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This article mainly uses a structural mechanics approach to analyze the elastic properties of a single-layered graphene sheet 
(SLGS). Besides, the space frame structure is also adopted to model the interatomic forces of the carbon–carbon bonds. By 
means of the finite element method, the elastic properties of SLGS on the basis of different chirality and size are measured. 
According to the results, the elastic properties of SLGS are size- and chirality-dependent, which is in consensus with the 
literature. 
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INTRODUCTION 

Based on its one atomic layer thickness, 
graphene is considered as a two-dimensional (2D) 
material which consists of carbon atoms set in a 
honeycomb lattice structure. After it was 
primarily isolated in 2004 [1], it has received 
significant attention due to its interesting physical 
properties like high levels of thermal conductivity 
[2], stiffness, strength [3], etc. Besides, multilayer 
graphene also possesses attractive physical 
characteristics [4-5]. 

By using experimental and theoretical 
methods, numerous studies  have been carried out 
on the elastic properties of SLGS. Frank et al. 
proved the Young’s modulus of graphene nearly 
0.5 TPa with a nanoindentation experiment using 
atomic force microscope (AFM) [10]. In a similar 
approach, Lee et al. obtained the Young’s 
modulus of graphene approximately equal to 
1TPa [3]. By tip-induced deformation 
experiments Cristina found that the Young’s 
modulus of free monolayer graphene reaches 
0.25TPa [6]. From the perspective of theories, the 
molecular dynamics method was applied to study 
the Young’s modulus of different chirality 
graphenes by Q.X.Pei et al., they also found that 
the armchair graphene is 0.89TPa and the zigzag 
graphene is 0.83TPa [7]. In addition, Hao Bu et 
al. also applied a molecular dynamics method 
(empirical Tersoff potential) to calculate the 
Young’s modulus of graphene up to 1.24TPa [8]. 
AB initio DFT method was resorted by Fang Liu 
et al. to compute the Young’s modulus and 
Poisson’s ratio showing that the values are 
1.05TPa and 0.186, respectively [9]. In addition,  

Reddy adopted a continuum mechanics 

approach to figure the Young’s modulus of non-
equilibrium and equilibrium, showing that the 
values are 1.0 TPa and 0.7 TPa, respectively [11]. 
Li explored a structural mechanics approach that 
uses space frame structures to model the carbon 
nanotubes, therefore he expected that the Young’s 
modulus of monolayer graphene was 1.0 TPa 
[12]. 

On the basis of molecular structural 
mechanics, Young’s modulus and Poisson’s ratio 
of SLGS was analysed by atomic simulation 
approach in this work. For this purpose, an equal 
structural beam was used to imitate the 
interatomic forces of the carbon–carbon bonds. 
The equal beam mode with different chirality and 
size will be used to study the Young’s modulus 
and Poisson’s ratio of SLGS. 

MODEL 

Theoretical foundation molecular mechanics and 
structural mechanics 

Graphene can be considered as a large 
molecule made up of lots of carbon atoms 
arranged regularly, each of them being in a force 
field from the standpoint of molecular mechanics 
[12]. The force field, created by nucleus-nucleus 
and electron-nucleus interactions, controls the 
motions of atoms. As usual, the force field, 
expressed as a means of steric potential energy, 
only replies on the comparative position of the 
nucleus. In Fig. 1, diverse kinds of potential 
energy are shown. For the system, its whole 
potential energy under consideration can be 
calculated as [13]: 

Total r vdU U U U U Uθ φ ω ω= + + + +∑ ∑ ∑ ∑ ∑ (1) 

where vdU ω , Uω , Uφ , Uθ  and rU are 
energies, relative to van der Waals nonbonding 
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interaction, bond torsion, inversion, angle 
variation and bond stretching, respectively. 
Generally, the first term is of very little 
importance compared with the other four terms, 
which primarily contribute to the whole steric 
energy. Compared with other terms, the torsion 
and inversion energies have great importance for 
graphene which is subjected to in-plane tension 
loading. Consequently, the sum of angle variation 
and bond stretching, further represented by 
harmonic functions under small deformations of 
linear elasticity, can be used to fairly accurately 
calculate a monolayer graphene’s whole potential 
energy [14-15]: 

