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The Simulated Moving Bed (SMB) is a continuous multi–column chromatographic process that has become an 
attractive technology for complex separation tasks that are regularly encountered in the areas of pharmaceuticals, fine 
chemicals and biotechnology. This paper focuses on the implementation of the control concept to SMBs operating. 
Based on moving asymptotes algorithm, the optimizing strategy is carried out for improvements of the extract and 
raffinate purity, the productivity and the solvent consumption. The feasibility of the moving asymptotes is verified by 
the triangle theory. The simulation results illustrate that the moving asymptotes method is fast in convergence and the 
optimal solutions are distributed uniformly. 
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INTRODUCTION 

The Simulated Moving Bed (SMB) separation 
technology is a kind of continuous chromatographic 
separation technique for scale production, which is 
with the advantages of strong separation ability, 
small appearance and low operation costs. It has a 
large range of applications in the areas of the 
petroleum chemical industry, fine chemical 
industry and sugar industry [1,2]. Recently, due to 
the strong coupling and the mechanism complexity 
in the SMB separation process, many researches 
carried out the modeling, the model solving and 
optimizing of SMB separation process in order to 
give the theoretical guidance for the product 
development, the process of industrialization and 
the application range can be expanded accordingly. 
The commonly used SMB chromatography 
models[3] are General Rate Model (GRM), 
Lumped Pore Diffusion Model (PORM), Ideal 
Model (IM), Equilibrium Dispersive Model (EDM) 
and Transport Dispersive Model (TDM). 
Comparing with other models, EDM has higher 
practicability. During the simulation process, EDM 
ignores the influence of mass transfer resistance, 
whose calculation speed is faster than GRM and 
PORM, the considered factors of which are more 
comprehensive than IM. Therefore, it has a large 
range of applications[4]. By using EDM, the 
influence of changing feed flow rate on SMB 
separation technology was researched[5]. On the 
other hand, SMB model is very difficult to be 
solved for its style of partial differential equations. 

Therefore, the general solution method is to transfer 
the partial differential equations to ordinary 
differential equations by using discrete methods, 
such as orthogonal collocation finite element 
method, Galerkin method and CE/SE method[6]. In 
reference [7], the adsorption isotherm model was 
simulated by using CE/SE method; the advantages 
and disadvantages of the finite difference method 
and orthogonal collocation finite element method 
were discussed. By comparing with other methods, 
the orthogonal collocation finite element method is 
not only convenient and fast, but also flexible and 
accurate in the processing of stiff problems. There 
are many operation conditions that affect the 
chromatographic separation performance in SMB 
process, such as switching time, flow rate of the 
area, and the size of the column. Therefore, the 
optimization analysis of SMB is a hot research 
topic in this area. Marco Mazzotti firstly proposed 
the triangle theory[8] which is under the ideal 
status, hence the axial dispersion and mass transfer 
resistance were not considered and there must be 
accuracy problem in real applications. In recent 
years, the genetic algorithm or particle swarm 
optimization is used for SMB process design[9, 10]. 
The genetic algorithm needs copy, crossover and 
mutation operations in the process, thus its 
efficiency must be affected. And the particle swarm 
optimization algorithm is with shortcomings like 
easily falling into local optimal solution, being 
prone to unstable and slow in convergence in the 
actual operation of the process. 

In this paper, the equilibrium diffusion model of 
SMB chromatographic separation process is firstly 
solved by using orthogonal collocation finite * To whom all correspondence should be sent: 

E-mail: yangyh2636688@163.com 
 2017 Bulgarian Academy of Sciences,  Union of Chemists in Bulgaria 

mailto:g.kashi11@yahoo.com


Y.H. Yang et al.: Optimization for adsorption separation process of simulated moving bed based on moving asymptotes algorithm  

173 

element method. Then, the optimization strategy is 
proposed based on the method of moving 
asymptotes [11]. Finally, the simulation is carried 
out in the operation optimization of SMB 
chromatographic separation process. The 
simulation results show that the proposed 
optimization method can improve the economic 
benefits of SMB operation and guide the process 
operation.  

