Optical characterization of glass and glass- crystalline materials in the B_2O_3 - Bi_2O_3 - La_2O_3 system doped with Eu³⁺ ions

R. S. Iordanova¹, M. K. Milanova¹, L. I. Aleksandrov¹*, A. Khanna², N. Georgiev³

¹Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, G. Bonchev, str. bld. 11, 1113 Sofia, Bulgaria,

² Department of Physics, Guru Nanak Dev University, Amritsar, Punjab, India

³ Department of Organic Synthesis and Fuels, University of Chemical Technology and Metallurgy, 8 Kl.

Ohridski, 1756 Sofia, Bulgaria

Received October 10, 2016; Revised November 10, 2016

Glass and glass-crystalline materials with nominal composition $55B_2O_3 \cdot 35B_1O_3 \cdot 10La_2O_3$ doped with 1 mol% Eu₂O₃ were synthesized by melt quenching method. Different phases were developed, applying several melting temperatures. According to the XRD data, glass-crystalline materials containing LaBO₃ as crystalline phase were obtained at 1050 °C and 1100 °C, while X-ray amorphous samples were prepared at 1200°C. Thermal parameters of the obtained glass samples were estimated by DTA analysis. It was found that the thermal stability of the glass drastically increased with the addition of Eu₂O₃ (1 mol%). UV–Vis diffuse reflectance spectrum showed that the quenched glass is transparent in the visible region. LaBO₃:Eu³⁺ crystals enhanced red ⁵D₀–⁷F₂ photoluminescence emission of the glass–crystalline samples as compared with the glass sample. This is due to the incorporation of the active Eu³⁺ ions with low symmetry into the crystal phase.

Keywords: Glass; IR spectra; Luminescence spectra

INTRODUCTION

In the last decades, borate materials have largely demonstrated their potential for the development of new optoelectronics devices. Their interesting properties do not only limit to the crystalline phases but also can be extended to the glass form with different compositions [1]. In particular, remarkable attention has been directed towards complex bismuth-borate based glass systems, containing rare - earth metal oxides (RE) [1-3]. Such glasses have many technological applications as lenses, lasing magneto-optic materials, materials, opticalswitching materials and sensors [1-3]. They have to posses, a high thermal stability, excellent surface polishing properties, high refractive index, etc. [1, 4] to be promising materials for use in all-optical devices. It has been reported that the glass structure of bismuth borate glasses can be stabilized by doping with RE oxides. In particular, $Bi_2O_3 \cdot B_2O_3$ glasses doped with suitable amount of La₂O₃ could tighten the glass network structure and improve the microhardness of bismuth-borate glass [2, 5, 6]. In this study, glass and glass-crystalline materials with nominal composition $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ doped with 1 mol% Eu₂O₃ have been prepared by melt quenching method. The influence of Eu³⁺ ions on the structure and optical properties of the $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ glass has been also investigated.

EXPERIMENTAL

Reagent grade Bi₂O₃, H₃BO₃, La₂O₃ and Eu₂O₃ were used as starting materials to prepare one sample with nominal composition $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ and three samples with the same nominal composition doped with 1 mol% Eu₂O₃. The homogenized batches were melted at the temperature range between 1050-1200 °C for 30 min in a platinum crucible in air. The melts were quenched by pouring and pressing between two copper plates (cooling rates 10^1-10^2 K/s). The phase formation of the samples was established by x-ray phase analysis. Powder XRD patterns were registered at room temperature with a Bruker D8 Advance diffractometer using $Cu-K_{\alpha}$ radiation. The data were obtained in the $10 < 2\theta < 60^{\circ}$ range with a step 0.02 for two different scanning times - of 0.02 seconds for the $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ sample and at longer scanning time of 0.1 seconds

^{*}To whom all correspondence should be sent:

