx
∫ Ly

0
dy
[
(n2−n2

µν)Pssss

+2
ρν

k2 ln(n)(ρ
ν
′Psscc−ρνPssss)

]
(20)

n≡ n(x,y) =

{
ni=const, x,y∈Si,

nhost=const, x,y /∈Si i=1,2, ...,Nh

ni is the constant refractive index of the ith hole with
the surface Si, nhost is the constant refractive index of
the host medium, n2

µν ≡ (σ2
µ +ρ2

ν)/k2 is a dimension-
less quantity,

Pssss ≡ Pssss(x,y)
= sin(σµx)sin(σ

µ
′ x)sin(ρνy)sin(ρ

ν
′ y),

Pccss ≡ Pccss(x,y)
= cos(σµx)cos(σ

µ
′ x)sin(ρνy)sin(ρ

ν
′ y).

The definitions of the remaining products are anal-
ogous.

Here the main idea of the development is briefly
presented. Each of the integrals in Eq. (13) – Eq. (20)
is a sum of double integrals over the host medium and
over the holes in it. In Eq. (13) – Eq. (20) integrals
over the holes surfaces are added and subtracted in
which the refractive indices are replaced by the refrac-
tive index of the host medium in order not to integrate
over the host medium:
∫ Lx

0

∫ Ly

0
f (x,y;n(x,y))dxdy=

∫ Lx

0

∫ Ly

0
f (x,y;nhost)dxdy

+
Nh

∑
i=1

∫ ∫

Si

[ f (x,y;ni)− f (x,y;nhost)]dxdy (21)

e.g. the double integral over the domain with Nh in-
terfaces is replaced by a sum of a double integral over

a homogeneous medium with a surface S and a refrac-
tive index nhost (where the orthogonality of the sine
functions can be used) and Nh homogeneous media
with surfaces Si, i = 1,2, ...,Nh with changed refrac-
tive indices. That gives a possibility for the exact re-
fractive index profile of the cross section of the PCF
to be taken into account and for the double integrals
to be analytically calculated in the case of circular,
square and rectangular shapes of the holes.

Then the expressions Eq. (13) – Eq. (20) can be
written as:

ME
µ
′
ν
′
,µν

=
4
S

Nh+1

∑
i=1

[
ni

sI
i
ssss +2

σ
µ
′

k2 ln(ni
d)

× (σµ Ii
ccss−σ

µ
′ Ii

ssss)
]

(22)

NE
µ
′
ν
′
,µν

=
8
S

Nh+1

∑
i=1

σ
µ
′

k2 ln(ni
d)(ρν Ii

sccs+ρ
ν
′ Ii

scsc) (23)

RE
µ
′
ν
′
,µν

=
8
S

Nh+1

∑
i=1

ρ
ν
′

k2 ln(ni
d)(σµ Ii

cssc+σ
µ
′ Ii

scsc) (24)

SE
µ
′
ν
′
,µν

=
4
S

Nh+1

∑
i=1

[
ni

sI
i
ssss +2

ρ
ν
′

k2 ln(ni
d)

× (ρν Ii
sscc−ρ

ν
′ Ii

ssss)
]

(25)

MH
µ
′
ν
′
,µν

=
4
S

Nh+1

∑
i=1

[
ni

sI
i
ssss +2

σµ

k2 ln(ni
d)

× (σ
µ
′ Ii

ccss−σµ Ii
ssss)
]

(26)

NH
µ
′
ν
′
,µν

=−8
S

Nh+1

∑
i=1

ρν

k2 ln(ni
d)(σµ Ii

cscs+σ
µ
′ Ii

sccs) (27)

RH
µ
′
ν
′
,µν

=−8
S

Nh+1

∑
i=1

σµ

k2 ln(ni
d)(ρν Ii

cscs+ρ
ν
′ Ii

cssc) (28)

SH
µ
′
ν
′
,µν

=
4
S

Nh+1

∑
i=1

[
ni

sI
i
ssss +2

ρν

k2 ln(ni
d)

