Optimization of drilling parameters by analysis of formation strength properties with using mechanical specific energy

A. Davarpanah¹, M.M. Nassabeh²

¹Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran. ²Department of Petroleum Engineering, Islamic Azad University, Omidiyeh, Iran.

Received May 17, 2017, Revised September 4, 2017

By increasing the daily needs of human energy, human manipulation of natural energy sources are expanded and encouraged the human society to developing science, knowledge and technology. Mechanical specific energy is required energy for drilling the unit of formation volume of oil wells. This parameter can be used for functional analysis of drilling, drilling bit optimization and investigating of instability has been made during drilling operations. This parameter can be used for decreasing of drilling costs of oil_wells by increasing drilling speed, optimized the useful life of the drilling bit and determine the right time to replace the drilling bit, and in some cases reduced to a minimum amount. In South Pars field in Iran many wells have been drilled, however detailed statistics processes hadn't done for optimizing drilling parameters and their impact on mechanical specific energy. By results of this study we can use to analyze performance and drilling parameters such as weight on drilling bit, rotational speed, penetration rate, etc. In most cases, mechanical specific energy at the end of each drilled wells, because of reducing movement speed has been increased. Although by investigating middle formations in section of 12.25 inch, all existing wells on a platform in one of the phases of Iran's South Pars field are being studied, which contains formations such as Hith, Surmeh, Neyriz, Dashtak and Kangan.

Studies was done in two parts. In the first part, the range of optimized drilling parameters that is increasing drilling speed and reducing the required amount of energy for drilling formation. This process by investigating mechanical specific energy and its relationship with uniaxial compressive strength in five studied formation have been presented. In the second part, correlations to predict the mechanical specific energy in this area by statistical methods by SPSS software, presented and reviewed. Then, by the most appropriate relationship, the most influential drilling parameters on mechanical specific energy have been set.

However, for drilling the next wells in this area drilling parameters with the most priority influences on mechanical specific energy, proposed in the optimum range, will be recommended.

Keywords: mechanical specific energy, drilling bit penetration rate, compressive strength, statistical methods, oil

INTRODUCTION

Special mechanical energy, is the required amount of energy for drilling the formation. This parameter is a function of drilling parameters such as weight on bit, rotational speed, torque, drilling penetration rate in the formation and the well diameter. Although if you used mud pumps, this parameter depended to proportion of speed to flow rate, the maximum rate of torque and maximum rate of pressure difference.

Mechanical specific energy for both relational concept and correlational was introduced in 1964 by Tail. Since this parameter used in the diagnosis of instability during drilling operations was valuable. Drilling engineers are always by applying different weights on bit, speed of rotation and mud flow rate within the range of normal operation. They try to minimize the amount of mechanical specific energy and maximize the penetration rate of bit on the formation. Drilling engineers always try to approach mechanical specific energy within current formation compressive strength. Unexpected changes in mechanical specific energy may indicate changes in the rock properties or drilling instabilities or both of them. In an ideal process, there is a relationship between input energy and an accurate compressive strength of a formation. However, this one by one relationship to compare with uniaxial compressive strength due to the effect of hydrostatic pressure of mud column on the depth, does not remain.

By optimizing of mechanical specific energy, we can reduce unappreciable non-beneficial times and also drilling costs by using drilling optimization parameters for increasing beneficial life of bit, increasing penetration rate to maximum limit(without types of bit) and obtain optimum time for changing bit(when the performance of bit is lower than optimum limit).

By accurate using of mechanical specific energy within analysis of this parameter, it can be diagnosed for slowing bit speed or damaged bits, choosing efficient bit for current formation,

wells.

To whom all correspondence should be sent:

E-mail: afshindpe@gmail.com

efficient rotation per minute and inhabitation of poor mud circulation.

In Iran, despite drilling many wells in South field, statistical research to optimize Pars independent drilling parameters such as weight on bit, bit rotational speed, drilling speed and also its impact on each of the relevant parameters (mechanical specific energy) has not been done. Also due to high costs of hiring drilling rigs and limit use of some tools such as bit and borehole assembly that we have in Iran, this research is done for optimizing drilling parameters due to formation strength parameters by using mechanical specific energy.by investigating mechanical specific energy and its relationship with uniaxial compressive strength with increasing drilling speed, lengthen beneficial life of bit and borehole assembly, we can optimize costs that it is the main concern of petroleum companies.

WORKING PROCEDURE

The principal of this research can be divided into two parts.

In the first part, the data are collected in the study area. Then which points that have higher drilling speed and also have lower mechanical specific energy and the ratio of mechanical specific energy to uniaxial compressive strength, in each well and formation to formation are separately recognized. Drilling parameters are collected at these point and with summarizing all of these data in all wells, for formations such as Hith, Surmeh, Neyriz, Dashtak and Kangan, range of optimum drilling parameters and decreasing mechanical specific energy will be determined.

