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Application of finite-difference method for numerical investigation of
eigenmodes of anisotropic optical waveguides with an arbitrary tensor

I. K. Ivanov∗

Department of Theoretical Physics, University of Plovdiv, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria

In this paper 3D finite-difference methods is developed for analyzing anisotropic optical waveguides. An eigenvalue matrix equa-
tion is derived through considering simultaneously four transverse field components. The numerical results show that the proposed
scheme is highly efficient and yields complex effective indices while requiring match less computer memory and calculation time than
the commonly used methods. Algorithm is used to study modes on a electrooptic polymer waveguide and a liquid-crystal optical
waveguide with arbitrary director orientation, clearly demonstrated in the numerical examples.
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INTRODUCTION

In fiber and integrated optics, a fundamental prob-
lem is to compute the eigenmodes of optical waveg-
uides. Several techniques are commonly used to
compute the electromagnetic modes of waveguides,
including finite element methods, mode-matching
techniques, method of lines, and finite difference
methods. Many methods completely neglect the
anisotropy of the constituent materials. Of those that
do account for material anisotropy, most require that
the permittivity tensor be diagonal when expressed
in the coordinate system of the waveguide. In this
paper, we present an finite-difference (FD) method
for solving full-vector modes of optical waveguides
with arbitrary permittivity tensor, i.e. with general
three-dimensional (3-D) anisotropy. Only fewer FD
works deal with structures including anisotropic ma-
terials [1-5] and they at most considered anisotropy
in the transverse plane, i.e. in the waveguide cross-
section. In [5] was developed a more rigorous vec-
tor FD mode solver, based on the traditional approach
for anisotropic waveguides, but again assuming non-
diagonal anisotropy only in the transverse plane (in
permittivity tensor all εxz,εyz,εzx,εzy = 0). Now, we
derive a matrix standard eigenvalue problem from the
FD method, which is easier to solve for the all modes.
For absorbing boundary condition is used method of
perfectly matched layers (PMLs) for anisotropic me-
dia [6] at the outer boundaries of the computational
domain. In so doing, leaky waveguide modes having
complex propagation constants can also be analyzed.
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For optimize numerical realization we proposed
scheme with only one complex array similar complex
potential of Riemann-Silberstein [7], instead four
field components (two for transverse electric field
components Ex, Ey and two for transverse magnetic
field components Hx and Hy - total four arrays).

The eigenmodes and eigenvalues of the waveguide
were calculated using an iterative shift-inverse power
method with Rayleigh criteria.

FORMULATION

For analysis of a waveguide is used computational
domain (Fig. 1), where the waveguide cross-section in
the transverse x− y plane is truncated and surrounded
by PML regions of thickness d. The incorporation of
PML regions allows the analysis of leaky modes.

We consider anisotropic material, which permit-
tivity tensor [ε] is formulated as:

[ε] = ε0





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 , (1)

Fig. 1. The cross-section of arbitrary waveguide with the
PML, placed at the edges of the computing domain.
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where ε0 is the permittivity of free space, and εi, j may
be a complex value.

For permeability tensor [µ] is assumed diagonal
structure:

[µ] = µ0





µxx 0 0
0 µyy 0
0 0 µzz



 , (2)

where µ0 is the permeability of free space, and µi, j
probably are equal to 1 for non-magnetic waveguide
structures.

Assuming a z dependence of e−iβ z for all fields
and a time dependence of eiω t , with β being the
modal propagation constant Maxwell’s equations can
be written as:

∇ · ([ε]~E) = 0 (3)

∇×~E =−iω([µ]~H) (4)

∇ · ([µ]~H) = 0 (5)

∇× ~H = iω([ε]~E) (6)

In the matrix form assuming
∂

∂ z
=−iβ curl equa-

tions can be written as:




0 iβ
∂

∂y

−iβ 0 − ∂

∂x

− ∂

∂y
∂

∂x
0









Ex

Ey

Ez





=

=−ωµ0





µxx 0 0
0 µyy 0
0 0 µzz









Hx
Hy
Hz



 (7)





0 iβ
∂

∂y

−iβ 0 − ∂

∂x

− ∂

∂y
∂

∂x
0









Hx

Hy

Hz





=

= ωε0





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz









Ex
Ey
Ez



 (8)

For eigenmode form equations we need to elimi-
nate Ez and Hz form (7) and (8).

