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This study deals with the unsteady flow of an Eyring-Powell fluid induced by an oscillatory stretching surface in
presence of chemical reaction. The elastic sheet is stretched periodically back and forth in its own plane. The equations
governing the flow are derived employing fundamental law of mass, momentum and diffusion. The independent
variables in the governing equations are reduced by using dimensionless variables which are solved by using two
different techniques, namely, homotopy analysis method and an implicit finite difference scheme. Solutions obtained by
both methods are compared and found in excellent agreement. The physical variables such as longitudinal velocity
component and mass concentration are examined in detail for various values of the parameters of interest.
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INTRODUCTION

The study of convective flow under the
influence of magnetic field and chemical reaction
has practical applications in many areas of science
and engineering. This phenomenon plays a vital
role in chemical industry, petroleum industry,
cooling of nuclear reactors, packed-bed catalytic
reactors, etc. In view of all these applications many
researchers studied the effects of chemical reaction
on the flow of different fluids. The specialized
literature on this topic is discussed in the following
paragraphs. Chambre and Young [1] discussed the
diffusion of a chemically reactive species in a
laminar boundary layer flow over a flat plate.
Andersson et al. [2] studied the laminar boundary
layer flow induced by a stretching sheet in the
presence of chemical reaction effects. Takhar et al.
[3] discussed the diffusion of chemically reactive
species in a second-order fluid over a stretching
sheet. Akyildiz et al. [4] studied the diffusion of
chemically reactive species in a second-grade fluid
over a porous stretching surface. Hayat and Abbas
[5] used homotopy analysis to analyze the effects of
chemical reaction in a Maxwell fluid. In another
paper, Hayat et al. [6] examined the effects of mass
transfer in a unsteady flow of Maxwell fluid over a
stretching sheet. The effect of chemical reaction
and variable viscosity with heat and mass transfer
for a Hiemenz flow through a Darcian porous

* To whom all correspondence should be sent:
E-mail: sk_iiu@yahoo.com

medium was investigated by Seddeek et al. [7].
Aziz [8] used a numerical technique to discuss the
effects of chemical reaction and heat mass transfer
in a viscous fluid.

Ferdows and Qasem [9] investigated the effects
of the order of chemical reaction on a boundary
layer flow with heat mass transfer over a linearly
stretching surface. Krishnendu [10] discussed the
effects of mass transfer in presence of chemical
reaction over a porous flat plate. Mukhopadhyay
and Bhattacharyya [11] used a shooting method to
analyze the first-order constructive/destructive
chemical reaction in a flow of Maxwell fluid over a
stretching sheet. The chemically reactive
hydromagnetic flow of a second-grade fluid in a
semi-porous channel was discussed by Abbas et al.
[12]. Apart of these, some recent attempts regarding
flows of different fluids in presence of chemically
reactive species can be found in refs. [13-17].

Motivated by the studies mentioned above, the
aim of this paper is to analyze the unsteady flow
and mass transfer of chemically reactive species.
The rheological behavior of the fluid is captured by
the constitutive equation of the Eyring-Powell
model. This model has already been used by several
authors to discuss non-Newtonian flows [18-21].
Unlike typical studies, the stretching sheet is
assumed to be oscillatory. The idea of flow over an
oscillatory stretching sheet was introduced by
Wang [22]. The work of Wang [22] was extended
by few authors including Siddapa et al. [23], Abbas
et al. [24, 25], Zheng et al. [26] and Ali et al. [27].
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The proposed study extends the analysis of Wang
[22] by considering an Eyring-Powell fluid model
in the presence of chemically reactive species. The
solution of the governing problem is obtained by a
homotopy analysis method (HAM) and a finite
difference scheme. A comparison of both solutions
is made. Based on the numerical solution a
parametric study is carried out to quantify the
effects of various emerging parameters on the flow
and concentration characteristics inside the
boundary layer.