In the second part, firstly descriptive statistics, including the number of samples, the highest and lowest dispersion and its causes will examine. Then, in inferential statistics, there are some correlations for estimating mechanical specific energy by SPSS software in the studied area and their accuracy are investigated and optimum linear and non-linear correlation are determined. Then with the most appropriate correlation the most influential independent parameters on mechanical specific energy will be obtained.

A total of first and second stages, for appropriate optimization of mechanical specific energy during drilling, efficient drilling parameters on mechanical specific energy(obtained in the second stage),in the optimal range, increasing drilling speed and reduce mechanical specific energy, for drilling other wells in this area (South Pars field in Iran) is recommended. More detailed statistical and inferential methods are further summarized.

CASE STUDY

1. Data collection

To collect and summarize all information related to wells 1 to 10, in Table 1-1 range of each independent parameters such as weight on bit, pressure difference, rotation per minute and flow rate, dependent drilling parameters, including penetration rate mechanical specific energy for section with 12.25 inch diameter that Total investigated wells are examined for each formation. In studied area range of independent drilling parameters including the rotational velocity in the range of 0 to 120 (RPM), weight on bit from 0 to 223 (klbs), mud flow rate from 200 to 9000 (psi), the pressure difference of 10 to 1270 (psi) and of torque from 0 to 29 (kFT-Ib) is. This has led to a range of dependent drilling parameters include penetration rate of between 0.96 to 107.69 (ft / hr) and particularly mechanical specific energy between the 0 to 34292.5 (MPa).

2- Identify the optimum points in each of the formations

In the following tables, the areas with the highest drilling velocity, the lowest mechanical specific energy and the ratio of the lowest amount of mechanical specific energy to uniaxial compressive strength are the optimum points.by determining these points independent drilling parameters appropriate with those data that prepared these optimum points. This information is then presented in Tables 1-1 to 1-5.

A.Davarpanah, M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties ...

For mati on	we ll	Original Points	From	То	Dril led	ROP	rp m	m in W O B	m a x W O B	Flo w	ΔΡ	m in T Q	m ax T Q	MES	MES/U CS
		MSE(min)	1853. 2	1882. 1	28.9	12.84 44	40	1 5	2 0	843	34 0	1 0	13	69.551	0.46
	1	rop(max)	1930	1939	9	18	70	2 0	2 2	845	29 0	8	14	70.859 5	0.469
		MSE/UCS(min)	1853. 2	1882. 1	28.9	12.84 44	40	1 5	2 0	843	34 0	1 0	13	69.551	0.46
		MSE(min)	1840	1854	14.4	13.7	40	1 5	2 2	855	18 0	9	14	37.867	0.25
	4	rop(max)	1911	1939	28.3	24.8	12 0	1 9	2 4	855	30 0	5	13	81.858	0.542
		MSE/UCS(min)	1840	1854. 4	14.4	13.71 43	40	1 5	2 2	855	18 0	9	14	37.867	0.25
		MSE(min)	1980	1986	6	3.529 41	90	1 2	1 5	795	28 0	0	0	0.0001 2	6.62E+ 07
	5	rop(max)	2020	2030. 9	10.9	16.02 94	90	1 3	1 6	795	31 0	1 3	17	191.98 1	1.271
		MSE/UCS(min)	1980	1986	6	3.529 41	90	1 2	1 5	795	28 0	0	0	0.0001 2	6.62E+ 07
		MSE(min)	1877	1892	15	18.98 73	40	1 8	2 4	900	30 0	7	11	33.080 2	0.219
	6	rop(max)	1877	1892	15	18.98 73	40	1 8	2 4	900	30 0	7	11	33.080 2	0.219
		MSE/UCS(min)	1877	1892	15	18.98 73	40	1 8	2 4	900	30 0	7	11	33.080 2	0.219
		MSE(min)	1908	1911	3	9.090 91	30	3	1 2	820	12 0	1	15	40.598 5	0.268
Hith	7	rop(max)	1990. 5	2019	28.5	21.11	10 0	1 8	2	800	24 0	1	18	130.53 7	0.864
		MSE/UCS(min)	1908	1911	3	9.090 91	30	3	1 2	820	12 0	1	15	40.598 5	0.268
		MSE(min)	1766. 5	1767. 5	1	10	90	4	25	822	11 0	6	11	86.828 5	0.575
	9	rop(max)	1835	1845	10	19.23 08	10 5	1 9	2	835	25 0	5	13	126.76	0.839
		MSE/UCS(min)	1766. 5	1767. 5	1	10	90	4	2 5	822	11 0	6	11	86.828 5	0.575
		MSE(min)	1752	1772	20	41.66 67	50	1 5	1 8	797	22 0	1 0	12	25.802 7	0.17
	10	rop(max)	1752	1772	20	41.66 67	50	1 5	1 8	797	22 0	1 0	12	25.802 7	0.17
		MSE/UCS(min)	1752	1772	20	41.66 67	50	1 5	1 8	797	22 0	1 0	12	25.802 7	0.17
		MSE(min)	1795	1809. 8	14.8	13.21 43	60	1 5	2 0	800	30 0	8	15	112.6	0.745
	12	rop(max)	1868	1895	27	26.73 27	11 0	2 3	2 5	910	31 0	1 0	15	114.61 3	0.759
		MSE/UCS(min)	1795	1809. 8	14.8	13.21 43	60	1 5	2 0	800	30 0	8	15	112.6	0.745
	14	MSE(min)	1781. 4	1799	17.6	9.166 67	70	1 8	2 4	900	20 5	8	13	166.91 2	1.105
	14	rop(max)	1838. 5	1867	28.5	11.53 85	10 0	1 8	2 5	900	24 0	8	17	290.01 3	1.92