BASIC PRINCIPLE OF SMB 

SMB is composed by a plurality of 
chromatographic columns with the valves and the 
pipelines in series, principle of which is to simulate 
the movement direction of the solid phase to 
achieve the solid phase and fluid phase 
countercurrent motion by periodically opening and 
closing the valve to switch import and export 
positions [12-14]. Fig. 1 shows the operation 
process of SMB in which the solid arrow indicates 
the location of imports and exports for current 
cycle, the dotted arrow indicates that for the next 
cycle. SMB chromatographic separation process 
can be divided into four zones, as shown in Fig 1. 
The feed solution and the elution are imported 
between zone 2 and 3, zone 1 and 4, respectively. 
The extraction and raffinate are collected between 
zone 1 and 2, zone 3 and 4 respectively. The 
function of zone 1 is mainly to realize the 
regeneration of the adsorbent, and the strong 
absorption component is desorbed from the solid 
phase. The effect of zone 2 is to desorb the weak 
adsorption components and adsorb the strong 
adsorption components, the purpose is to make the 
extract contain only strong absorption components, 
and do not contain weak adsorption components. 
Zone 3 is opposite to zone 2, so that the liquid 
contains only the weak absorption of components, 
and does not contain strong absorption component. 
The effect of zone 4 is the regeneration of the 
elution solution, the weak adsorption components 
are desorbed from the fluid phase [15]. By selecting 
the reasonable design parameters, the type of 
adsorbent, elution solution and operating 
parameters, the raffinate contains only the weak 
adsorption component B, the extract contains only 
the strong adsorption component A, so as to 
achieve the purpose of continuous separation. 

EQUILIBRIUM DIFFUSION MODEL OF SMB 
CHROMATOGRAPHIC SEPARATION  

The mathematical model of SMB 
chromatographic separation is coupled by a series 

of single chromatographic column model and node 
model [16].  
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Fig.1.Operation schematic diagram of SMB 

Because EDM has a higher practicability, and 
the computer simulation speed of which is fast, 
therefore, the EDM single column chromatographic 
model is adopted in this paper. There are two 
assumptions as follows [17]: (1) The flow and the 
solid phase reach the equilibrium state 
instantaneously. (2) The effect of axial diffusion 
and non equilibrium is integrated into the axial 
diffusion coefficient. The effect of molecular 
diffusion, eddy diffusion and mass transfer 
resistance on the model is considered, the influence 
of interphase mass transfer resistance is ignored. 
The diffusion of the fluid phase and solid phase is 
instant and reach an equilibrium state, thus its 
influence is not considered. 

The mathematical description of EDM is as 
follows: 

2
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where ( )i tψ is inlet concentration of the ith 
chromatographic column, ( )kc t  is known.  

Adsorption isotherm equation is: 
( , ) [c( , )]iq x f xt t=                               （6)  

The equilibrium relationship between the nodes 
can be obtained by the mass conservation relation: 
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4 1 ,4 4 ,1 1, out in
D i iQ Q Q c Q c Q+ = =                     (7) 

1 2 ,1 ,2, out in
E i iQ Q Q c c− = =                            (8) 

2 3 ,2 2 , ,3 3, out in
F i i F F iQ Q Q c Q c Q c Q− = + =               (9)  

3 4 ,3 ,4, out in
R i iQ Q Q c c− = =                                 (10) 

OPTIMIZATION STRATEGY OF SMB 

Principle of moving asymptotes 

Moving Asymptotes (MA) is an optimization 
method based on convex function. In 1987, 
Svanberg firstly proposed the method, which uses 
the sub problem with convex functions and 
separable variables to approximate the original 
problem [11]. For this algorithm, the selection 
principle of the approximate function is that the 
private function is replaced by the first order 
derivative of the current iteration point. The method 
of moving asymptotes is used to optimize the multi-
objective problem and the implicit problem is 
converted into a convex approximation sub 
problem. The optimization model is as follows:  
Considering the optimization problem P, 

MIN       ( )0f X         nX R∈                         （1 1）  
S.T.       ( ) *

i if X f≤       1,  ... ,i m=                   （1 2）  

ja j jbx x x≤ ≤  1,  ... ,j n=                 （1 3）  
where 0 ( )f X  is the objective function, 1( ,..., )T

nX x x=  
is the design variable, ( ) *

i if X f≤  is behaviour 
constraint, and ja j jbx x x≤ ≤  is technical constraint. 