E-mail: lubomirivov@gmail.com

for the three Eu₂O₃ doped specimens. Thermal parameters of the glasses were determined using differential thermal analysis (DTA) (Setaram, LabsysEvo 1600). The heating rate was 10K/min in air atmosphere under air flow of 20 mL/min. The IR spectra of the glasses were recorded in the 1600-400 cm⁻¹ region, using the KBr pellet technique (Nicolet-320 FTIR spectrometer). The optical spectra of powder samples at room temperature were recorded with a spectrometer 300 UV-vis Spectrophotometer) (Evolution employing the integration sphere diffuse reflectance attachment. The uncertainty in the observed wavelength is about ± 1 nm. The Kubelka–Munk function (F(R ∞)) was calculated from the UV–Vis diffuse reflectance spectra. The band gap energy (Eg) was determined by plot $(F(R\infty) hv)^{1/n}$, n = 2versus hv (incident photon energy). The photoluminescence (PL) spectra in the visible region of Eu³⁺ ions for the glass and glasscrystalline samples were recorded with PL spectrometer (Scinco FS-2 with wavelength accuracy 1 nm) at room temperature in which the excitation light of a wavelength $\lambda = 464$ nm was used.

RESULTS

Different phases were developed, applying several melting temperatures. According to the XRD data (Fig. 1 a, b, c, d), glass-crystalline materials containing LaBO₃ (JCPDS-00-012-0762) as crystalline phase were obtained at 1050 °C and 1100 °C, while x-ray amorphous samples were prepared at 1200°C. Visual observation of the obtained samples supported these experimental results. The two glasses $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ and $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$: Eu³⁺ were dark brown and completely transparent. Glass-crystalline $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$: Eu³⁺ specimen obtained at 1100 °C was yellow and opaque, while the sample melted at 1050 °C was opaquer probably as a result of its higher crystallinity.

We used the IR spectroscopy in order to check of addition the effect of Eu_2O_3 in 55B₂O₃·35Bi₂O₃·10La₂O₃ glass matrix (Fig. 2). As it is seen from the figure, there is no noticeable difference in the spectra of both glasses. They contain absorption peaks characteristic of the BO₃ (1360 cm⁻¹, 1290 cm⁻¹, 1190 cm⁻¹ and 695 cm⁻¹); BO_4 (1020 cm⁻¹ and 910 cm⁻¹) and BiO_6 (540 cm⁻¹) ¹and 480 cm⁻¹) structural groups [6-8]. In order to get more precise information about the europium ions effect on the glass structure, we deconvoluted glass spectra to check the relative population of boron in different structural units (BO₃ and BO₄). Fig 3 (a, b) shows the deconvolution in Gaussian bands, of the investigated spectra. Each component

Fig. 1. XRD patterns of $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ (a) and $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$: Eu³⁺ (b-d) glass and glass-crystalline samples obtained by melt quenching at different temperatures.

Fig. 2. IR spectra of 55B₂O₃·35Bi₂O₃·10La₂O₃ (a) and 55B₂O₃·35Bi₂O₃·10La₂O₃ : Eu³⁺ (b) glass samples obtained by melt quenching technique.

band is related to some type of vibration in specific structural groups. The concentration of the structural group was considered to be proportional to the relative area of its component band. The deconvolution parameters (the band centre at C and the relative area A) and the band assignments are given in Table 1. These characteristic parameters are used to calculate the fraction N_4 of BO₄ units in the bismuth-borate matrix. N_4 can be defined as the

Fig. 3. Deconvoluted IR spectra of: (a) 55B₂O₃·35Bi₂O₃·10La₂O₃ and (b) 55B₂O₃·35Bi₂O₃·10La₂O₃ : Eu³⁺ glass samples obtained by melt quenching technique.

Table 1. Deconvolution parameters (the band centers Cand the relative area A) and the band assignments for theundoped and Eu^{3+} doped 55B₂O₃·35Bi₂O₃·10La₂O₃ glass

