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This study deals with the unsteady flow of an Eyring-Powell fluid induced by an oscillatory stretching surface in 
presence of chemical reaction. The elastic sheet is stretched periodically back and forth in its own plane. The equations 
governing the flow are derived employing fundamental law of mass, momentum and diffusion. The independent 
variables in the governing equations are reduced by using dimensionless variables which are solved by using two 
different techniques, namely, homotopy analysis method and an implicit finite difference scheme. Solutions obtained by 
both methods are compared and found in excellent agreement. The physical variables such as longitudinal velocity 
component and mass concentration are examined in detail for various values of the parameters of interest. 
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INTRODUCTION 

The study of convective flow under the 
influence of magnetic field and chemical reaction 
has practical applications in many areas of science 
and engineering. This phenomenon plays a vital 
role in chemical industry, petroleum industry, 
cooling of nuclear reactors, packed-bed catalytic 
reactors, etc. In view of all these applications many 
researchers studied the effects of chemical reaction 
on the flow of different fluids. The specialized 
literature on this topic is discussed in the following 
paragraphs. Chambre and Young [1] discussed the 
diffusion of a chemically reactive species in a 
laminar boundary layer flow over a flat plate. 
Andersson et al. [2] studied the laminar boundary 
layer flow induced by a stretching sheet in the 
presence of chemical reaction effects. Takhar et al. 
[3] discussed the diffusion of chemically reactive 
species in a second-order fluid over a stretching 
sheet. Akyildiz et al. [4] studied the diffusion of 
chemically reactive species in a second-grade fluid 
over a porous stretching surface. Hayat and Abbas 
[5] used homotopy analysis to analyze the effects of 
chemical reaction in a Maxwell fluid. In another 
paper, Hayat et al. [6] examined the effects of mass 
transfer in a unsteady flow of Maxwell fluid over a 
stretching sheet. The effect of chemical reaction 
and variable viscosity with heat and mass transfer 
for a Hiemenz flow through a Darcian porous 

medium was investigated by Seddeek et al. [7]. 
Aziz [8] used a numerical technique to discuss the 
effects of chemical reaction and heat mass transfer 
in a viscous fluid.  

Ferdows and Qasem [9] investigated the effects 
of the order of chemical reaction on a boundary 
layer flow with heat mass transfer over a linearly 
stretching surface. Krishnendu [10] discussed the 
effects of mass transfer in presence of chemical 
reaction over a porous flat plate. Mukhopadhyay 
and Bhattacharyya [11] used a shooting method to 
analyze the first-order constructive/destructive 
chemical reaction in a flow of Maxwell fluid over a 
stretching sheet. The chemically reactive 
hydromagnetic flow of a second-grade fluid in a 
semi-porous channel was discussed by Abbas et al. 
[12]. Apart of these, some recent attempts regarding 
flows of different fluids in presence of chemically 
reactive species can be found in refs. [13-17]. 

Motivated by the studies mentioned above, the 
aim of this paper is to analyze the unsteady flow 
and mass transfer of chemically reactive species. 
The rheological behavior of the fluid is captured by 
the constitutive equation of the Eyring-Powell 
model. This model has already been used by several 
authors to discuss non-Newtonian flows [18-21]. 
Unlike typical studies, the stretching sheet is 
assumed to be oscillatory. The idea of flow over an 
oscillatory stretching sheet was introduced by 
Wang [22]. The work of Wang [22] was extended 
by few authors including Siddapa et al. [23], Abbas 
et al. [24, 25], Zheng et al. [26] and Ali et al. [27]. * To whom all correspondence should be sent: 
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The proposed study extends the analysis of Wang 
[22] by considering an Eyring-Powell fluid model 
in the presence of chemically reactive species. The 
solution of the governing problem is obtained by a 
homotopy analysis method (HAM) and a finite 
difference scheme. A comparison of both solutions 
is made. Based on the numerical solution a 
parametric study is carried out to quantify the 
effects of various emerging parameters on the flow 
and concentration characteristics inside the 
boundary layer. 

FLOW ANALYSIS 

Let us consider an unsteady, two-dimensional 
and magnetohydrodynamic (MHD) flow of an 
incompressible Eyring-Powell fluid past over an 
oscillatory stretching sheet coinciding with plane 

0y =  (see Fig. 1 ).  