Expression for Hz can be obtained from equation
(5) or from third of equations (7).

Hz =
1

iβ µzz

(
µxx

∂Hx

∂x
+µyy

∂Hy

∂y

)
or

Hz =−
1

iωµ0µzz

(
−∂Ex

∂y
+

∂Ey

∂x

)
. (9)

For Ez in general case we have from third of equa-
tion (8)

Ez =−
εzx

εzzEx
− εzy

εzzEy
+

1
iωε0εzz

(
−∂Hx

∂y
+

∂Hy

∂x

)
.

(10)
By substituting the Ez and Hz expressions into (7)

and (8) can be derived eigenvalue matrix equation for
the four transverse field components.

Our new original proposal is to replace these four
field components with only one complex filed com-
ponent ~F and its conjugate ~F∗

~F =
1
2
~E + i

1
2
~H. (11)

Evidently we have

~E = ~F +~F∗, i~H = ~F−~F∗ (12)

∇×~F =
1
2

∇×~E + i
1
2

∇× ~H (13)

∇ ·~F =
1
2

∇ ·~E + i
1
2

∇ · ~H (14)

Therefore, the equations (7) and (8) are reduced to
an equation:




0 iβ
∂

∂y

−iβ 0 − ∂

∂x

− ∂

∂y
∂

∂x
0









Fx

Fy

Fz





=

=
1
2
[T1]





Fx
Fy
Fz



+

1
2
[T2]





F∗x
F∗y
F∗z



 , (15)

where Fz =
1
2 Ez + i 1

2 Hz already known from expres-
sions (9) and (10),

[T1] = ωµ0[µ]+ωε0[ε]

[T2] =−ωµ0[µ]+ωε0[ε].
(16)

For the boundary conditions of considered
anisotropic waveguide in the PML (perfected
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matched layer) regions, the permittivity and perme-
ability tensors are taken to be

[εPML] = µ0





sysz

sx
εxx szεxy syεxz

szεyx
sxsz

sy
εyy szεyz

syεzx sxεzy
sxsy

sz
εzz





(17)

[µPML] = µ0





sysz

sx
µxx 0 0

0
sxsz

sy
µyy 0

0 0
sxsy

sz
µzz




, (18)

where sx, sy and sz are the complex PML parameters
defined as

sx = 1− iαx , sy = 1− iαy , sz = 1− iαz (19)

witch appropriate values controlling the field attenu-
ation in PML regions. As in [6] we may determine
parameter s as follows

s = 1− iα = 1− i
σe

ωε0n2 = 1− i
σm

ωµ0
, (20)

where σe and σm are the electric and magnetic con-
ductivities of the PML, respectively, and n is the
refractive index of the adjacent computing domain.
This relation means that the wave impedance of a
PML medium exactly equals to that of the adjacent
medium in the computing window regardless of the
angle of propagation. Assume that the electric con-
ductivity of the PML medium has an m-power profile
as

σe(ρ) = σmax

(
ρ

d

)m
, (21)

where ρ is the distance from the beginning of the
PML and d is thickness. At the interface of the PML
and the computing window, the theoretical reflection
coefficient for the normal incident wave is

R = exp
[
−2

σmax

ε0cn

∫ d

0
(ρ/d)mdρ

]
, (22)

and the maximum conductivity σmax can then be de-
termined as

σmax =
m+1

2
ε0cn

d
ln
(

1
R

)
, (23)

where c is the speed of light in free space. For the
case of m = 2

s = 1− i
3λ

4πnd

(
ρ

d

)2
ln
(

1
R

)
. (24)

In our considerations we choose

α j = α j,max

(
ρ

d

)2
(25)

for j = x and j = y, and αz = 0, where ρ represents the
distance in the j-direction from the beginning of the
PML region and α j,max is determined by the assumed
reflectivity value from the PML layer.