 2 2
0

1 1( ) ( )
2 2r r rU k r r k r= − = ∆      （2）

 

2 2
0

1 1( ) ( )
2 2

U k kθ θ θθ θ θ= − = ∆      （3）
 

where kθ  and rk  stand for the force constants, 
separately relative to angle variation and bond 
stretching; θ  and r  stand for bond-angle and 
inter-atomic distance after deformation, 
respectively; 0θ  and 0r  refer to bond angle and 
distance before deformation, respectively. 

 
Fig. 1.  Potential energy of carbon–carbon bonds 

Structural mechanics 
Twisting and stretching make up a whole 

beam’s potential energy on the basis of structural 
mechanics. In Fig. 2, diverse loadings are shown 
which are used in a uniform beam generating 
potential energy. Under axial load, a uniform 
beam’s strain energy, N , can be computed as: 

2 2
2

0

1 1 1 ( )
2 2 2

L

A
N N L EAU dl L
EA EA L

= = = ∆∫   （4）
 

where E  is the Young’s modulus of the 
uniform beam, AU  the tensile energy, A  the 
beam’s cross section, L∆  the length variation, 
and L  the length of beam. In the beam, M  
produces strain energy in the application of pure 
bending load. MU , the bending potential energy 
is given by  

2
2 2

0

1 2 1 (2 )
2 2

L

M
M EI EIU dl
EI L L

α α= = =∫   （5）
 

where α  stands for the rotation angle of the 
end of the beam and I  stands for its moment of 
inertia.  

 
Fig. 2.  Stretching and bending a of a uniform beam 

Equivalent continuum space frame structures  
model 

That is to say, the equivalencies of the relevant 
terms between molecular and structural mechanic 
systems are imposed because of the independency 
of the potential energy terms in those systems The 
equivalency of energy between diverse term states 
an equivalent structural beam. To model 
interatomic forces of the covalently bonded 
carbon atoms, an equivalent structural beam is 
used. Attributions of the beam according to force 
field constants, covalent stiffnesses,  are as: 

r
EA k
L

=
     EI k

L θ=        （6）
 

EA
L

 and EI
L

 stand for bending and stretching 

of the equivalent beams. 
There is a possibility that the stiffnesses, which 

are defined in constants of force field terms, use 
the structural beam by the stiffness matrix 
method. Another method using the structural 
beam suggested the atomistic finite element [16]. 
It is pointed out that specified diameter and elastic 
modulus of the beam fulfill the probabilities of 
using the beam with the atomistic limited 
approach compared with the stiffness matrix 
method. Via replacing  

2 4

,
4 64
d dA Iπ π

= =  in Eq. 

(6) according to the force filed constants, the 
beam features  are deduced as:  

2

4 ,
4

r

r

k k Ld E
k k
θ

θπ
= =      （7）

 

where E  is the modulus of elasticity and d  is 
cross section diameter. L  is the length of beam 
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which is regarded to be equal to the carbon atoms’ 
distance in a covalent bond. 

kθ  and rk  are equal to 8.76×10−10 Nnm/rad2 
and 6.52×10−7 N/nm,respectively, by employing 
the AMBER force field of molecular dynamics 
simulation [15-16]. 0.1412 nm is the distance 
between two contiguous carbon atoms [21]. We 
can get E= 5.488×10−6N/nm2 and d=0.146618 nm 
through solving the Eq. (7). Additionally, the ratio 
of Poisson is reasonably supposed to be 0.3.   