Sample	С	А	Assignments	Ref.
55B2O3	815	2.8	B-O stretch	6-8
35Bi ₂ O ₃			vibration in BO4	
$10La_2O_3$			groups	
	892	12.1	B-O stretch	6-8
			vibration in BO4	
			groups	
	1025	21.9	B-O stretch	6-8
			vibration in BO4	
			groups	
	1197	24.7	B-O stretch	6-8
			vibration in BO3	
			groups	
	1319	29.5	B-O stretch	6-8
			vibration in BO ₃	
			groups	
	1408	9.0	B-O stretch	6-8
			vibration in BO ₃	
			groups	
55B2O3	816	2.2	B-O stretch	6-8
35Bi ₂ O ₃			vibration in BO ₄	
10La ₂ O			groups	
Eu ³⁺	887	9.7	B-O stretch	6-8
			vibration in BO ₄	
			groups	
	1024	26.18	B-O stretch	6-8
			vibration in BO ₄	
			groups	
	1199	21.4	B-O stretch	6-8
			vibration in BO ₃	
			groups	
	1314	29.2	B-O stretch	6-8
			vibration in BO ₃	
	1 4 9 7		groups	
	1405	11.2	B-O stretch	6-8
			vibration in BO ₃	
			groups	

samples ratio of the concentration of BO₄ units to the concentration of (BO_3+BO_4) units [4, 8]. The calculated N₄ values for the studied compositions are 0.36 and 0.38 for the undoped and Eu³⁺ doped 55B₂O₃·35Bi₂O₃·10La₂O₃ glass respectively. The higher N₄ values for the Eu³⁺ doped sample calculated reveals that the presence of europium ions influences the surroundings of the B³⁺ cations favouring the formation of the BO₄ structural units and in this way the glass network became more stable [8].

The modification of the structural $55B_2O_3$ ·35Bi₂O₃·10La₂O₃ glass network, caused by the presence of Eu₂O₃ is also evidenced by DR-UVvis spectroscopy. Fig. 4 displays the diffuse reflectance spectra of undoped and Eu³⁺doped $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ glasses and 55B₂O₃·35Bi₂O₃·10La₂O₃: Eu³⁺ glass-crystal. In all spectra, two absorption bands at 260 nm and 305-325 nm are observed. In the Eu³⁺ free spectrum these bands are due to ${}^{1}S_{0} \rightarrow {}^{3}P_{1}$ and ${}^{1}P_{1}$ transitions of Bi^{3+} ions [9, 10]. The higher absorption intensity in the spectrum of Eu³⁺doped glass is a result of the contribution of ligand-to-metal charge-transfer band of Eu³⁺ ions (310-315 nm) [11, 12]. In addition, the band located at 315 nm in the spectrum of Eu³⁺ free glass slightly blue shifts to 305 nm in the presence of Eu_2O_3 . The observed spectral differences can be explained in terms of the structural changes that are taking place with the incorporation of the Eu³⁺ ions in the glass network [9, 10]. The shift towards lower wavenumber can be explained with the formation of more symmetrical EuO_6 and BiO_6 units [13]. Optical band gap values (Eg) evaluated from the UV-Vis spectra can also give information about the structural arrangement of the glasses under investigation. The calculated band gap (E_g) energy values for indirect transition (see the inset in the Fig. 4) are 3.11 eV and 3.17 eV for the undoped and $Eu^{3+}doped 55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ glass respectively. According to the literature in glasses the variation of E_g may be attributed to the network structural changes [14, 15]. It is well known that in metal oxides, creation of non-bonding orbitals with higher energy than bonding ones shifts valence band to higher energy which results to Eg decreasing. However, in our case, Eg value of Eu³⁺ doped glass increases which evidence that Eu₂O₃ improves the connectivity inside the network by decreasing of the non-bridging oxygen species. In the case of glass-crystalline Eu³⁺ doped sample, the band above 300 nm shifts to higher wavenumber -325 nm and $E_{\rm g}$ value is lower – 3.04 eV. These spectral features indicate that Eu³⁺ ions are with lower local symmetry.

Fig. 5. DTA curves of $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$ and $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3 : Eu^{3+}$ glass samples obtained by melt quenching technique.