The method to solve the problem P is to 
construct the sub problem. The solution of the 
original problem is approximated by the sub 
problem. The detailed algorithm procedure is as 
follows: 
Step 1：Choose the initial point 0x , let 0k = . 
Step 2：Give the iteration point kx , and calculate 

( )k
if X  and ( )k

if X∇ , 1,  ... ,i m= . 
Step 3：The established sub problem is used to 
approximate the original problem, which means 
that ( )if X is replaced by ( )k

if X , and the 
establishment of sub problem ( )k

if X  needs the data 
calculated in step 2.  
Step 4：Solve sub problem. The optimal solution of 
the sub problem is taken as the next iterative point, 
i.e. k=k+1, and return to step 2.  

Construction of sub problem 

In the process of using moving asymptotes 
algorithm for solving optimization problem, the key 
point is to construct and solve sub problem. In the 
kth iterative of the algorithm, the sub problem is 
constructed as follows: 

MIN     0
( )kf X         nX R∈                   (14) 

S.T.    
*( )

i

k
if X f≤      1,...,i m=           （ 15）  

j j jx x xα β≤ ≤   1,...,j n=        （ 16）  
where i=0, 1, ..., m. 
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where / ( )
i

k
jf X x∂ ∂  is the value at  kX X= , 

which is a variable changing with the iteration point 
k

jx , and satisfies  k k k
j j jL x U< < . At  kx x= , there is 

( ) ( )k k k
i if x f x=                                   （2 1）  

k
i i

j j

f f
x x
∂ ∂

=
∂ ∂      1,...,i m= , 1,...,j n=        （2 2）  

In the sub problem, if  k
jx  is close to  k

jL  or  k
jU , 

the value of k
if  will increase sharply. Therefore, 

 k k
j jx L=  or  k k

j jx U=  is the asymptote. The 
solution after each iteration is maintained between 
 k

jL  and  k
jU , the values of which are changed 

between the iterations, it is equivalent to the 
movement of asymptote, thus  k

jL  and  k
jU  are 

called moving asymptotes.  
The second partial derivative of k

if  at  kX X=  
is: 

2
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Simplify the equation (23), we obtain 
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It is easy to see that the function k

if  is a convex 
function. In addition, the next iterative point always 
exists between the lower bound of  k

jL  and upper 
bound of  k

jU . In view of this situation, it is able to 
obtain a good effect of approximation by regulating 
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the boundary values during the running process of 
the algorithm. By comparing the method of moving 
asymptotes with other optimization algorithms, its 
advantages are very obvious, sub problem is 
constructed with convexity and separable 
independent variable. 

Solution of sub problem 

In the method of moving asymptotes, sub 
problem we constructed needs to be solved by an 
algorithm, here Lagrange function is selected. 

For equations (14) - (16), the number of 
iterations is omitted by k, and the simplified form is 
as follows: 

MIN  0 0
0

1
( )

n
j j

j j j j j

p q
r

U x x L=

+ +
− −∑                 （ 25）  

S. T  
1
( )

n
ij ij

i
j j j j j

p q
b

U x x L=

+ ≤
− −∑   1,...,i m=   （ 26）  

j j jxα β≤ ≤              1,...,j n=                  （ 27）  
Where { , }j j jmax x αα α= , { , }j j jmin x ββ β=  , 

j j j JL Uα β< ≤ < , and *
i i ib f r= − . 