FLOW ANALYSIS

Let us consider an unsteady, two-dimensional
and magnetohydrodynamic (MHD) flow of an
incompressible Eyring-Powell fluid past over an
oscillatory stretching sheet coinciding with plane

y =0 (see Fig. 1).
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Fig. 1. Geometry of the problem.
The elastic sheet is periodically stretched back
and forth with a velocity u,, =bXsinet (X is the

coordinate along the sheet, b is the maximum
stretching rate and @ represents the frequency). A

magnetic field of magnitude B, is applied in the
direction perpendicular to the sheet. Let ¢, denotes

the concentration at the surface while the
concentration far away from the surface is c_. The

continuity, momentum and concentration equations
for an Eyring-Powell fluid can be expressed as [21]
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where Uand Vv are velocity components along
X and Y directions, respectively, v represents the

kinematic viscosity, o is the density, f* and C
denote the material parameters of the Eyring-
Powell model, C is the concentration field, D is
the concentration expansion coefficient, k is the

chemical reaction rate.
Egs. (1)-(3) are subjected to the conditions

u=u, =bXsinet, v=0,c=c,aty=0, t>0,

(4)
u—>0, c—c, a Yo oo, (5)
Let us introduce appropriate variables [22, 24]

/b_
y=.—-Y, 7T =tw,
v (6)

u=bxf, (y,7), v=—Jvbf (y.7),
c—c,
#(y.7)= — (7)

Utlizing Egs. (6) and (7), Eq.(1) is identically
satisfied and Egs. (2) and (3) become
(1+K)f,, —Sf, —f2+ff —M*f —AKE.f =0,
®)
8, +Sc( T, —Sg,)-Scpp=0, )
with boundary conditions
f,(0,r)=sinz, f(0,7r)=0, ¢(0,7)=1, (10)

fy(0,7)=0,  ¢(0,7)=0. (11)
In the above equations K =1/u8°C and

A =X?b*/2vC? are dimensionless material fluid
parameters, S =w/b is the ratio of the oscillation
frequency of the sheet to its stretching rate,

M =,/cBZ/pb is the Hartmann number,
Sc=v/D is the Schmidt number and g =k/b

denotes the chemical reaction parameter. According
to Javed et al. [18], Eq. (2) is subject to the
constraint AK <<1.
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The skin-friction coefficient C, is defined as

C, =—*, (12)

where 7, denotes the shear stress at the wall. In
view of (6) and (7), Eq. (12) takes the following
form [19]

Relx’ZCf:[(l+K) ——ﬂf } , (13)

y=0

where is the local

number.

Re, =u,X/v Reynold

HOMOTOPY ANALYSIS METHOD

Homotopy analysis method is one of the
powerfull analytic approaches to solve nonlinear
partial and ordinary differential equations. This
method was proposed by Liao [28] and then used
by many authors for solution of different nonlinear
problems [29-34]. Now we briefly describe the
application of this method to the boundary value
problem developed in the previous section. The
boundary conditions lead to the following initial
guesses for f(y,7z) and ¢(y)

fy(y,7)=sinz(1-exp(-y)),

(14)
¢ (y)=exp(-y).
Introducing linear operators
ot of o* f
£f (f):W—E, £¢(f):—2— f, (15)
satisfying

£,[C,+C,exp(-y)+C,exp(y)]=0, (16)
£,[C,exp(-y)+Csexp(y)]=0, (17)
where C. (i=1,2,..5) are constants. The

zero™-order deformation problems defined

(@-p)E [ F(v.zip)-fo(v.7)|=

- (18)
p7¢ Ny [f (y,z', p)]
(1-p)E, | (v 75 p)=d (v,7) | =

. R (19)
pr,N,| (y,75p).8(v.7:p) ],
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- of (y,7;p)
f(0,7r;p)=0, ————4 =
(0.75p) y |
. g (20)
sinr, —6f(y,r, P) =0.
ay y—0
#(0,7;p)=1 §(0,7;p)=0, 21)

where p e[0,1] is an embedding parameter.
The associated nonlinear operators N, and N, are

Ny [f(yir; p)}—(nK)@afgf; p)_SaZféyyé:; p)

. 22
Mzaf(y,r; p)_[@f(yr p)j +f(y,f; p)[aZf(y,r; p)] (22)