× (ρ
ν
′ Ii

sscc−ρν Ii
ssss)
]
, (29)

where:

ni
s =

{
n2

i −n2
host, i = 1,2, . . .Nh

n2
host−n2

µν , i = Nh +1
;

ni
d =

{
ni/nhost, i = 1,2, . . .Nh

nhost, i = Nh +1
;

Ii
ssss =





ISi
ssss =

∫ ∫

Si

Pssss(x,y)dxdy, i = 1,2, . . .Nh

IS
ssss =

∫ ∫

S
Pssss(x,y)dxdy, i = Nh +1

.
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Fig. 1. A local coordinate system x′Oiy′ with an origin at
the centre of the ith hole of the PCF and axes parallel to
the axes of the global coordinate system xOy.

The number Nh +1 is referred to the material do-
main. The definitions of the remaining integrals are
analogous.

Let us consider the ith hole. A local coordinate
system is introduced with an origin at the centre of
the ith hole and axes parallel to the axes of the global
coordinate system xOy (Fig. 1) in the case of a circu-
lar hole and axes rotated at an angle θi with respect to
the axe x of the global coordinate system (Fig. 2) in
the case of a rectangular hole. It was shown in [36,37]
that in the case of circular holes the double integrals
in Eq. (22)-Eq. (29) can be reduced to four integrals
Imm, Imp, Ipm and Ipp:

ISi
ssss = (cmmImm− cmpImp− cpmIpm + cppIpp)/4

ISi
ccss = (cmmImm− cmpImp + cpmIpm− cppIpp)/4

ISi
sscc = (cmmImm + cmpImp− cpmIpm− cppIpp)/4

ISi
sccs = (−smmImm + smpImp− spmIpm + sppIpp)/4

ISi
scsc = (smmImm + smpImp + spmIpm + sppIpp)/4

ISi
cssc = (−smmImm− smpImp + spmIpm + sppIpp)/4

ISi
cscs = (smmImm− smpImp− spmIpm + sppIpp)/4

where
c j k = cos(σ jxi)cos(ρkyi), s j k = sin(σ jxi)sin(ρkyi)
are “address” functions depending only on the loca-
tion of the holes with respect to the global coordinate
system and

I j k=
∫ ai

−ai

∫
ϕi(x′)

−ϕi(x′)
dx′dy′ cos(σ jx′)cos(ρky′), j,k=m, p

are integrals which depend on the shape of the hole,
but not on its location. Here xi and yi are the coordi-

yi

y

xi xO

x’
y’

iO
a i

b i

� i

Fig. 2. A local coordinate system x′Oiy′ with an origin at
the centre of the ith hole with a rectangular shape and axes
rotated at an angle θi with respect to the axe x of the global
coordinate system.

nates of the centre of the ith hole in the global coor-

dinate system, ai is its radius, ϕi(x′) =
√

a2
i − (x′)2

and σm ≡ σµ −σµ ′ ; σp ≡ σµ +σµ ′ ; ρm ≡ ρν −ρν ′ ;
ρp ≡ ρν +ρν ′ . For all holes with identical shapes the
four integrals can be solved only once. For complete-
ness the expressions are given for an analytical calcu-
lation of the four integrals for circular holes:

I j k =
∫ ai

−ai

∫ √a2
i−(x′)2

−
√

a2
i−(x′)2

dx′dy′ cos(σ jx′+ρky′)

=
2πai√
σ2

j +ρ2
k

J1(ai

√
σ2

j +ρ2
k ) j,k = m, p,

where J1 is the Bessel function of order 1. In the case
of PCF with circular holes all integrals in the matrices
elements are analytically solved.