 

Fig. 1. Geometry of the problem. 

The elastic sheet is periodically stretched back 
and forth with a velocity sinwu bx tω=  ( x  is the 
coordinate along the sheet, b is the maximum 
stretching rate and ω  represents the frequency). A 
magnetic field of magnitude 0B  is applied in the 
direction perpendicular to the sheet. Let wc  denotes 
the concentration at the surface while the 
concentration far away from the surface is c∞ . The 
continuity, momentum and concentration equations 
for an Eyring-Powell fluid can be expressed as [21] 
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where u and v  are velocity components along 
x  and y  directions, respectively, ν   represents the 
kinematic viscosity, ρ  is the density, β ∗  and C  
denote the material parameters of the Eyring-
Powell model, c  is the concentration field, D  is 
the concentration expansion coefficient, k  is the 
chemical reaction rate. 

Eqs. (1)-(3) are subjected to the conditions 
sin ,   0,  at 0,   0,wu u bx t v c c y tω ω= = = = = >

 (4) 
0,                  at ,u c c y∞→ → →∞   (5) 

Let us introduce appropriate variables [22, 24] 

( ) ( )

,      ,       

, ,     , ,y

by y t

u bxf y v b f y

τ ω
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τ ν τ

= =

= = −
   (6) 
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Utlizing Eqs. (6)  and (7),  Eq.(1) is identically 
satisfied and Eqs. (2)  and (3) become 
( ) 2 2 21 0,yyy y y yy y yy yyyK f Sf f ff M f Kf fτ λ+ − − + − − =  

(8) 

( ) 0,yy ySc f S Scτφ φ φ βφ+ − − =   (9) 
with boundary conditions 
( ) ( ) ( )0, sin ,    0, 0,    0, 1,yf fτ τ τ φ τ= = =  (10) 

( ) ( ), 0,         , 0.yf τ φ τ∞ = ∞ =            (11) 

In the above equations 1/K Cµβ ∗=  and 
2 3 2/ 2x b Cλ ν=  are dimensionless material fluid 

parameters, /S bω≡  is the ratio of the oscillation 
frequency of the sheet to its stretching rate, 

2
0 /M B bσ ρ=  is the Hartmann number, 

/Sc Dυ=  is the Schmidt number and /k bβ =  
denotes the chemical reaction parameter. According 
to Javed et al. [18], Eq. (2) is subject to the 
constraint 1.Kλ <<  
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The skin-friction coefficient fC  is defined as 

2 ,w
f

w

C
u
τ
ρ

=     (12) 

where wτ  denotes the shear stress at the wall. In 
view of (6) and (7), Eq. (12)  takes the following 
form [19] 

( )1/ 2 3

0

Re 1 ,
3x f yy yy

y

KC K f fβ
=

 = + −  
 (13) 

where Re /x wu x ν=  is the local Reynold 
number. 

HOMOTOPY ANALYSIS METHOD 

Homotopy analysis method is one of the 
powerfull analytic approaches to solve nonlinear 
partial and ordinary differential equations. This 
method was proposed by Liao [28] and then used 
by many authors for solution of different nonlinear 
problems [29-34]. Now we briefly describe the 
application of this method to the boundary value 
problem developed in the previous section. The 
boundary conditions lead to the following initial 
guesses for ( , )f y τ  and ( )yφ  
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Introducing linear operators 
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satisfying 
( ) ( )1 2 3exp exp 0,f£ C C y C y+ − + =     (16) 

( ) ( )4 5exp exp 0,£ C y C yφ − + =                   (17) 

where iC  ( 1, 2,...5)i =   are constants. The 
zeroth-order deformation problems defined 
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( ) ( )ˆ ˆ0, ; 1, , ; 0,p pφ τ φ τ= ∞ =      (21) 
where [0,1]p∈  is an embedding parameter. 