%y

) Y (23)
S{f _)aqﬁ(y,r;p)_saqﬁ(y,r;p)J_ﬂSwj

(vep) = oz

The zero™-order deformation problems defined
above have the following solutions corresponding
to p=0and p=1

f(y,70) = (y.0). F(v.m2) = F (v.), (20
#(v,7:0) =4, (v,7),8(y., :1) = $(y,7). (25)

Using Taylor's series expansion we can write

f(y 7;p)=fo( Zf y.7)
10" f(y,r; p) (%0
fm(y’r)zﬁap—m ,
(3,7 0) =y (. 1)+ i (,7) P,
#3(y.5:p) 0
1 7
%(%ﬂZm%

The convergence of the above series solution
depends upon 7 and 7. We assume that 7, and

h, are selected so that Egs. (25) to (26) converges
at p=1. Therefore

f(y.)="t(y +ifmyz— (28)

m=.

0

#(y,7)=¢(y,7 +Z¢m y.7), (29

m=,
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The m™-order of the deformation problem is

e[ fu(Vi7) = Zn s yr]=thn2 y,7), (30)
Ey [ (V,7)~ Zutns(V.7) = NRA(Vi7), (3D
( (0,7)=0 6fm(0,1)20, of . (oo, )=0, 2
oy
#, (0,7) =, (0,7) =0, (33)
f _ a3fm—1_ o*f. 2 of
RI(y,7) =(1+K) = S S 2
o f, _ o of, (34)
w1l Mk A2 T A AT
D) A
k=0 1K m-1-k k-1 1
oy’ %“ oy’ oy’
Ry =Tt ¢ > S(Sc)%—ﬂsm i+
‘ (35)
Scz( j
3 0, m<l, 26
=11 ms1. (36)

The general solution at m"-order can be
expressed as

f.(y,7)=f. (v,7)+C,+C,exp(~y)+C,exp(y), (37)
¢ (¥,7) =5 (v,7)+Crexp(~y)+Cyexp(y). (38)
where f (y,z) and ¢, (y,z) indicate the

particular solutions. The constants C; (i = 1,2...,5)
using conditions (20) and (21) get values

¢,=C, -0, C, = Mnl07)

0 =Cs=0,C,=—2— (39)
C,=—C,-f;(0,7), C,=—¢;(0,7).
DIRECT NUMERICAL SOLUTION OF THE
PROBLEM

The system of nonlinear partial differential
equations (8)—(9) with the boundary conditions (10)
and (11) are solved numerically using a finite
difference scheme with Fortran software. We use
coordinate  transformation 7 =1/(y+1) to
transform the semi-infinite physical domain
y €[0,) to finite calculation domain 7 €[0,1],
i.e.

gl 20
7 oy on
o’ 0° 0 o’ o’
_2:774 . 2773_ — 2
oy 0 on oyor onor

3 3 2

o _ 653 6562 6774i.

on on on

Using the above transformations in Egs. (8) and

(9)
S ;;afr i (%Jz +[6(1+ K)n? _an][?_n]+
(s
e )
Rt
e[}
o (3] 2o 2]
e (IS

o) e () (5

+2773—¢—Sc[f 290 s a¢j
on on ot ) (41)

242Kn®
on

: 0%
on?
BScg =0,

f, =0, ¢p=0 at n=0, (42)
f=0 f =-sinz, ¢=1at n=1 (43)

In the second step, we discretize Egs. (18) and
(19) for L equally  spaced points

1 =(7o: T 15,--1.,,) €[0,1] with a step size of
An=1/(L+1) at time instants Z'Z(Tl,fz,...),

n

where 7' =7'+iAr. The numerical values of

(£ F e £1) and (4 @5, o f) e
sought at these points at each time level provided
that the boundary conditions at 7=17,=0 and
n=n,,, =1 are known. The initial conditions for
velocity field are:

f(7,7=0)=0 and ¢(17,7=0)=0. (44)