Table 1-1: Optimization of drilling in the formation Hith

A. Davarpanah&M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties...

			MSE/UCS(min)	1781. 4	1799	17.6	9.166 67	70	1 8	2 4	900	20 5	8	13	166.91 2	1.105
--	--	--	------------------	------------	------	------	-------------	----	--------	--------	-----	---------	---	----	-------------	-------

|--|

					- F -		0				-				
Fo rm ati on	we ll	Original Points	Fro m	То	Dril led	ROP	rpm	m in W O B	m a X W O B	Flo w	ΔΡ	m in T Q	m ax T Q	MES	MES/U CS
		MSE(min)	2566	2567	1	5.26	0	3 0	3 5	875	90	0	0	0.00028	2.82E- 06
	1	rop(max)	2069	2081. 4	12. 4	56.3636	115	1 8	2 4	875	440	7	13	51.2784	0.33959 2
		MSE/UCS(min)	2566	2567	1	5.26	0	3 0	3 5	875	90	0	0	0.00028	2.82E- 06
		MSE(min)	2397	2411	14	7.25389	0	1	1 0	800	100	0	0	4.67E- 05	5.1E-06
	4	rop(max)	2194 .5	2207	12. 5	69.4444	120	2 0	2 5	900	300	7	17	45.2235	0.32
		MSE/UCS(min)	2163 8	2174. 6	6.6	5.40698	0	5	8	900	180	0	0	5.52E- 05	5.1E-06
		MSE(min)	2300	2304	4	9.09091	0	3	5	840	50	0	0	3.40E- 05	3.06E- 07
	5	rop(max)	2590	2600	10	43.4783	120	6	1 5	843	350	15	25	118.843	1.7
		MSE/UCS(min)	2094	2099. 5	5.5	5.28846	0	4	5	795	50	0	0	3.82E- 05	3.06E- 07
		MSE(min)	1908	1914	6	5.40541		1 0	2 0	900	140	0	0	0.00013	6.62E- 07
	6	rop(max)	2092	2092	12	70.5882	100	2 0	2 8	900	180	8	14	42.0923	0.298
S.		MSE/UCS(min)	1908	1914	6	5.40541		1 0	2 0	900	140	0	0	0.00013	6.62E- 07
rm		MSE(min)	2981	2992. 5	11. 5	7.41936		1 0	2 0	850	160	0	0	0.00013	1.02E- 05
CII	7	rop(max)	3005	3008	3	50	120	1 0	1 2	850	270	11	22	114.001	1.163
		MSE/UCS(min)	2822	2825. 6	3.6	3.39623	0	5	2 5	800	150	0	0	0.00013	1.02E- 05
		MSE(min)	2162 .5	2165	2.5 5	3.89438	0	2	5	833	70	5	13	2.97E- 05	2.11E- 07
	9	rop(max)	2469	2475	6	35.2941	105	1	1 0	900	280	6	13	66.6123	0.662
		MSE/UCS(min)	2162 .5	2165	2.5 5	3.89438	0	2	5	833	70	5	13	3E-05	2.11E- 07
		MSE(min)	2326	2330. 4	4.4	3.89381	0	1	5	800	40	0	0	2.55E- 05	3.06E- 07
	10	rop(max)	2204 .8	2233. 5	28. 7	37.2727	70	1 0	2 0	800	220	10	17	45.7477	0.56
		MSE/UCS(min)	1954 .5	1969. 3	14. 8	5.32374	0	0	5	800	100	0	0	2.6E-05	1.99E- 07
		MSE(min)	2618 .3	2621	2.7	10.3846		5	1 0	950	100	14	22	6.37E- 05	5.56E- 07
	11	rop(max)	3050	3050. 8	0.8	40		8 0	8 0	898	70	0	0	0.00068	6.93E- 05
		MSE/UCS(min)	3050 .8	2621	- 430	10.3846		5	1 0	950	100	14	22	6.4E-05	5.56E- 07
	12	MSE(min)	1981	2000. 1	14. 8	39.7917	110	1 9	2 3	905	350	11	17	97.3658	0.644