The associated nonlinear operators fN  and Nφ  are 
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The zeroth-order deformation problems defined 
above have the following solutions corresponding 
to 0p =  and 1p =   

( ) ( ) ( ) ( )0
ˆ ˆ, ;0 , , , ;1 , ,f y f y f y f yτ τ τ τ= =  (24) 

( ) ( ) ( ) ( )0
ˆ ˆ, ;0 , , , ;1 , .y y y yφ τ φ τ φ τ φ τ= =     (25) 
Using Taylor's series expansion, we can write 
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The convergence of the above series solution 
depends upon f  and φ . We assume that f  and 

φ  are selected so that Eqs. (25) to (26) converges 
at 1p = . Therefore 
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The mth-order of the deformation problem is
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The general solution at mth-order can be 
expressed as  

( ) ( ) ( ) ( )1 2 3, , exp exp ,m mf y f y C C y C yτ τ∗= + + − +  (37) 

( ) ( ) ( ) ( )4 5, , exp exp .m my y C y C yφ τ φ τ∗= + − +  (38) 

where ( , )mf y τ∗  and ( , )m yφ τ∗  indicate the 
particular solutions. The constants Ci (i = 1,2…,5) 
using conditions (20) and (21) get values 
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DIRECT NUMERICAL SOLUTION OF THE 
PROBLEM 

The system of nonlinear partial differential 
equations (8)–(9) with the boundary conditions (10) 
and (11) are solved numerically using a finite 
difference scheme with Fortran software. We use 
coordinate transformation 1/( 1)yη = +  to 
transform the semi-infinite physical domain 

[0, )y∈ ∞  to finite calculation domain  [0,1]η∈ , 
i.e.: 
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Using the above transformations in Eqs. (8)  and 
(9)  
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0,    sin ,     1  at  1,f fη τ φ η= = − = =  (43) 
In the second step, we discretize Eqs. (18) and 

(19) for L  equally spaced points 
( ) [ ]0 1 2 1, , ,... 0,1Lη η η η η += ∈  with a step size of 

( )1/ 1Lη∆ = +  at time instants ( )1 2, ,... ,τ τ τ=  

where 1 .i iτ τ τ= + ∆  The numerical values of 

( )1 2, ,...,n n n
Lf f f  and ( )1 2,  ,  ....., n n n

Lφ φ φ
 

are 
sought at these points at each time level provided 
that the boundary conditions at 0 0η η= =  and 

1 1Lη η += =  are known. The initial conditions for 
velocity field are: 
( ) ( ), 0 0     and      , 0 0.f η τ φ η τ= = = =  (44) 
We construct the semi-implicit time difference 

scheme for f  and φ  as follows: 
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The advantage of the scheme is that only linear 
equations for each new time step ( 1)n +  are to be 

solved. Two systems of linear equations for ( )1n
if

+  

and ( )1n
iφ

+  at the time step ( )1n +  can be solved by 
using Guassian elimination. 

CONVERGENCE OF HAM SOLUTION AND 
ITS COMPARISON WITH A NUMERICAL 

SOLUTION 

The convergence of HAM solution depends 
upon the suitable choice of auxiliary parameters f  

and φ . The h-curves are plotted in Fig. 2(a-b) to 
show the convergence region of the HAM solution 
for a particular set of involved parameters. From 
these figures it is clear that for this choice of 
parameter value a convergent solution can be 
obtained when –1.4≤ f <0 and –2≤ φ < 0. 

To check the accuracy of HAM solution, the 
numerical values of ( )'' 0,f τ  at different order of 
approximations are shown in Table 1. The 
convergent values of ( )'' 0,f τ  can be obtained by 
increasing order of approximation. Figs. 3 and 4 
show the comparison of HAM solution with a 
numerical solution at two different orders of 
approximation. An excellent agreement between 
HAM solution and numerical solution can be 
achieved at 15th order of approximation.

Table 1. The convergence of the HAM solution of ( )'' 0,f τ  for different order of approximation with 0.1,S =  

1.2,M =  0.5,K = 0.4λ =  and 0τ = , 0.5τ π=  and 1.5τ π= , respectively. 