We construct the semi-implicit time difference
scheme for f and ¢ as follows:
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1 ( f ™ éf (n) oF ™ 2 The advantage of the scheme is that only linear
S— Al on =7’ o + equations for each new time step (n+1) are to be
T
(n41) ™ solved. Two systems of linear equations for f (n+2)
6(1+K)7y ( ] ( ]J’ and " at the time step (n+1) can be solved by
2041 ") using Guassian elimination.
f m| of
6(1+K)n° — -2 -
on on CONVERGENCE OF HAM SOLUTION AND
520 535 ITS COMPARISON WITH A NUMERICAL
Zf(n)( J+(1+ K)774( J_ SOLUTION
2 aUS
, The convergence of HAM solution depends
M2 (6f () J_AK”H (82 f (”)] (83 £ J_ upon the suitable choice of auxiliary parameters 7
on’ o’ and %, . The h-curves are plotted in Fig. 2(a-b) to
f

26 (n) 26(mY show the convergence region of the HAM solution
Wn[@ ]_w w[af ][_@f J ; gence reg

o 2 for a particular set of involved parameters. From

on’ ; o . .
g these figures it is clear that for this choice of

oMY (2™ parameter value a convergent solution can be
40Kn" —~ :
T\ | | or obtained when -1.4<7; <0 and -2<#,, < 0.
N2 ( 24 (0) 3 To check the accuracy of HAM solution, the
24K’ (af J [a f2 ]_24/“(778[(%_} _ numerical values of f"(O,r) at different order of
on on on approximations are shown in Table 1. The
41K n(af(n)j(gzf<n>J(53f(n)]_ (45)  convergent values of f"(0,7) can be obtained by
n on’ o’ increasing order of approximation. Figs. 3 and 4
of (g2 5 show the comparison of HAM solution with a
24/1K771°[ ][ . ] = numerical solution at two different orders of
on on approximation. An excellent agreement between
of 2 2250 HAM solution and numerical solution can be
24,1K,79( - J - j achieved at 15" order of approximation.
n n

(¢(n+1) _¢(n)) a ¢ (n+1) , a¢(n+l)
5(59) [77 o " an ]_ (46)

n+l
Scf p? MW— ScB.

Table 1. The convergence of the HAM solution of f "(0,1’) for different order of approximation with S =0.1,
M=12 K=05 4=04 and =0, =057 and 7 =1.57, respectively.

Order of approximation =0 =051 =157
1 -0.02500 -1.26000 0.66400
3 -0.03363 -1.33995 0.563498
10 -0.03475 -1.36026 0.55218
12 -0.03475 -1.36048 0.55210
15 -0.03476 -1.36050 0.55210
25 -0.03476 -1.36050 0.55210
30 -0.03476 -1.36050 0.55210
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RESULTS AND DISCUSSION

In this section graphical results obtained via a
finite difference method are displayed in order to
examine the effects of involved parameter on
velocity component f' and concentration field ¢.

Fig. 5(a-c) demonstrates the effects of the relative
amplitude of frequency to the stretching rate S,

fluid parameters A and Hartmann number M on
the evolution series of the velocity component f'
at a fixed distance y=0.25 from the sheet,
respectively. Fig. 5(a) shows that the amplitude of
the flow motion at this location decreases by
increasing S. However, this decrease is marginal
and it is anticipated that such a trend is prevalent
even for larger values of S. Fig. 5(b) depicts that
the amplitude of the flow increases by increasing
fluid parameter A.This increase in the amplitude of
flow motion is attributable to the increased
effective viscosity induced by larger values of A.
The influence of Hartmann number M on time
evolution of the velocity component ' is shown in
Fig. 5(c). The figure reveals that the amplitude of
the velocity component f' decreases by increasing
Hartmann number.

The velocity profile f' for various values of S

at four different distances 7 =8.5x,

7=9.57 and 7 =107 are shown in Fig. 6(a-d).
Fig. 6(a) shows that at time instant 7 =8.5x the
velocity decreases by increasing S. The back flow
occurs near the surface where f' gets negative.