A.Davarpanah, M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties ...

	rop(max)	2009 .6	2038. 5	27	46.6129	110	2 0	2 5	905	445	10	18	105.678	0.699
	MSE/UCS(min)	1981	2000. 1	14. 8	39.7917	110	1 9	2 3	905	350	11	17	97.3658	0.644
	MSE(min)	1979	1982	17. 6	42.8571	105	1 0	1 8	850	200	5	16	64.3015	0.425
14	rop(max)	2066 .5	2073	28. 5	43.3333	105	1 2	2 0	850	375	6	19	145.324	1.03
	MSE/UCS(min)	1979	1982	17. 6	42.8571	105	1 0	1 8	850	200	7	16	64.3015	0.425

Table 1-3: Optimization of drilling in the formation Neyriz

For mat ion	w e 11	Original Points	From	То	Dril led	ROP	rpm	m in W O B	m a X W O B	Flo w	ΔP	m in T Q	m ax T Q	MES	MES/UC S
		MSE(min)	2990	2998. 7	8.7	28.064 5	120	7	9	845	160	8	18	55.09	5.60E-01
	1	rop(max)	2998. 7	3004	5.3	31.174 7	120	4	6	845	330	8	16	196.98 97	0.927
		MSE/UC S(min)	2990	2998. 7	8.7	28.064 5	120	7	9	845	160	8	18	55.09	0.56
		MSE(min)	2927	2955. 5	28.5	22.8	120	8	2 1	850	260	8	18	2.19E+ 02	2.356
	4	rop(max)	2927	2955. 5	28.5	22.8	120	8	2 1	850	260	8	18	2.19E+ 02	2.356
NE YR		MSE/UC S(min)	2927	2955. 5	28.5	22.8	120	8	2 1	850	260	8	18	2.19E+ 02	2.356
IZ		MSE(min)	3289. 8	3295. 3	5.8	14.5	120	8	1 1	922	130	15	22	1.53E+ 02	1.56E+0 0
	5	rop(max)	3295. 3	3306. 5	11.2	15.555 6	120	6	1 0	922	200	17	22	231.89	2.366
		MSE/UC S(min)	3289. 8	3295. 3	5.8	14.5	120	8	1 1	922	130	15	22	1.53E+ 02	1.56E+0 0
		MSE(min)	2789. 8	2818	28.2	17.735 9	120	1 5	1 8	900	325	8	19	96.713 03	4.58E+0 0
	6	rop(max)	2789. 8	2818	28.2	17.735 9	120	1 5	1 8	900	325	8	19	96.713 03	4.577
		MSE/UC S(min)	2789. 8	2818	28.2	17.735 9	120	1 5	1 8	900	325	8	19	96.713 03	4.577
		MSE(min)	3033. 6	3061. 3	27.7	15.054 4	120	1 5	2 5	750	300	10	21	395.20 3	2.224
	7	rop(max)	3033. 6	3061. 3	27.7	15.054 4	120	1 5	2 5	750	300	10	21	395.20 3	2.224
		MSE/UC S(min)	3033. 6	3061. 3	27.7	15.054 4	120	1 5	2 5	750	300	10	21	395.20 3	2.224
		MSE(min)	2773	2788	15	20.548	120	1 0	2 0	895	350	6	13	1.77E+ 02	1.63E+0 0
	9	rop(max)	2773	2788	15	20.548	120	1 0	2 0	895	350	6	13	177.46 22	1.625
		MSE/UC S(min)	2773	2788	15	20.548	120	1 0	2 0	895	350	6	13	177.46 22	1.625
		MSE(min)	2689. 9	2718. 7	28.8	28.235 3	60	9	2 2	800	330	5	17	6.33E+ 01	9.35E-01
	1 0	rop(max)	2689. 9	2718. 7	28.8	28.235 3	60	9	2 2	800	330	5	17	63.266 08	0.935
		MSE/UC S(min)	2689. 9	2718. 7	28.8	28.235 3	60	9	2 2	800	330	5	17	63.266 08	9.35E-01