To simulate the monolayer graphene 
nanofilms, the space frame structures, which are 
made up of beam elements, are shown in terms of 
the theoretical analysis in the part above. It is 
forecasted that the mechanical features of the 
SLGSs are size- and chirality-dependent [17-20]; 
so, the elastic properties are computed for the 
armchair sheets and zigzag in diverse sizes. Two 
geometric parameters, b and a, are described to 
specify every SLGS. b and a stand for side width 
and length of the SLGS, respectively. In Fig. 3, 
the diagram of the SLGSs studied in this research  
is shown. 

 
Fig. 3. Zigzag SLGS and armchair SLGS. 

To study the elastic properties of SLGS, a 
space frame structure model is described. Normal 
stress to the atomistic model’s free edge is used 
for the exploration of the elastic properties of the 
SLGS under tension. As a result, the continuum 
sheet’s normal stress is presented as:  

nf
bt

σ =         （8） 

where n  is the number of nodes exposed to the 
external forces, f  is the magnitude of the tensile 
forces, t  and b  are the thickness and width of the 
SLGS, respectively. According to the strain and 
tensile stress, the Poisson’s ratio and Young’s 
modulus are calculated as: 

a

nf
btE a
a

σ
ε

= =
∆

         b

a

b
b
a

a

εν
ε

∆

= =
∆

 （9） 

where aε  and bε  stand for the tensile strain of 
SLGS, which are equal to the elongation ratios 

a∆  and b∆  to the original side length, a  and b . 

RESULTS AND DISCUSSION 

Through the finite element method, we can 
detrmine the SLGS elastic properties. In Figs. 4-7, 
there are explanations of the Young’s modulus 
and Poisson’s ratio of SLGS with diverse size and 
chirality. The armchair graphene has 0.672 TPa 
and 0.435, and the zigzag graphene has 0.615 TPa 
and 0.388, respectively, on the condition that the 
SLGS width and length are 1.989 nm and 2.215 
nm, respectively. This corresponds to the results 
in the references [11,21]. From the figures it can 
be perceived that with the gradually increasing 
size, the Poisson’s ratio and Young’s modulus 
increase or decrease. So we can prove that the 
SLGS elastic property is dependent on size.  From 
Figs. 4 and 6 it is perceived that the Young’s 
modulus of armchair graphene is constant (about 
0.665TPa) and that of zigzag graphene increases 
from 0.615TPa to 0.700TPa, on the condition that 
the length varies and the width is constant. In the 
other case, the Young’s modulus of armchair 
graphene increases from 0.672PTa to 0.708TPa, 
and that of zigzag graphene is constant (about 
0.613TPa), on the condition  that the width varies 
and the length is constant. From Figs. 5 and 7, we 
can see that there is a similar trend of the 
Poisson’s radio for both armchair and zigzag 
graphene. In this way we can prove that the SLGS 
elastic property is dependent on chirality.   

 
Fig. 4. Young’s modulus of SLGS with the 

variation of length at constant width (1.989 nm). 
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Fig. 5.  Poisson’s ratio of SLGS with the variation 

of length at constant width (1.989 nm). 

 
Fig. 6.  Young’s modulus of SLGS with the 

variation of width at constant length (2.215 nm). 

 
Fig. 7.  Poisson’s ratio of SLGS with the variation 

of width at constant length (2.215 nm). 

CONCLUSIONS 

The finite element model of equal continuum 
for the SLGS under exterior loads is presented. To 
this end, based on a SLGS action’s atomistic 
analysis, the Poisson’s radio and Young’s 
modulus of the continuum model are computed. 
The armchair graphene is 0.672TPa and 0.435, 
and the zigzag graphene is 0.615TPa and 0.388, 
on the condition that the SLGS width and length 
are 1.989 nm and 2.215 nm, respectively. This 
corresponds to the results in the literature. So the 
method used in this paper is reasonable. On this 
basis, the elastic properties of SLGS with 
different chirality and size are calculated and it is 
found that with the size gradually increasing, the 
Poisson’s ratio and Young’s modulus increase or 
decrease, so we found that the SLGS elastic 
property is size-dependent. We also found that the 
SLGS elastic property is chirality-dependent. 
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