The sub problem is a variable separable convex 
function, and the dual method can be used to solve 
the problem. The sub problem is constructed as a 
Lagrange function, which is: 

0
1

( , ) ( ) ( )
m

k k
i i

i
l x y f X y f X

=

= +∑                     （ 28）  

Substitute sub problem (25) into （ 28）, we have  
0 0

0
1
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T Tn

j j j jT

j j j j j

p Y P q Y Q
l x y r Y B
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+ +
= − + +
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The following equation can be obtained by 
simplifying the equation （ 29）.  
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where Y is the multiplier of Lagrange's function. 
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If 0iy ≥ , the dual objective function can be 
constructed as: 

0
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( ) min{ ( , ); }

j
j j j j j jx
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The minimum value of jx  is determined by Y, it 
can be expressed as ( )jx Y . If 0iy ≥ , 
then T

0 j jp Y P 0+ ≥ and T
0 j jq Y Q 0+ ≥ . Hence, 

( , )j jl x Y  is convex function. 

Therefore, assume that there is at least one 
positive term in T

0 j jp Y P+  and T
0 j jq Y Q+ , and the 

first order derivative of ( , )j jl x Y  on jx  is：  
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The second order derivative of ( , )j jl x Y  on jx  
is：  
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The second order derivative of ( , )j jl x Y  on jx  is 
positive, so the first order derivative of ( , )j jl x Y  on 

jx  is increasing function. The conclusion about the 
minimum value of ( )jx Y  can be gotten as follows:  

（1） If ' ( , ) 0j jl Yα ≥ , then ( )j jx Y α= ；  
（2） If ' ( , ) 0j jl Yβ ≤ , then ( )j jx Y β= ；  
（3） If ' ( , ) 0j jl Yα <  and ' ( , ) 0j jl Yβ > ,then ( )jx Y  

has a unique solution. The form of the solution is 
shown in the following form: 

1/ 2 1/ 2
0 0

1/ 2 1/ 2
0 0

( ) ( )
( )

( ) ( )

T T
j j j j j j

j T T
j j j j

p Y P L q Y Q U
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p Y P q Y Q
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      （ 36）  

Substitute ( )jx Y  into the following function 
( )w Y , we have: 

0 0
0

1
( ) ( )

( ) ( )

T Tn
j j j jT

j j j j j

p Y P q Y Q
w Y r Y B

U x Y x Y L=

+ +
= − + +

− −∑         （ 37）  

Hence, the first order partial derivative of ( )w Y  
on iy  is obtained: 

1
( )

( ) ( )

n
ij ij

i
ji j j j j

p qw b
y U x Y x Y L=

∂
= − + +

∂ − −∑          （ 38）  

Then, the dual problem of the sub problem is 
equivalent to the maximum value of the dual 
function ( )w Y  when 0iy ≥ . 

SMB optimization strategy 

Maximizing extraction and raffinate purity 

In the separation of SMB, the high purity of 
product is the most basic requirement in the 
process. In this optimization problem, the feed flow 
rate FQ  and the elution flow rate DQ  are fixed 
values. Based On this basis, the concentration of 
the extraction and raffinate reach to maximum. 

In this paper, the flow rate of zone 2 is taken as 
one of the control variables, and another one is the 
switching time *t . The mathematical model of the 
optimization problem is: 

Max   *
1 EP X Q t= Ⅱ（ ， ）                  (39) 

Max   *
2 RP X Q t= Ⅱ（ ， ）                  (40) 
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The optimization problem also ensures that the 
purity of the product reaches a certain constraint, 
such as 

98%AX ≥                                        (41) 
98%BX ≥                                        (42) 

Decision variables are as follows：  
*2 4min t min≤ ≤                                        (43) 

30 / 45 /mL min Q mL min≤ ≤Ⅱ                   (44) 
3.64 /FQ mL min=                                     (45) 
21.15 /DQ mL min=                                   (46) 

56.83 /Q mL min=Ⅰ
                                  (47) 

The optimization is carried out by using the 
method of moving asymptotes, the distribution of 
Pareto optimal solution set is shown in figure 2. 
The simulation results show that the moving 
asymptotes algorithm converges to Pareto solution 
set, which has better dispersion degree and more 
uniform distribution. 
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Fig. 2. Optimal solution distribution of MA 

In order to ensure the accuracy of the algorithm 
of moving asymptotes in SMB optimization, the 
triangle theory is used to verify the algorithm. 
Based on the balance theory, 2m  and 3m  are fixed 
values under ideal conditions. However, due to the 
existence of the diffusion coefficient and mass 
transfer resistance in the separation process of 
actual production, 2m  and 3m  is moving from high 
to low with the Pareto optimal solution.  