A. Davarpanah&M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties...

	MSE(min)	3430. 4	3459	28.6	16.725 2	100	5	1 0	950	160	14	26	3.82E+ 02	2.66E+0 0
1 1	rop(max)	3430. 4	3459	28.6	16.725 2	100	5	1 0	950	160	14	26	382.49 8	2.657
	MSE/UC S(min)	3430. 4	3459	28.6	16.725 2	100	5	1 0	950	160	14	26	382.49 8	2.657
	MSE(min)	3072. 7	3101	28.3	13.412 3	120	1 5	2 3	905	220	10	20	429.27 71	2.536
1 2	rop(max)	3072. 7	3101	28.3	13.412 3	120	1 5	2 3	905	220	10	20	429.77 71	2.536
	MSE/UC S(min)	3072. 7	3101	28.3	13.412 3	120	1 5	2 3	905	220	10	20	429.27 71	2.536
	MSE(min)	2785. 3	2814	28.7	18.993 4	120	1 0	1 5	880	170	9	16	143.14 83	1.409
1 4	rop(max)	2785. 3	2814	28.7	18.993 4	120	1 0	1 5	880	170	9	16	143.14 83	1.409
	MSE/UC S(min)	2785. 3	2814	28.7	18.993 4	120	1 0	1 5	880	170	9	16	143.14 83	1.409

Table 1-4: Optimization of drilling in the formation Dashtak

For mat ion	w e ll	Original Points	From	То	Drill ed	ROP	rp m	m in W O B	m ax W O B	Flow	ΔΡ	mi n T Q	ma x TQ	MES	MES/UC S
		MSE(min)	3314 .5	3315 .5	1	3.448 28	11 5	20	30	857	10	11	13	10.91976	7.50E-01
	1	rop(max)	3004	3007 .9	3.9	27.85 71	12 0	1	2	845	26 0	8	16	45.1.339 6	0.818
		MSE/UCS(min)	3314 .5	3315 .5	1	3.448 28	11 5	20	30	857	10	11	13	10.91976	0.75
		MSE(min)	2997	3003 .7	6.7	3.526 32	0	10	22	850	16 0	0	0	1.36E-04	1.02E-06
	4	rop(max)	2958	2960	2	25	12 0	10	18	850	15 0	8	18	1.03E+0 2	1.0911
		MSE/UCS(min)	2997	3003 .7	6.7	3.526 32	0	10	22	850	16 0	0	0	1.36E-04	1.02E-06
		MSE(min)	3323 .4	3334	10.6	14.32 43	12 0	10	15	922	18 0	15	24	2.67E+0 2	1.77E+00
Dee	5	rop(max)	3493 .4	3514	20.2	19.23 81	12 0	20	25	920	24 0	21	24	259.6177	1.643
hta		MSE/UCS(min)	3514	3522 .1	8.1	16.53 06	12 0	18	23	920	19 5	20	24	2.40E+0 2	1.52E+00
К		MSE(min)	2826	2827	1	6.666 67	10 0	2	6	900	60	9	12	94.46068	7.37E-01
	6	rop(max)	2827	2830	3	13.63 64	10 0	9	12	900	24 0	9	26	307.8718	2.405
		MSE/UCS(min)	2826	2827	1	6.666 67	10 0	2	6	900	60	9	12	94.46068	0.737
		MSE(min)	3443	3444	1	8.333 33	80	5	8	620	85	13	19	160.62	1.46
	7	rop(max)	3374	3388	14	21.21 21	12 0	10	15	800	34 0	12	26	2982.986	2.838
		MSE/UCS(min)	3443	3444	1	8.333 33	80	5	8	620	85	13	19	160.62	1.46
	0	MSE(min)	3164	3165	1	12.5	80	15	20	835	24 0	6	12	1.34E+0 2	1.41E+00
	У	rop(max)	2801	2807 .5	6.5	17.56 76	10 5	14	16	900	37 0	7	11	163.24	1.275

A.Davarpanah, M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties

	MSE/UCS(min)	2994	2995	1	3.703 7	80	1	5	800	10 0	7	14	137.397	0.869
	MSE(min)	2747	2775 .7	28.7	19.79 31	60	18	22	800	32 0	7	12	7.86E+0 1	6.14E-01
1 0	rop(max)	2718 .7	2747	28.3	21.43 94	60	15	22	800	32 0	8	16	91.66605	0.935
	MSE/UCS(min)	2747	2775 .7	28.7	19.79 31	60	18	22	800	32 0	7	12	78.60491	6.14E-01
	MSE(min)	3587 .5	3587 .7	0.2	6.666 67	10	1	1	200	10	20	20	3.20E+0 0	2.40E-02
1 1	rop(max)	3459	3482 .4	23.4	15.19 48	10 0	10	25	950	22 2	14	26	311.5558	4.058
	MSE/UCS(min)	3587 .9	3587 .7	0.2	6.666 67	10	1	1	200	10	20	20	3.198676	0.024
	MSE(min)	3427	3427 .5	0.5	3.571 43	50	10	10	905	30	17	17	83.04912	0.525
1 2	rop(max)	3441 .1	3469 .5	28.4	16.79 29	10 0	20	25	905	26 0	17	20	333.1624	2.289
	MSE/UCS(min)	3427	3427 .5	0.5	3.571 43	50	10	10	905	30	17	17	83.04912	0.525
	MSE(min)	3199	3213	14	107.6 92	10 0	20	25	880	15 0	10	15	23.20481	0.174
1 4	rop(max)	3199	3213	14	107.6 92	10 0	20	25	880	15 0	10	15	23.20481	0.174
	MSE/UCS(min)	3199	3213	14	107.6 92	10 0	20	25	880	15 0	10	15	23.20481	0.174