The effects of S at time interval 7=97 are
depicted in Fig. 6(b). The velocity f' at this time
instant oscillates near the surface and finally
approaches zero. The amplitude of oscillation is
found to increase with an increase in S. Fig. 6(c)
elucidates that at time instant 7 =9.57z, the

velocity f' gets the value -1 at the wall and

becomes zero far away from the surface without
performing oscillation. A decrease in the amplitude
of velocity is observed at this time instant. Fig. 6(d)
reveals that at time instant z =107, the velocity
f ' is zero both at the surface and far away from the

surface. It is also observed that at this time the
amplitude of back flow increases by increasing S.
Fig. 7(a) shows the variation of f"' for different

values of 4 at 7 =8.57. Here it is observed that
the velocity approaches from 1 at the surface to
zero far away from the surface. The occurrence of
back flow near the surface is also observed at this
time instant that is found to increase by increasing
A. Fig. 7(b) indicates that at this time instant

7 =9r,

7 =97, the velocity oscillates near the surface
before approaching zero far away from the surface.
Moreover, the amplitude of the back flow is found
to increase with A. The variation of f' with A4 at

time instant z =9.57 is shown in Fig. 7(c). Here,
the magnitude of velocity decreases by increasing
A. Occurrence of back flow at 7 =107z with its
strengthening for larger values of A is observed in
Fig. 7(d).

Fig. 8(a-d) illustrates the effects of Sc, S, A
and S on the concentration profile ¢. Fig. 8(a) is

plotted to observe the effects of Smith number Sc
on the concentration profile ¢. From this figure we
observe that mass concentration decreases for large
values of Sc. Moreover, it is also seen from this
figure that the concentration boundary layer
thickness decreases by increasing Schmidt number
Sc. These effects may be attributable to the
increase in the rate of solute transfer from the
surface by increasing the Schmidt number. The
effect of chemical reaction parameter £ on
concentration is shown in Fig. 8(b). Here, we again
observe that the mass concentration decreases by
increasing f. Fig. 8(c) illustrates the effects of

fluid parameter A on the concentration profile ¢.

From this figure it is clear that the concentration
increases by increasing fluid parameter A. Fig.
8(d) shows opposite effects, i.e. mass concentration
decreases by increasing the relative amplitude of
frequency to the stretching rate parameter S.Fig.
9(a-d) describes the effects of relative amplitude of
frequency to the stretching rate S, Hartmann

number M and fluid parameters K and A on the
time-series of shear stress at the wall for the first
five periods re [0,10x]. Fig. 9(a) shows the
influence of the relative amplitude of frequency to
the stretching rate S on the skin-friction coefficient

Re?C, by keeping other parameters fixed. It is

clear from this figure that the amplitude of
oscillation of the skin-friction coefficient increases
by increasing the relative amplitude of frequency to
the stretching rate S. From Figure 9(b) it is clear
that the skin friction coefficient oscillates with time
and the amplitude of oscillation increases for large
values of Hartmann M. The effects of fluid
parameter A and K are illustrated in Figs. 9(c)
and (d), respectively. These figures show an
opposite trend, i.e. the skin friction coefficient

Re?C, decreases monotonically by increasing
these fluid parameters.
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CONCLUSIONS

In the present study, we have investigated the
mass transfer in a unsteady flow of an Eyring-
Powell fluid model over an oscillatory stretching
sheet. The non-similar solution of the governing
nonlinear partial differential equations is obtained
analytically by a homotopy analysis method and
numerically by a finite difference scheme. The flow
and mass transfer characteristics are explained
graphically for the several values of the involved
parameters. The main findings can be summarized
as:

e The convergence of the HAM solution is
largely dependent on the choice of auxiliary
parameters and the order of approximation.

e The amplitude of the flow velocity at a
fixed distance from the sheet decreases with
increasing ratio of oscillating frequency to
stretching rate S and Hartmann number M while a
converse Eyring-Powell fluid parameter A trend is
computed with increasing A.

e The concentration profile increases for

S=0.35,M=1,1=0.3,K=0.5,r=0.5~

AU

A0, 1)

large values of Eyring-Powell fluid parameter
Awhile it decreases for large values of Schmidt
number Sc, ratio of oscillating frequency to

stretching rate S and chemical reaction parameter
p.

e  The concentration boundary layer thickness
decreases with increasing Schmidt number Sc,
ratio of oscillating frequency to stretching rate S
and chemical reaction parameter f. In contrast, an
increasing Eyring-Powell fluid parameter A

increases the concentration boundary layer
thickness.