When the waveguide media can be represented
with diagonal permittivity tensor it is more convenient
to use modified differential operator in PML regions:

∇ =

(
1
sx

∂

∂x
,

1
sy

∂

∂y
,

1
sz

∂

∂ z

)
(26)

without changes of permittivity and permeability ten-
sors.

NUMERICAL SCHEME REALISATION

For numerical discretisation of equations (15) is
used (FD) finite difference method based Yee’s mesh
algorithm by applying the central difference scheme
for the differential operators. In brackets i and j is
not indexes of arrays, they presented Yee’s cells coor-
dinates.
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Applying the Yee’s mesh and the central difference scheme expressions for curl operators

∇× (~F +~F∗) = ∇×~E =−iωµ0[µ]~H = ωµ0[µ](~F−~F∗) (27)

∇× (~F−~F∗) =
1
i
∇× ~H = ωε0[ε]~E = ωε0[ε](~F +~F∗) (28)

become

0 ·Ex,(i, j+1/2)+ iβEy,(i, j+1/2)+
Ez,(i, j+1)−Ez,(i, j)

y( j+1)− y( j)
=−iωµ0µxxHx,(i, j+1/2) (29)

−iβEx,(i+1/2, j)+0 ·Ey,(i+1/2, j)+
Ez,(i+1, j)−Ez,(i, j)

x(i+1)− x(i)
=−iωµ0µyyHy,(i+1/2, j) (30)

Ey,(i+1, j+1/2)−Ey,(i, j+1/2)

x(i+1)− x(i)
−

Ex,(i+1/2, j+1)−Ex,(i+1/2, j)

y( j+1)− y( j)
+0 ·Ez,(i+1/2, j+1/2) =−iωµ0µzzHz,(i+1/2, j+1/2) (31)

0 ·Hx,(i+1/2, j)+ iβHy,(i+1/2, j)+
Hz,(i+1/2, j+1/2)−Hz,(i+1/2, j−1/2)

y( j+1/2)− y( j−1/2)
= iωε0εxxEx,(i+1/2, j)

+ iωε0εxyEy,(i+1/2, j)+ iωε0εxzEz,(i+1/2, j)

(32)

−iβHx,(i, j+1/2)+0 ·Hy,(i, j+1/2)+
Hz,(i+1/2, j+1/2)−Hz,(i−1/2, j+1/2)

x(i+1/2)− x(i−1/2)
= iωε0εyxEx,(i, j+1/2)

+ iωε0εyyEy,(i, j+1/2)+ iωε0εyzEz,(i, j+1/2)

(33)

−
Hx,(i, j+1/2)+Hx,(i, j−1/2)

y( j+1/2)− y( j−1/2)
+

Hy,(i+1/2, j)−Hy,(i−1/2, j)

x(i+1/2)− x(i−1/2)
+0 ·Hz,(i, j) = iωε0εzxEx,(i, j)

+ iωε0εzyEy,(i, j)+ iωε0εzzEz,(i, j)

(34)

In our case Fx = Ex +F∗x , Fy = Ey +F∗y , Fz = Ez +F∗z , F∗x = Fx− iHx, . . . etc.
Assuming field vectors functions represents one column array according Yee’s cells.
For example if ∆x = xi+1− xi where i = 0,1,2, . . . ,n and ∆y = y j+1− y j where j = 0,1,2, . . . ,m

E = (Ex0,y0 ,Ex0+∆x,y0 , . . . ,Ex0+n∆x,y0 ,Ex0,y0+∆y,Ex0+∆x,y0+∆y, . . . ,Ex0+n∆x,y0+∆y, . . . ,Ex0+n∆x,y0+m∆y)
tr (35)

H = (Hx0,y0 ,Hx0,y0+∆y, . . . ,Hx0,y0+m∆y,Hx0+∆x,y0 ,Hx0+∆x,y0+∆y, . . . ,Hx0+n∆x,y0+∆y, . . . ,Hx0+n∆x,y0+m∆y)
tr, (36)

where E can be any of Ex, Ey or Ez and H can be Hx, Hy or Hz.
Then we can define derivates of functions using matrices according [8]

∂

∂x
E = UxE =

1
∆x




−1 1
−1 1

. . .
−1 1
−1







E1
E2
...