	MES/UCS	3.90E+00	2.977	2.938	9.00E+00	8.996	9.00E+00	6.53E+00	10.458	6.525	2.30E+01	22.958	22.958	7.36	7.36	7.36
	MES	429.0907	476.3617	470.2043	1.44E+03	1439.4	1439.4	717.7812	1673.307	717.7812	2.53E+03	2525.428	2525.428	809.6629	809.6629	809.6629
angai	Q T ax	15	15	15	25	25	25	11	14	11	29	29	29	16	16	16
tion K	Q T n	13	13	13	20	20	20	6	6	6	25	25	25	11	11	11
e forma	$\Delta \mathbf{P}$	290	335	190	150	150	150	80	120	80	110	110	110	160	160	160
ng in th	Flow	846	846	846	800	800	800	006	006	006	850	850	850	875	875	875
drilli	BO≪×a B	8 17	8 2	8	2	$\frac{2}{1}$	2 1	<i>ო ო</i>	ю ю	<i>ო ო</i>	$\frac{3}{0}$	3 0	$\frac{3}{0}$	8 5	2 8	8 17
on of	m O ≼ E. B	N N	5 2	<i>5</i> 2	1 8	1 8	1 8	0 3	3	0 3	2	0 2	0	04	4 0	0.4
imizati	rpm	115	115	105	120	120	120	110	110	110	110	110	110	120	120	120
ble 1-5: Opt	ROP	10.3896	10.8108	10	5	5	5	1.96078	2.23214	1.96078	2.75862	2.75862	2.75862	6.4	6.4	6.4
Tal	Dril led	8	8	2	5.4	5.4	5.4	1	2.5	1	7.2	7.2	7.2	24	24	24
	To	3758	3766	3768	4127	4127	4127	3442	3462.5	3442	4261	4261	4261	3550	3550	3550
	From	3750	3758	3766	4121. 6	4121. 6	4121. 6	3441	3460	3441	4253. 8	4253. 8	4253. 8	3526	3526	3526
	Original Points	MSE (min)	Rop (max)	MSE/U CS (min)	MSE (min)	Rop (max)	MSE/U CS (min)	MSE (min)	Rop (max)	MSE/U CS (min)	MSE (min)	Rop (max)	MSE/U CS (min)	MSE (min)	Rop (max)	MSE/U CS (min)
	well		П			S			9			11			14	
	For mati on							1	Kan	2 au				1		

A.Davarpanah, M.M. Nassabeh: Optimization of drilling parameters by analysis of formation strength properties ...

	N(R	PM)		WO	B(kIbs	5)	Flow	v(gal/n	nin)	ΔP(j	osi)		TQ(KFT-I	b)
Formati			Averag			Averag			Averag			Averag			Averag
on	mi	ma	e	mi	ma	e	mi	ma	e	mi	ma	e	mi	ma	e
	n	Х	(Aroun	n	Х	(Aroun	n	Х	(Aroun	n	Х	(Aroun	n	Х	(Aroun
			d)			d)			d)			d)			d)
Hith	30	12	66.85	3	25	17 55	79	91	840 77	11	34	243 33	0	18	10.22
mm	50	0	00.05	5	25	17.55	5	0	040.77	0	0	243.33	U	10	10.22
Surmeh	0	12	77 5	0	80	35 75	79	95	864.4	40	44	195 33	0	25	7 4 3
Burmen	0	0	11.5	0	00	33.13	5	0	004.4	-10	5	175.55	U	23	7.43
Nevriz	60	12	111	4	25	33.65	75	95	869 7	13	35	248 5	5	26	1/1 15
TREYTTE	00	0	111	т	23	33.05	0	0	007.7	0	0	2-0.5	5	20	17.15
Dachtak	0	12	81.5	1	30	33.63	20	95	808 36	10	37	163.9	0	26	13.61
Dasmak	0	0	01.5	1	50	55.05	0	0	000.50	10	0	105.7	0	20	15.01
Kangan	10	12	11/ 33	18	33	25.7	80	90	854.2	80	33	157	0	20	17.5
Kangan	5	0	114.55	10	55	23.1	0	0	034.2	80	5	157	2	29	17.5