When the hole is with square or rectangular shape
or the arbitrary shape of the hole is approximated by
a layer of parallel rectangles, rotated at an angle θi,
then the double integrals in Eq. (22)-Eq. (29) are cal-
culated by the following formulae:

ISi
ssss = (umm−ump−upm +upp)/2

ISi
ccss = (umm−ump +upm−upp)/2

ISi
sscc = (umm +ump−upm−upp)/2

ISi
sccs = (−νmm +νmp−νpm +νpp)/2

ISi
scsc = (νmm +νmp +νpm +νpp)/2

ISi
cssc = (−νmm−νmp +νpm +νpp)/2

ISi
cscs = (νmm−νmp−νpm +νpp)/2
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u j k = c−j kA−j k + c+j kA+
j k

ν j k = c−j kA−j k− c+j kA+
j k

c±j k = cos(σ jxi±ρkyi)

A−j k = [sin(p−j kai/2)/p−j k][sin(q+j kbi/2)/q+j k]

A+
j k = [sin(p+j kai/2)/p+j k][sin(q−j kbi/2)/q−j k]

p±j k = σ j cosθi±ρk sinθi

q±j k = σ j sinθi±ρk cosθi j,k = m, p.

Here i is the successive number of the rectangle
with dimensions ai and bi, rotated at an angle θi with
respect to the axe x of the global coordinate system.
When the holes with arbitrary shapes are approxi-
mated by layers of parallel rectangles all integrals are
analytically solved with except of those referring to
the rectangles comprising the irregular ends of the
holes. There an averaging can be made over the parts
of faces occupied by materials with different refrac-
tive indices before beginning of the calculations and
the integrals can be analytically calculated for them.
The systems of algebraic equations (9-12) are written
in the form of matrix eigenvalue equations:

ĈE~XE = (β/k)2~XE ; ĈH~XH = (β/k)2~XH ,

where

ĈE ≡
(

M̂E N̂E

R̂E ŜE

)
; ĈH ≡

(
M̂H N̂H

R̂H ŜH

)
;

M̂E , N̂E , R̂E , ŜE , M̂H , N̂H , R̂H , ŜH

are matrices consisting of the coefficients

ME
µ ′ν ′,µν ; NE

µ ′ν ′,µν ; RE
µ ′ν ′,µν ; SE

µ ′ν ′,µν ;

MH
µ ′ν ′,µν ; NH

µ ′ν ′,µν ; RH
µ ′ν ′,µν ; SH

µ ′ν ′,µν ;

~XE = (~AE ,~BE)T and ~XH = (~AH ,~BH)T

are eigenvectors, consisting of the unknown coeffi-
cients AE

µν ; BE
µν ; AH

µν ; BH
µν and (β/k)2 are unknown

eigenvalues.
The method is reduced to a suitability for cod-

ing and is incorporated into a created single Visual
FORTRAN 6.5 code. It calculates matrices elements,
modal effective indices and transverse components
of both the electric and magnetic fields propagating
along the PCF. EISPACK [40] is incorporated into the
code and is used to solve the eigenvalue equations.

NUMERICAL RESULTS

The PCF under consideration consists of
two rings of cylindrical air holes each with a
diameter d = 5.0 µm and a refractive index
ni = 1.0(i = 1,2, . . . ,18), arranged in a hexagonal
lattice with a constant (a pitch) Λ = 6.75 µm within a
host medium with a refractive index nhost = 1.45. The
wavelength is λ = 1.45µm. The vector distribution
of the transverse magnetic field

~Ht(x,y) = ~Hx(x,y)+ ~Hy(x,y)

and the contour map of the magnetic field of the fun-
damental mode of the PCF with two rings of circular
holes are shown in Fig. 3 and Fig. 4

The essential part of the results is shown in Ta-
ble 1. It can be seen that the value of ne f f with small-
est relative errors

∆m = 3.1459×10−8 and ∆L =−6.0466×10−9

Table 1. The convergence of the solution for neff of the fundamental mode of the PCF with two rings of holes
Lx = Ly [µm] mx = my neff ∆m ∆L

32.20 79 1.445396232634340 1.1757E−08 −
32.40 81 1.445396308797130 2.1309E−08 5.2693E−08
32.60 80 1.445396265103050 3.5066E−08 −3.0230E−08
32.80 81 1.445396247724620 7.7172E−10 −1.2023E−08
33.00 81 1.445396233574110 1.0139E−08 −9.7901E−09
33.20 81 1.445396224834410 3.1459E−08 −6.0466E−09
33.40 82 1.445396265177670 3.4329E−08 2.7912E−08
33.60 82 1.445396247763510 3.2795E−08 −1.2048E−08
33.80 82 1.445396221895270 3.2206E−08 −1.7897E−08
34.00 80 1.445395906427260 4.0761E−08 −2.1826E−07
34.20 80 1.445395820298730 4.1892E−08 −5.9588E−08
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3. NUMERICAL RESULTS