4.2

3.7

3.2

2.7

2.2
2.2 2.7 3.2 3.7

w

4.2

m3

m2  
Fig. 3.  m2- m3 plane of MA 

The corresponding positions of operation points 
of SMB after optimization on 2 3m m−  plane are 

shown in figure 3. It can be seen from the figure 
that the optimization results of proposed algorithm 
remain in complete separation region, and the 
calculation results meet the triangle theory. 

Maximizing productivity and minimizing solvent 
consumption 

From an economic point of view, SMB solvent 
consumption and productivity are important 
economic indicators. In this paper, the flow rate of 
feed FQ  and the flow rate of zone 1 1Q  are fixed 
values to minimize the solvent consumption and 
maximize the productivity. Because the flow rate of 
feed FQ  and the flow rate of zone 1 1Q  are given, 
therefore, according to the relationships between 
the flow rate in each zone, three of the operation 
parameters DQ , RQ , EQ , 2Q , 3Q  and 4Q  are 
independent, DQ , RQ , EQ  and t* are taken as 
control variables. Therefore, the mathematical 
description of this optimization is as follows:  

Max  ( , , , *)1 r D R EP P Q Q Q t=                (48) 
Min ( , , , *)2 D R EP SC Q Q Q t=               (49) 

The optimization problem also ensures that the 
purity of the product reaches a certain constraint, 
which is: 

98%AX ≥                                            (50) 
98%BX ≥                                            (51) 

Decision variables and fixed parameters: 
*2 4min t min≤ ≤                               (52) 

10 / 40 /DmL min Q mL min≤ ≤          (53) 
5 / 20 /RmL min Q mL min≤ ≤             (54) 
10 / 30 /EmL min Q mL min≤ ≤            (55) 

3.64 /FQ mL min=                              (56) 
56.83 /Q mL min=Ⅰ                              (57) 
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Fig. 4.  Optimal solution distribution of MA 
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Moving asymptotes algorithm is used to solve 
this problem, figure 4 shows the Pareto optimal 
solution set distribution. We can get that when the 
solvent consumption is increased, the productivity 
will be reduced accordingly.  

Figure 5 shows the position of optimized 
operating point in the 2 3m m− plane, the 
optimization results maintain complete separation 
region. The decision variables distribution diagram 
of moving asymptotes method is shown in figure 6, 
the control solutions of variables are uniformly 
distributed, and the number of optimal solutions are 
satisfied. 
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2.5

2
2 2.5 3 3.5 4

m
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Fig. 5.  m2- m3 plane of MA 

CONCLUSION 

In this paper, According to moving asymptotes 
algorithm, extract purity, raffinate purity, 
productivity and solvent consumption are optimized 
and simulated. The feasibility is verified by triangle 
theory. The simulation results show that the 
algorithm has a fast convergence speed, and the 
optimal solutions are well-distributed. The SMB 
optimization strategy can be used for SMB 
separation process design and operation guidance. 

The limitation of this study is that it is based on 
the separation of the two components, and the 

algorithm has some space to improve. Our future 
work will continue to improve the optimization 
algorithm to realize the online optimization control 
of the various modified simulated moving bed. 
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Symbol description: 

ic ：Concentration of component i in fluid phase 

iq ：Concentration of component i in solid phase 
u ：Superficial velocity 
ε ：Column porosity 
h ：Space step 
A ：Strong adsorption component 
B ：Weak adsorption component 
Da: Axial diffusion coefficient 
Fa：Phase rate 
Hi：Henry’s constant of component i 
L：Column length 
Q：Flow rate 
Subscripts 
1,2,3,4：denote zone 1,2,3 and 4 respectively 
i：Component 
E：Extraction 
F：Feed 
R：Raffinate  
D：Elution  
Superscripts 
*：Equilibrium value 
in： Entry value 
out： Export value 
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