Table 1-6: optimum range of independent drilling parameters in total investigated wells

Table 1-7: optimum range of dependent drilling parameters in total investigated wells

Formatio n	ROP(ft/hr)			MSE(Mpa)			MSE/UCS		
	min	max	Average (Around)	min	max	Average (Around)	min	max	Average (Around)
Hith	3.53	41.66	17.13	0.00075842 3	1999.54 9	578.7459	4.57E- 06	13.2379 3	3.73695845
Surmeh	3.4	70.59	25.16	1.75E-04	1001.94 6	243.1781	1.37E- 06	11.7210 9	2.11669048
Neyriz	13.4 1	31.14	19.745	379.832178 6	2959.71 2	1508.78	3.86106 4	31.5573	14.3410951
Dashtak	3.44	107.6 9	21.73	0.00093079 2	2297.07 1	816.0635	7.03E- 06	27.9789 3	7.27396893
Kangan	1.96	10.81	5.32	2598.47140 1	17412.1 6	8645.06	20.2568	158.289 8	69.4991534

STATISTICAL METHOD

1.Descriptive statistics

In this research to determine display characteristics of descriptive properties, a collection set data, the range of changes, minimum and maximum average, offset scale and gear ratio of changes are provided in the Table 1-8 that the purpose of this investigate to affect any of the existing parameters on mechanical specific energy. That's why parameters (TQ, ΔP , Q, WOB, N, ROP and drilled) become independent variables. Changes in these parameters will change in the MSE as a dependent parameter.

Parameter	Unit	Range of changes	Minim um	Maximu m	average	Offset scale	Ratio of changes
riDlled	m	29.6	0	29.6	10.36	9.033	0.872
ROP	ft/hr	38.49	1.3	39.79	11.75	8.31	0.707
Ν	RPM	110	20	130	103.89	19.938	0.192
WOB	Klbs	32.5	1	33.5	18.96	7.381	0.389
Q	GPM	300	650	950	866.75	49.171	0.057
ΔΡ	psi	510	10	520	225.49	81.034	0.359
TQ	Kft.lbs	20	7	27	15.04	4.694	0.312
MSE	ksi	3366.97	19.62	3386.59	494.53	468.977	0.948

Table 1-8: Descriptive characteristics of data collection that are used

The number of collection samples are 1485 that show the importance of derived correlations from the investigated formations in different wells. The range of changes and the offset scale, is important indicators for measuring volume dispersion amount one variable a. Average is the most important and easiest central index data. Using the average it can be compared many number of variables together. Gear ratio of the changes obtained from divided offset scale of one variable on average, relative index for comparing different variables, whatever the gear ratio of the changes to be more, variable distribution will be more.

Mechanical Specific energy has the biggest range of changes, the offset scale and gear ratio of changes. High dispersion of this variable, due to the different resistor properties in different lithology. After mechanical specific energy, pressure difference has the highest scope of the changes and the offset scale, low pressure difference relevant to low special weight and high pressure difference represents high special weight of cuttings in that part. The least range of changes and the offset scale related to the torque and the lowest gear ratio of changes related to the mud flow rate that is revealed parameters were close and less distribution.

The histogram is a method to display the distribution of data in different quantity categories. The range of parameters related to this region in addition to the table descriptive characteristics specified in Fig1-1. Proposal relations related to this ranges and if we use this equations for outside parameters of the range it needs more careful nesses and more caution.

2, Inferential statistics

As we know, this statistical method can refer to regression method. In the inferential statistics, linear correlations and non-linear correlations are evaluated.

3. Wrap up

in this case firstly descriptive statistics that includes number of samples, the most and the least dispersion and their reasons are review. For the studied area, investigated descriptive characteristics shows the range of the changes, the offset scale and high gear ranges of mechanical specific energy, pressure differences and true vertical depth that shows more dispersion on this variables. Low amount of these parameters such as torque, rotational speed and mud flow rate, revealed low dispersion for this parameters.

Then, in inferential statistics there were correlations to predict mechanical specific energy in the studied area by using statistical methods with SPSS software was presented. The most appropriate non-linear correlations Linear and were investigated.by investigating suggested correlations in the studied field and compare their accuracy, the following results were obtained: -In the proposed linear equations, linear correlation without intercept, with number of test 383/946, correlation coefficients 0/904 and coefficients of determination 0/818, is superior and more reliable than linear correlation with intercept, the statistic test 344/567, correlation coefficients 0/788 and coefficient of determination is 0/62.