The PCF under consideration consists of two rings of cylindrical air holes each with a diameterd = 5.0µm and a
refractive indexni = 1.0(i = 1,2, . . . ,18), arranged in a hexagonal lattice with a constant (a pitch)Λ = 6.75µmwithin
a host medium with a refractive indexnhost = 1.45. The wavelength isλ = 1.45µm. The vector distribution of the
transverse magnetic field

~Ht(x,y) = ~Hx(x,y)+ ~Hy(x,y)

and the contour map of the magnetic field of the fundamental mode of thePCF with two rings of circular holes are
shown on Figure 3 and Figure 4:
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FIGURE 3. The Vector Distribution of the Transverse Magnetic Field~Ht(x,y) (Linearly Polarized Along the Axex) of the
Fundamental Mode over the Cross Section of thePCF with Two Rings of Holes.
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FIGURE 4. A Contour Map of the Magnetic Field of the Fundamental Mode of thePCF with Two Rings of Holes.

Fig. 3. The vector distribution of the transverse magnetic
field ~Ht(x,y) (linearly polarized along the axe x) of the fun-
damental mode over the cross section of the PCF with two
rings of holes.
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shown on Figure 3 and Figure 4:
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FIGURE 3. The Vector Distribution of the Transverse Magnetic Field~Ht(x,y) (Linearly Polarized Along the Axex) of the
Fundamental Mode over the Cross Section of thePCF with Two Rings of Holes.
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Fig. 4. A contour map of the magnetic field of the funda-
mental mode of the PCF with two rings of holes.

is a solution of the problem, neff = 1.44539622. Here
∆m is the smallest relative error between two succes-
sive solutions with terms in their expansions which

differs by 1 and ∆L is the smallest relative error for
two solutions at two successive values of the dimen-
sions of the material domain which differs by 0.2 µm.

The three dimensional graphics of the magnetic
field of the fundamental mode of the PCF with two
rings of holes is shown on Figure 5.

The essential part of the results is shown on Table 1. It can beseen that the value ofne f f with smallest relative errors

∆m = 3.1459×10−8 and ∆L = −6.0466×10−9

is a solution of the problem,ne f f = 1.44539622. Here∆m is the smallest relative error between two successive
solutions with terms in their expansions which differs by 1 and ∆L is the smallest relative error for two solutions
at two successive values of the dimensions of the material domain which differs by 0.2µm.

TABLE 1. The Convergence of the Solution for neff of the Fundamental Mode of thePCF
with Two Rings of Holes.

Lx = Ly [µm] mx = my neff ∆m ∆L

32.20 79 1.445396232634340 1.1757E −08 −
32.40 81 1.445396308797130 2.1309E −08 5.2693E −08

32.60 80 1.445396265103050 3.5066E −08 −3.0230E −08

32.80 81 1.445396247724620 7.7172E −10 −1.2023E −08

33.00 81 1.445396233574110 1.0139E −08 −9.7901E −09

33.20 81 1.445396224834410 3.1459E −08 −6.0466E −09

33.40 82 1.445396265177670 3.4329E −08 2.7912E −08

33.60 82 1.445396247763510 3.2795E −08 −1.2048E −08

33.80 82 1.445396221895270 3.2206E −08 −1.7897E −08

34.00 80 1.445395906427260 4.0761E −08 −2.1826E −07

34.20 80 1.445395820298730 4.1892E −08 −5.9588E −08

The three dimensional graphics of the magnetic field of the fundamental mode of thePCF with two rings of holes
is shown on Figure 5.
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The values of the effective refractive index of the fundamental mode of thePCF with one and two rings of holes,
calculated by the proposed development, thePWMand the adjustable boundary condition method (ABC) are given in
the Table 2.