e The amplitude of the skin friction
coefficient increases with increasing the Hartmann

number M, and the ratio of oscillation frequency
of the sheet to its stretching rate S, while it is
suppressed with increasing the Eyring-Powell fluid

parameters A and K.
o In the limiting case when 1, K — 0 qur

results reduce to the corresponding results of Wang
[22].
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=25 =20

]
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Fig. 2. The % — curves at 6™ order of approximation: (a) for velocity; (b) for concentration profile.
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Fig. 3. Comparison of f'(y,7) obtained from HAM solution (solid lines) and the numerical solution (open

circles).
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a §=05M=I\=01K=01S=02p=0L1=05r a §=05M=1A=01K=01S=02B=0.11=05n

Sth-order of HAM solution 0.8/ 15th-order of HAM solution

Fig. 4. Comparison of concentration field ¢(y,r) obtained from HAM solution (solid lines) and the numerical
solution (open circles).

b M=55=1K=01

a M=1\=0.05K=01

5 10 15 20 25 30
T

Fig. 5. Velocity profile as a function of time: (a) effects of S ; (b) effects of A ; (c) effects of M.
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Fig. 6. Velocity field f’ for different values of S.
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Fig. 7. Velocity field f’ for different values of A.
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Fig. 8. Concentration field ¢ (a) effects of ; SC (b) effects of £ ; (c) effects of A ; (d) effects of S.
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X

Fig. 9. The skin friction coefficient Re
of A; (d) effects of K.
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AHAJIMTMYHO 1 YUCJIEHO U3CJIEJIBAHE HA TUDY3UATA HA XUMHUYECKHA
AKTHBHU BEIIECTBA BbB ®JIVH]] HA EYRING-POWELL HAJI HAJ/JJTBXHO
OCIHIMJIMPAIIIA ITOBBPXHOCT

C.Y. Xan'", H. Am?, T. Xasar>*

Ulenapmamenm no mamemamuxa, Hncmumym no ungopmayuonnu mexnonozuu COMSATS, Caxuyan, Haxucmarn
2lenapmamenm no mamemamuxa u cmamucmuxa, Mescoynapoden ucaamcku ynueepcumem, Ucramabao, Iaxucman
3flenapmamenm no mamemamuxa, Ynueepcumem Kyauo-u-Asam, HUcnamabao, Haxucman
*Uscnedosamencka epyna no HeluHeeHn aHAIU3 U NPULOJICHA Mamemamuxa, Jlenapmamenm no mamemamuxa, Hayuen
Gaxynmem, Yuusepcumem ,, Kpan A60ynasusz* [oceoa, Cayoumcka Apabus

Ioctenuna Ha 3 okromepwy, 2015 r.; kopurupana na 14 romu, 2016 r.

(Pesrome)

ToBa u3cieBaHe 3acsra HECTALMOHAPHUS NOTOK Ha duryna Ha Eyring-Powell mopoaeH oT HaamBXHO ocLHIMpaIIa
MOBBPXHOCT B IPUCHCTBHE HAa XMMHYHA peakuus. EJacTHYHMAT JMCT ce pa3Tsara NEepUoJMYHO Hampea-Ha3aj B
coOCTBeHaTa cH paBHUHA. [13Be/ieHN ca ypaBHEHMATA HA JIBIKCHUETO NMPHUIIATAHKA OCHOBHHUTE 3aKOHH 32 3alla3BaHE Ha
Macara, Ha KOJIMYeCTBOTO ABIDKEHNE U Ha qudysusita. HamaneHu ca He3aBUCHMHTE IIPOMEHIINBH YpE3 BbBEKAAHETO HA
0e3n3MepHH MPOMEHIIMBH, a YPaBHECHHUSTA CE pEIlIaBaT IO JBa METOJA: XOMOTOIEH aHaIM3 M HesBHa MudepeHdHa
cxema. CpaBHEHHETO Ha pe3yaTaTuTe IO [ABaTa METOJa II0Ka3Ba OTIMYHO chbriaacue. DOU3NYHUTE NPOMCHIMBU
(HamTBXKHATA CKOPOCT M MacoBaTa KOHIIEHTPALHS ca MOAPOOHO M3CIEABAHH 33 PA3INIHHU ITapaMETPH.
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