In comparison of non-linear correlation, proposed non-linear correlation with a coefficient of determination 0/775, the two proposed non-linear correlations to state that we didn't use the mud pump in the well coefficient of determination were 0/819 and 0/813. When we use the mud pump in the well coefficient of determination were 0/837 and 0/832 that compared to other non-linear correlations were higher. This represents a further connection between the parameters and higher accuracy, especially in mechanical specific energy correlation with other independent drilling parameters into two correlations.

RESULTS AND DISCUSSION

1. To use the results of this study, it should be considered that the range of parameters provided, in addition to the descriptive specification table, in normal curve and drilling histogram parameters are specified. As well as from a variety of statistical methods, SPSS software was used in this research. Several proposed correlations for mechanical specific energy was done by this software.

Fig 1-1: Normal curve and histogram of drilling parameters. a)Drilled; b) ROP.c) N, d) WOB, e) Q f) $\Box \Box \Box P$, g) TQ , h) MSE

2. It is recommended that the neural network application software must be designed to determine with serial changes in drilling parameters, the most appropriate model for achieving the optimal combination of mechanical specific energy.

3. As noted above, the mechanical specific energy can help for checking drilling performance (selecting and optimizing drilling parameters), checking the performance of bit (bit design with more efficiency) and the instability of drilling Although operations. appropriate statistical processed for optimizing drilling parameters and their effect on mechanical specific energy on the studied area hadn't been done and also mechanical specific energy have an important role in reducing costs. In this research by using mechanical specific energy we can analyze and optimized drilling parameters on the part of Iran's South Pars field. As a result of this research it recommended that by using mechanical specific energy to investigate drilling instabilities during operation (which can include bit plunging and BHA in the mud, vibrations, improper cleaning of wells, etc.) and checking the bit performance in the area. By selecting the appropriate type of bit (fixed cutter, PCD, etc.), appropriately designed of bit (number of blades, size and density of cutters, , number and size of nozzles) and taking cutting depth, adjacent pressure and etc., must be increased drilling speed and minimize the damages to the bit.

REFERENCES

- 1. N.J. Adams, T. Charrier, Drilling Engineering, Penn Well Book", USA. 1985.
- 2. M. Al-Qahtani, R. Zillur, A Mathematical Algoiritm for Modeling Geomechanical Rock Properties of the Khuff and Pre-Khuff Reservoir in Gahwar Field, SPE 68194. 2001.

- K. Amadi, A.T. Bourgoyne Jr., K.K. Millheim, M.E. Chenevert, F.S. Young, Applied Drilling Engineering, Society of Petroleum Engineers (SPE), USA, 1991.
- H. Caicedo, W. Calhoun, R. Ewy, Unique ROP Predictor Using Bit-specific Coefficient of Sliding Friction and Mechanical Efficiency as a Function of Confined Compressive Strength Impacts Drilling Performance", paper SPE 92576 presented at 2005 SPE Drilling Conference, Amsterdam, The Netherlands, 23-25 February 2005.
- 5. M. Farrelly, H. Rabia, "Bit Performance and selection: A Novel Approach", SPE 16163. In 1987.
- 6. Gavito D.G. "A new Strength Model and Its Practical Applications", SPE 35322. In 1996.
- 7. S.Y. Kim, Export Syst. Applic., 34, 227 (2008).
- 8. A. Yazdani, A.-H. Shamekhi, S.M. Hosseini Biroun, J. Brazilian Soc. Mech. Sci. Eng., **37**, 375 (2015).
- 9. H. Rabia, Oilwell Drilling Engineering, Graham & Trotman, UK, 1985.
- H. Rabia, M. Ferrelly, M.V. Barr, A New Approach to Drill Bit Selection", SPE 15894, 1986.
- 11. SPE Drilling Studies Group, Guerrero C, Drilling Engineer, Drilling Solutions Team. "Drilling Optimization with Mechanical Specific Energy", April 5, 2007.
- 12. R. Teale, Int. J. Rock Mech. Min. Sci., 2, 57 (1965).
- J.M. Thomas, Case History. "PC Analysis of Bit Records Enhance Drilling Operation in Southern Alabama", SPE 18632. 1989.
- 14. T.M. Warren, Drilling model for soft-formation bits", JPT. pp. 963-970. 1981.
- T.M. Warren, "Penetration rate performance of roller cone bits", SPE Drilling Engineering, pp. 9-18. 1987.
- R. Waughman, J. Kenner, R. Moore, Paper SPE 74520 presented at 2002 SPE Drilling Conference, Dallas, Texas, 26-28 February 2002.
- 17. www.pason.com, "MSE: A Valuable Trending Tool for Drillers and Engineers", October.8.2010.