The formation of more rigid glass structure with the addition of Eu₂O₃ is also confirmed by the DTA data obtained (Fig. 5). For the undoped 55B₂O₃·35Bi₂O₃·10La₂O₃ glass, DTA shows a hump, corresponding to the glass transition temperature Tg at 505 °C, followed by one exothermic peak at 530 °C, corresponding to crystallization temperature - T_x and other endothermic event, corresponding to the melting temperature $T_m - 650$ °C. For the Eu³⁺ doped glass the glass transition temperature T_g is at 457 °C, exothermic peak of crystallization T_x at 590 °C and endothermic peak, corresponding to the melting temperature T_m at 680 °C. The temperature difference $\Delta T = T_x - T_g$, gives a measure of the thermal stability of a glass against crystallization is 25 °C and 133 °C for the undoped and Eu³⁺ doped glass respectively. As it is seen from the DTA data

obtained, Eu^{3+} doped glass has higher glass crystallization temperature T_x and possesses much higher thermal stability (higher ΔT) as compared with the undoped glass. These results suggest that the network structure of $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$. Eu^{3+} glass is becoming stronger with the introduction of Eu_2O_3 .

Fig. 6. PL (a) excitation and (b) emission spectra of $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3 : Eu^{3+}$ glass and glass-crystal samples obtained by melt quenching technique at different temperatures.

The PL excitation and emission spectra at room prepared 55B₂O₃·35Bi₂O₃· temperature for 10La₂O₃:Eu³⁺ glass and glass-crystals are shown on Fig. 6 a and b. The monitoring of excitation spectra (Fig. 6a) shown that the intensity of the absorption peak at 464 nm dominates in comparison with the intensity of the absorption at 394 nm. That is why the emission was registered with excitation at 464 nm. The emission spectra (Fig. 6b) excited at λ_{ex} =464 nm consist five peaks assigned to the 4f transitions of Eu³⁺ ions, i.e., ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J=0, 1, 2, 3) and 4). It is seen that the peaks intensity for sample melted at 1050°C dominate as compared to the other samples because of its higher degree of crystallinity. It is well known that the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition situated around orange light (590 nm) is due to the magnetic dipole transition while ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ with red line (615 nm) corresponds to the electric dipole transition which band is dominant in all spectra [16, 17]. The ratio of integrated emission peaks intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition to that of the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition can be connected with the covalent/ionic bonding between Eu³⁺ ions and surrounding ligands. The increasing ratio value is due to the increasing of asymmetry between europium and oxygen ions [17]. For the sample synthesized at 1050 °C the calculated value is 0.25 while for the glass sample decrease to 0.15. These values indicate that Eu³⁺ ions are with lower local symmetry in the glass crystalline sample and they are in agreement with the DR-UV-vis results.

CONCLUSIONS

Glass and glass crystalline materials with nominal composition 55B2O3·35Bi2O3·10La2O3 doped with 1 mol% Eu₂O₃ were synthesized by melt quenching technique and the influence of Eu³⁺ on the structure and optical properties of the glasses was investigated. The IR studies revealed the existence of BO₃, BO₄ and BiO₆ as the main structural units of the amorphous network. structural Europium ions generate changes, favoring the formation of the BO₄ units. The optical absorption studies revealed that the optical band gap energy (E_g) of glasses increases in the presence of Eu³⁺ ions, while Eg of glass crystalline sample decreases. Increase in Eg value evidence the decrease in number of non-bridging oxygen ions in the glass structure. DTA data showed that the introduction of Eu₂O₃ significantly improves thermal stability of 55B₂O₃·35Bi₂O₃·10La₂O₃ glass. enhanced red LaBO₃:Eu³⁺ crystals $^{5}D_{0}-^{7}F_{2}$ photoluminescence emission of the glasscrystalline samples as compared to the glass sample.

Acknowledgment: The study was performed with the financial support of The Ministry of Education and Science of Bulgaria, Contract No ДНТС/India 01/6, 2013: Bulgarian-Indian Inter-governmental Programme of Cooperation in Science and Technology.