The effective index of the fundamental mode of the fiber with one ring of circular holes retains 7 digits when the
number of the members in the expansions is changed by 1 and 11 digits when the dimensions of the material domain
are changed in the process of the solution convergence. For the fiber with two rings the retained digits are 7 and

Fig. 5. The three dimensional graphics of the magnetic
field of the fundamental mode of the PCF with two rings
of holes.

The values of the effective refractive index of the
fundamental mode of the PCF with one and two rings
of holes, calculated by the proposed development, the
PWM and the adjustable boundary condition method
(ABC) are given in Table 2.

The effective index of the fundamental mode of
the fiber with one ring of circular holes retains 7 digits
when the number of the members in the expansions
is changed by 1 and 11 digits when the dimensions of
the material domain are changed in the process of the
solution convergence. For the fiber with two rings the
retained digits are 7 and 8 respectively. Taking into
account the exact profile of the refractive index of the
fiber and analytically calculating all integrals (i.e. the

Table 2. Comparison of the values of the effective index of the fundamental mode of the PCF under consideration

Method Number of Reference neff Number of the Relative Error Number of the
the rings members in the solution retained digits

in the expansions convergence

PWM 1 [16] 1.4453952 131072 10-6-10-7

ABC 1 [41], [42] 1.445397228 7

Our Results 1 [38] 1.44539725467 68 4×10-8/8×10-12 7/11
2 1.44539622 81 3×10-8/-6×10-9 7/8
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matrices in the eigenvalue problems) the proposed de-
velopment increases the accuracy of the calculation of
the effective refractive index with one to two orders
and reduces the number of the members in the expan-
sions of the field with three orders in comparison with
PWM.

The theoretical derived expressions for the holes
with square or rectangular shapes are incorporated in
the created code. Numerical calculations by this code
both for entire holes and for parts of the holes will be
the subject of future study.

CONCLUSION

It is presented a numerical calculation with the de-
velopment of the Galerkin method in its application
for modeling of PCF. The effective index of the fun-
damental mode of the fiber with two rings of holes
with circular shape is calculated with a high accuracy:
7 digits retain when the number of the members in the
expansion is changed by 1 and 8 digits retain when the
dimensions of the material domain are changed in the
process of the solution convergence. The relative er-
ror of the effective index of the fundamental mode of
a PCF with two rings of holes is with less value than
that of the effective index of the fundamental mode
of a PCF with one ring of holes calculated by PWM
with one to two orders and the number of the mem-
bers of the expansions of the magnetic field in a PCF
with two rings of holes is with less value than that in a
PCF with one ring of holes used by PWM with three
orders. It is shown also the vector distribution of the
transverse magnetic field, its contour map and three-
dimensional plot. The proposed expressions for an
analytical calculation of the double integrals of the el-
ements of the matrices of the modes of the PCF with
holes with square or rectangular shapes and of the
PCF with holes with arbitrary shapes approximated
by layers of parallel rectangles rotated at different an-
gles give a possibility for an accurate and fast calcu-
lation of the PCF. The high accuracy of the received
results and the small number of members in the field
expansion show that the proposed development can
be successfully used for modeling of the PCF.
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ПРЕСМЯТАНЕ НА ФОТОННО-КРИСТАЛНИ ВЛАКНА С МЕТОДА НА ГАЛЕРКИН
С РАЗЛОЖЕНИЕ ПО СИНУСОВИ ФУНКЦИИ БЕЗ АПРОКСИМАЦИЯ

НА ПОКАЗАТЕЛЯ НА ПРЕЧУПВАНЕ
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(Резюме)

Представени са резултати от пресмятане на основни характеристики на фотонно-кристално влакно с два пръстена от дупки
с подход, който отчита точната зависимост на показателя на пречупване от напречните координати x и y на фотонно-кристално
влакно. Теоретично са изведени формули за пресмятане на дупки с произволна форма чрез разделянето на материалната об-
ласт в тях на правоъгълници, завъртяни на произволни ъгли спрямо глобална координатна система в равнината на напречното
сечение на фотонно-кристалното влакно.
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