Order of approximation 0τ =  0.5τ π=  1.5τ π=  
1 -0.02500 -1.26000 0.66400 
3 -0.03363 -1.33995 0.563498 
10 -0.03475 -1.36026 0.55218 
12 -0.03475 -1.36048 0.55210 
15 -0.03476 -1.36050 0.55210 
25 -0.03476 -1.36050 0.55210 
30 -0.03476 -1.36050 0.55210 
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RESULTS AND DISCUSSION 

In this section graphical results obtained via a 
finite difference method are displayed in order to 
examine the effects of involved parameter on 
velocity component 'f  and concentration field .φ  
Fig. 5(a-c) demonstrates the effects of the relative 
amplitude of frequency to the stretching rate ,S  
fluid parameters λ  and Hartmann number M  on 
the evolution series of the velocity component 'f  
at a fixed distance 0.25y =  from the sheet, 
respectively. Fig. 5(a) shows that the amplitude of 
the flow motion at this location decreases by 
increasing .S  However, this decrease is marginal 
and it is anticipated that such a trend is prevalent 
even for larger values of .S  Fig. 5(b) depicts that 
the amplitude of the flow increases by increasing 
fluid parameter .λ This increase in the amplitude of 
flow motion is attributable to the increased 
effective viscosity induced by larger values of .λ  
The influence of Hartmann number M on time 
evolution of the velocity component 'f  is shown in 
Fig. 5(c). The figure reveals that the amplitude of 
the velocity component 'f  decreases by increasing 
Hartmann number. 

The velocity profile 'f  for various values of S  
at four different distances 8.5 ,τ π=  9 ,τ π=  

9.5τ π=  and 10τ π=  are shown in Fig. 6(a-d). 
Fig. 6(a) shows that at time instant 8.5τ π=  the 
velocity decreases by increasing .S  The back flow 
occurs near the surface where 'f  gets negative. 
The effects of S  at time interval 9τ π=  are 
depicted in Fig. 6(b). The velocity 'f  at this time 
instant oscillates near the surface and finally 
approaches zero. The amplitude of oscillation is 
found to increase with an increase in .S  Fig. 6(c) 
elucidates that at time instant 9.5 ,τ π=  the 
velocity 'f  gets the value -1 at the wall and 
becomes zero far away from the surface without 
performing oscillation. A decrease in the amplitude 
of velocity is observed at this time instant. Fig. 6(d) 
reveals that at time instant 10τ π= , the velocity 

'f  is zero both at the surface and far away from the 
surface. It is also observed that at this time the 
amplitude of back flow increases by increasing .S  

Fig. 7(a) shows the variation of 'f  for different 
values of λ  at 8.5 .τ π=  Here it is observed that 
the velocity approaches from 1 at the surface to 
zero far away from the surface. The occurrence of 
back flow near the surface is also observed at this 
time instant that is found to increase by increasing 

.λ  Fig. 7(b) indicates that at this time instant 

9 ,τ π=  the velocity oscillates near the surface 
before approaching zero far away from the surface. 
Moreover, the amplitude of the back flow is found 
to increase with .λ  The variation of 'f  with λ  at 
time instant 9.5τ π=  is shown in Fig. 7(c). Here, 
the magnitude of velocity decreases by increasing 

.λ  Occurrence of back flow at 10τ π=  with its 
strengthening for larger values of λ  is observed in 
Fig. 7(d). 

Fig. 8(a-d) illustrates the effects of Sc , ,β λ  
and S  on the concentration profile φ . Fig. 8(a) is 
plotted to observe the effects of Smith number Sc  
on the concentration profile φ . From this figure we 
observe that mass concentration decreases for large 
values of .Sc  Moreover, it is also seen from this 
figure that the concentration boundary layer 
thickness decreases by increasing Schmidt number 

.Sc  These effects may be attributable to the 
increase in the rate of solute transfer from the 
surface by increasing the Schmidt number. The 
effect of chemical reaction parameter β  on 
concentration is shown in Fig. 8(b). Here, we again 
observe that the mass concentration decreases by 
increasing .β  Fig. 8(c) illustrates the effects of 
fluid parameter λ  on the concentration profile φ . 
From this figure it is clear that the concentration 
increases by increasing fluid parameter .λ  Fig. 
8(d) shows opposite effects, i.e. mass concentration 
decreases by increasing the relative amplitude of 
frequency to the stretching rate parameter .S Fig. 
9(a-d) describes the effects of relative amplitude of 
frequency to the stretching rate ,S  Hartmann 
number M  and fluid parameters K  and λ  on the 
time-series of shear stress at the wall for the first 
five periods τ ∈ [0,10 ].π  Fig. 9(a) shows the 
influence of the relative amplitude of frequency to 
the stretching rate S  on the skin-friction coefficient 