En×(m−1)
En×m



, (37)

∂

∂y
E = UyE =

1
∆y




−1 “n”. . . 1

−1
. . .

. . . 1
−1
−1







E1
E2
...

E(n−1)×m
En×m



, (38)
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∂

∂x
H = VxH =

1
∆x




1
−1 1

. . .
−1 1
−1 1







H1
H2
...

H(n−1)×m
Hn×m



, (39)

∂

∂y
H = VyH =

1
∆y




1
1

−1
. . .

1
−1 1







H1
H2
...

Hn×(m−1)
Hn×m



. (40)

Final eigenvalue matrix equation for the four
transverse field components can be derived as in the
fooling form:




A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44







Ex
Hx
Ey
Hy


= β




Ex
Hx
Ey
Hy


 (41)

After some obvious algebraic simplification (41)
can be written as:

[
B33 B34
B43 B44

][
Fx
Fy

]
= β

[
Fx
Fy

]
, (42)

2Fx = Ex + iHx, 2Fy = Ey + iHy

and once solved this matrix equation, then can find
four transverse field components by formulas (12).
Or we can solve equation (41) and directly find field
components. Note, if choose (42) matrix equations
are twice less, which reduces memory and optimize
iterative work of eigen solver.

Below are listed coefficients of matrix A. They are
similar to [8], distinguished by their ranking





A11 =−i
εzx

εzz
Ux,

A12 =−
1

ωε0εzz
UxVy,

A13 =−i
εzy

εzz
Ux,

A14 =
1

ωε0εzz
UxVx +ωµ0µyyI,

(43)





A21 =−ωε0εyxI+
1

ωµ0µzz
VxUy+

ωεyzεzx
εzz

I,

A22 =−i
εyz

εzz
Vy,

(44)





A23 =−ωε0εyyI− 1
ωµ0µzz

VxUx+
ωεyzεzy

εzz
I,

A24 = i εyz
εzz

Vx,
(45)





A31 =−i
εzx

εzz
Uy,

A32 =−
1

ωε0εzz
UyVy−ωµ0µxxI,

A33 =−i
εzy

εzz
Uy,

A34 =
1

ωε0εzz
UyVx,

(46)





A41 = ωε0εxxI+
1

ωµ0µzz
VyUy−

ωεxzεzx

εzz
I,

A42 = i
εxz

εzz
Vy,

(47)





A43 = ωε0εxyI− 1
ωµ0µzz

VyUx−
ωεxzεzy

εzz
I,

A44 =−i εxz
εzz

Vx.
(48)

NUMERICAL EXAMPES AND RESULTS

To demonstrate the accuracy and applications of
the proposed 3D method, we present two numerical
examples, one with electrooptic polymer waveguide
that is poled at an oblique angle relative to the direc-
tion [9 - 10], and the other involving LCs with arbi-
trary director orientation [11].

In first example the cladding layers are assumed
to be nonpolar (and hence immune to the poling field)
with an isotropic refractive index of n1 = n3 = 1.60.
The middle layer is modeled as an electrooptic poly-
mer with a refractive index of n2 = 1.65 prior to pol-
ing. This waveguide structure provides an interesting
challenge for mode calculations because both the ori-
entation and strength of the birefringence are nonuni-
form throughout the waveguide core. Moreover,
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Fig. 2. Hx and Hy modes of electrooptic polymer waveguide.

the induced anisotropy, although small, plays an es-
sential role in guaranteeing transverse mode confine-
ment. The net birefringence is assumed to be split
between the ordinary and extraordinary indices in the
following way:

n2e = n2 +(2/3)∆n, n2o = n2− (1/3)∆n (49)

with ∆n given by eq (18) in [5]. The local permittivity
tensor in the middle layer is then described by




n2
2e cos2 θ+n2

2o sin2
θ (n2

2e−n2
2o)sinθ cosθ 0

(n2
2e−n2

2o)sinθ cosθ n2
2e cos2 θ+n2

2o sin2
θ 0

0 0 n2
2o


 ,

(50)

where θ is an angle of axis of anisotropy.
Our results for first 5 modes (Hx,Hy) and for 4

different values of θ are shown in Fig. 2.
In [5] is shown only fundamental mode.
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In second example we study an LC (liquid crys-
tal) optical waveguide. The substrate being glass with
the refractive index n1 = 1.45 and the core region be-
ing filled with nematic LCs (5CB). The elements of
the relative permittivity tensor of the nematic LCs are
given as:

εxx/ε0 = n2
o +(n2

e−n2
o)sin2

θ cos2
φ (51)

εxy/ε0 = εyx = (n2
e−n2

o)sin2
θ sinφ cosφ (52)

εxz/ε0 = εzx = (n2
e−n2

o)sinθ cosθ cosφ (53)

εyy/ε0 = n2
o +(n2

e−n2
o)sin2

θ cos2
φ (54)

εyz/ε0 = εzy = (n2
e−n2

o)sinθ cosθ sinφ (55)

εzz/ε0 = n2
o +(n2

e−n2
o)cos2

θ . (56)

We have made many calculations at different rota-
tion angles (θ ,φ) defining the director of LC, where θ

is the angle between the crystal c-axis and the z-axis,
and φ is the angle between the projection of the crys-
tal c-axis on the x− y plane and the x-axis, as shown
at Fig. 3.

Fig. 3. Schematic definition of rotation angles for the LC
molecular or director.

We use that where no = 1.5292 and ne = 1.7072
are, respectively, the ordinary and extraordinary re-
fractive indices of the nematic LCs.

To illustrate 3D features of our method we present
all four field modes for selected values θ = 60◦,
φ = 0 and θ = 60◦, φ = 60◦. Results are shown at
Fig. 4 and Fig. 5.

Fig. 4. All mode–field profiles for the first mode of the LC waveguide with θ = 60◦, φ = 0.
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Fig. 5. All mode–field profiles for the first mode of the LC waveguide with θ = 60◦, φ = 60◦.

CONCLUSIONS

We have presented a new FD method based eigen-
value algorithm for computing guided modes of
anisotropic optical waveguides with arbitrary permit-
tivity tensor. Instead of using the standard eigen-
value matrix equation involving four transverse field
components, we involve only two (complex vector of
Riemann- Silberstein and its conjugated) witch halves
the required computer memory. Algorithm has been
used to solve guided modes on a liquid-crystal opti-
cal waveguide with arbitrary molecular director ori-
entation. This established mode solver provides an
efficient tool for studying and designing as ordinary
waveguides and waveguides with complicated mate-
rials such as liquid crystals.
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ПРИЛОЖЕНИЕ НА МЕТОДА НА КРАЙНИТЕ РАЗЛИКИ ЗА НАМИРАНЕ
НА СОБСТВЕНИТЕ СТОЙНОСТИ И ВЕКТОРИ НА МНОГОСЛОЙНИ

АНИЗОТРОПНИ ОПТИЧНИ ВЪЛНОВОДИ

Ив. Иванов

Физически факултет, Пловдивски университет “Паисий Хилендарски”,
ул. “Цар Асен“№24, 4000 Пловдив, България

(Резюме)

В работата се предлага числов модел на основата на 3D метода на крайните разлики за изследване на анизотропни оп-
тични вълноводи с произволна конфигурация на тензора на диелектрична проницаемост. Прилагането му води до получаване
на удобно матрично уравнение, от което се определят спектъра и собствените му функции, които представят четирите нап-
речни полеви компоненти, подредени плъно едно под друго в едноразмерен масив. Намирането на възможните комплексни
собствени стойности и вектори се извършва посредством shifted inverse power method, чието отместване се определя динамич-
но посредством коефициента на Релей. Той е особено ефективен при разредени лентъчни матрици и притежава почти кубична
сходимост. Алгоритмът е приложен за изчисление на модите на: 1) вълновод с електрооптичен полимерен слой; и 2) вълновод
с течнокристален слой с произволна ориентация на направляващия вектор. Числовите резултати се съгласуват много добре с
получени чрез други числови алгоритми.
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