REFERENCES

- P. Yasaka, J. Kaewkhao, 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), Bandung, pp. 4, (2015), doi: 10.1109/ICICI-BME.2015.7401304.
- M.A. Marzouk, J. Molec. Struct., 1019, 80 (2012).
- A. Bajaj, A. Khanna, N. K. Kulkarni, S. K. Aggarwal, J. Am. Ceram. Soc., 92, 1036 (2009).
- 4. M. Farouk, A. Samir, F. Metawe, M. Elokr, *J. Non- Cryst. Solids*, **371-372**, 14 (2013).
- Y. Cheng, H. Xiao, W. Guo, *Ceram. Int.*, 34, 1335 (2008).
- Y. Cheng, H. Xiao, W. Guo, *Mater. Sci.* Eng. A, 480, 56 (2008).
- E. I. Kamitsos, M. A. Karakassides, G. D. Chryssikos, J. Phys. Chem., 91, 1067 (1987).
- P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Pop, E. Culea, J. Mol. Struct., 924-926, 214 (2009).
- 9. A. Sontakke, A. Tarafder, K. Biswas, K. Annapurna, *Phys. B*, **404**, 3525 (2009).
- 10. C. Kim, H. Park, S. Mho, *Solid State Commun.*, **101**, 109 (1997).
- M. Gusik, E. Tomaszewicz, S. M. Kaczmarek, J. Cybińska, H. Fuks, J. Non-Cryst. Sol., 356, 1902 (2010).
- 12. C. A. Kodaira, H. F. Brito, O. L. Malta, O. A. Serra, *J. Lumin.*, **101**, 11 (2003).
- 13. E. I. Ross-Medgaarden, I. E. Wachs, J. *Phys. Chem. C*, **11**, 15089 (2007).
- 14. R. Jose, T. Suzuki, Y. Ohishi, *J. Non-Cryst.* Solids, **352**, 5564 (2006).
- S. Rani, S. Sanghi, N. Ahlawat, A. Agarwal, J. Alloys Comp., 597, 110 (2014).
- Y. Zhou, J. Xu, Z. Zhang, M. You, J. Alloys Comp., 615, 624 (2014).
- 17. J. Pisarska, L. Zur, W. A. Pisarsky, *Opt. Fibers Their Aplic.*, **8010**, 80100N1 (2011).

ОПТИЧНО ОХАРАКТЕРИЗИРАНЕ НА ДОТИРАНИ С ЕU³⁺ ЙОНИ, СТЪКЛА И СТЪКЛОКРИСТАЛНИ МАТЕРИАЛИ В СИСТЕМАТА B₂O₃-BI₂O₃-LA₂O₃

Р. С. Йорданова¹, М. К. Миланова¹, Л. И. Александров¹, А. Канна², Н. Георгиев³

¹Институт по обща и неорганична химия, Българска академия на науките, ул. Г. Бончев, бл. 11, 1113 София, България, *e-mail:lubomirivov@gmail.com

² Университет Гуру Нанак Деф, Амритсар, Пенджаб, Индия

³Химикотехнологичен и металургичен университет, ул. Климент Охридски 8, 1756 София, България

Постъпила на 10 октомври 2016 г.; коригирана на 10 ноември, 2016 г.

(Резюме)

По метода на преохладена стопилка, са синтезирани стъкла и стъклокристални материали с номинален състав $55B_2O_3 \cdot 35Bi_2O_3 \cdot 10La_2O_3$, дотирани с 1 мол.% Eu₂O₃. В зависимост от приложената температура на топене, са получени различни фази. Според данните от рентгенофазовият анализ, са получени стъклокристални материали, съдържащи LaBO₃ като кристална фаза при 1050 °C и 1100 °C, докато при 1200°C е синтезиран рентгено-аморфен образец. Термичните параметри на получените стъкла, са определени чрез диференциално-термичен анализ. Установено е, че термичната стабилност на стъкло, съдържащо Eu₂O₃ драстично нараства. Оптичните спектри, показват, че стъклата са прозрачни във видимата област на спектъра. Установено е, че стъклокристалните образци, съдържащи LaBO₃:Eu³⁺ се характеризират с повишена червена емисия ⁵D₀–⁷F₂ в сравнение със стъклото. Това може да се обясни с по-ниската локална симетрия на Eu³⁺ йоните в кристалната фаза в сравнение със стъклото.