1/ 2Rex fC  by keeping other parameters fixed. It is 
clear from this figure that the amplitude of 
oscillation of the skin-friction coefficient increases 
by increasing the relative amplitude of frequency to 
the stretching rate .S  From Figure 9(b) it is clear 
that the skin friction coefficient oscillates with time 
and the amplitude of oscillation increases for large 
values of Hartmann .M  The effects of fluid 
parameter λ  and K  are illustrated in Figs. 9(c) 
and (d), respectively. These figures show an 
opposite trend, i.e. the skin friction coefficient 

1/ 2Rex fC  decreases monotonically by increasing 
these fluid parameters. 
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CONCLUSIONS 

In the present study, we have investigated the 
mass transfer in a unsteady flow of an Eyring-
Powell fluid model over an oscillatory stretching 
sheet. The non-similar solution of the governing 
nonlinear partial differential equations is obtained 
analytically by a homotopy analysis method and 
numerically by a finite difference scheme. The flow 
and mass transfer characteristics are explained 
graphically for the several values of the involved 
parameters. The main findings can be summarized 
as: 

• The convergence of the HAM solution is 
largely dependent on the choice of auxiliary 
parameters and the order of approximation. 

• The amplitude of the flow velocity at a 
fixed distance from the sheet decreases with 
increasing ratio of oscillating frequency to 
stretching rate S and Hartmann number M while a 
converse Eyring-Powell fluid parameter λ  trend is 
computed with  increasing .λ  

• The concentration profile increases for 

large values of Eyring-Powell fluid parameter 
λ while it decreases for large values of Schmidt 
number ,Sc  ratio of oscillating frequency to 
stretching rate S  and chemical reaction parameter 

.β  
• The concentration boundary layer thickness 

decreases with increasing Schmidt number ,Sc  
ratio of oscillating frequency to stretching rate S  
and chemical reaction parameter .β  In contrast, an 
increasing Eyring-Powell fluid parameter λ  
increases the concentration boundary layer 
thickness. 

• The amplitude of the skin friction 
coefficient increases with increasing the Hartmann 
number ,M  and the ratio of oscillation frequency 
of the sheet to its stretching rate ,S  while it is 
suppressed with increasing the Eyring-Powell fluid 
parameters λ  and .K  

• In the limiting case when , 0Kλ → , our 
results reduce to the corresponding results of Wang 
[22]. 

  
Fig. 2. The − curves at 6th order of approximation: (a) for velocity; (b) for concentration profile. 

  

Fig. 3. Comparison of '( , )f y τ  obtained from HAM solution (solid lines) and the numerical solution (open 
circles). 
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Fig. 4. Comparison of concentration field ( ),yφ τ  obtained from HAM solution (solid lines) and the numerical 
solution (open circles). 

  

 
Fig. 5. Velocity profile as a function of time: (a) effects of S ; (b) effects of λ ; (c) effects of .M  
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Fig. 6. Velocity field f ′  for different values of .S  

 
 

  
Fig. 7. Velocity field f ′  for different values of .λ  
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Fig. 8. Concentration field φ  (a) effects of ; Sc  (b) effects of β  ; (c) effects of λ ; (d) effects of .S   

  

 
 

Fig. 9. The skin friction coefficient 1/ 2Rex fC  as a function of time: (a) effects of S ; (b) effects of M ; (c) effects 

of λ ; (d) effects of .K
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АНАЛИТИЧНО И ЧИСЛЕНО ИЗСЛЕДВАНЕ НА ДИФУЗИЯТА НА ХИМИЧЕСКИ 
АКТИВНИ ВЕЩЕСТВА ВЪВ ФЛУИД НА EYRING-POWELL НАД НАДЛЪЖНО 
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(Резюме) 

Това изследване засяга нестационарния поток на флуид на Eyring-Powell породен от надлъжно осцилираща 
повърхност в присъствие на химична реакция. Еластичният лист се разтяга периодично напред-назад в 
собствената си равнина. Изведени са уравненията на движението прилагайки основните закони за запазване на 
масата, на количеството движение и на дифузията. Намалени са независимите променливи чрез въвеждането на  
безизмерни променливи, а уравненията се решават по два метода: хомотопен анализ и неявна диференчна 
схема. Сравнението на резултатите по двата метода показва отлично съгласие. Физичните променливи 
(надлъжната скорост и масовата концентрация са подробно изследвани за различни параметри. 
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