Effect of MEA on the performance of polysulfone/polyvinyl acetate blend membranes

A. Mushtaq^{*}, H. Mukhtar, A. M. Shariff

Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

Received, January 9, 2018; Revised, August 2, 2018

Separation of CO₂ from natural gas within the field of membrane technology has been carried out for a long time. For efficient separation of CO₂/CH₄, high-performance gas separating membranes are desired. The blending technique enhances the chemical and thermal stability, also taking heed in the improvement of separation properties with the economic sustainability. This research studies the perm-selective performance of polymeric blend membranes, glassy polymer (polysulfone) and rubbery polymer (polyvinyl acetate) with monoethanolamine (MEA). The polymeric amine blend membranes with enhanced properties were synthesized with different blending ratios in dimethylacetamide (DMAc) solvent. In this study, various compositions of polyvinyl acetate (PVAc) ranging from 5 to 20 wt. % were blended with polysulfone (PSU) and MEA, and were used for the formation of flat sheet membranes *via* evaporation method. The gas permeation results showed that the CO₂ permeance increased with increasing feed pressure.

Keywords: Methane, Carbon dioxide separation, Polymeric blend, Enhanced polymeric blend membrane, Permeance, Selectivity.

INTRODUCTION

The separation of carbon dioxide from natural gas in the area of membrane technology has been a much-known practice. It provides multitudes of benefits in comparison with other techniques, which points to its feasibility for gas separation. The performance of gas separating membranes is quite important for effective separation of CO_2 from natural gas. Thus, in the development of the membrane, permeance and selectivity factors are essential that need to be addressed for efficient CO_2 separation [1, 2].

Numerous glassy polymeric materials were utilized for membrane fabrication in gas separation established over scientific or industrial research practices. Polysulfone (PSU) was selected due to its good mechanical, thermal and chemical stability with adequate gas performance [3, 4]. Combining these features with low price, polyvinyl acetate (PVAc) is a useful polymer displaying piezoelectric, ferroelectric and pyroelectric properties [5]. The typical benefits of polyvinyl acetate are formability, flexibility, and low density [6].

Monoethanolamine (MEA), which belongs to primary amines, is widely used for removing CO_2 from natural gas. It is a relatively strong base having high reactivity with CO_2 , low cost of solvent and thermal stability. However, it was replaced by more efficient systems because of its corrosive properties, degradation of solvent issues, high heat of reaction with CO_2 and substantial energy consumption for Numerous researchers have examined the behavior of CO_2 -amine solutions because of their significant industrial application for removal of CO_2 from gas streams. The Dankwerts' zwitterions mechanism is widely accepted for amine reaction with CO_2 [8]. The reactions between CO_2 and primary amines, where R represents the functional group, for MEA are:

$$R_1 = -H, R_2 = -CH_2CH_2OH$$

$$R_1 R_2 NH + CO_2 \leftrightarrow R_1 R_2 NH^+ COO^- (Zwitter ion)$$
(1)

 $R_1R_2NH^+COO^- + R_1R_2NH \leftrightarrow R_1R_2NCOO^-(Carbamate) (2)$

Overall reaction is:

 $2R_1R_2NH + CO_2 \leftrightarrow R_1R_2NCOO^- + R_1R_2NH^+$ (3)

Monoethanolamine has the tendency to sanitize the acid gas from natural gas [9]. Hence, by blending

regeneration of the used solvent. The carbon dioxide loading capacity for primary and secondary amines is in the range from 0.5-1 mole of CO₂ per mole of amine, such as a fraction of the carbamate species is hydrolyzed to form hydrogen carbonates [7].

^{*} To whom all correspondence should be sent:

E-mail: engrasimmushtaq@yahoo.com

a PSU/PVAc with monoethanolamine solutions, the separation capability is enhanced for the CO_2/CH_4 mixture. Diverse amines have unlike reaction rates with respect to various acid gases. Accumulatively, the separate amines differ in their equilibrium absorption characteristics for the various acid gases and hence display various sensitivities regarding solvent stability and corrosion factors.

On account of essential amines like MEA, the CO_2 is caught by a chemical absorption process in which the CO_2 reacts with the amine as a carbamate. The main objective of this study is to develop an enhanced polymeric membrane with the addition of

the amine. The different studies regarding blend membrane are summarized in Table 1 [5, 10-23].

METHODOLOGY

Materials and Membrane Synthesis

Polysulfone (PSU) Udel® P-1800, with a glass transition temperature (T_g) of 185°C, was attained from Solvay Advanced Polymers; L.L.C, U.S. in powdered form. Polyvinyl acetate (PVAc) was purchased from Sigma-Aldrich in the form of beads having a glass transition temperature (T_g) 30°C and average M_w ~100,000 by GPC.

Polymers	Gas type	Remarks	Permeance	Selectivity
PU based PAI-PEI (glassy-glassy) blend	CO ₂ /N ₂	CO ₂ /N ₂ selectivity of PU- based blend membranes is increased	P _{CO2} =20.06 Barrer	$\alpha \frac{CO_2}{N_2} = 22.56$
PU-PDMS (rubbery-rubbery) cross-linked	CO ₂ /CH ₄	Highest permeability, diffusivity, and solubility values are found for the PDMS membranes	P _{CO2} =10 Barrer	$\alpha \frac{CO_2}{CH_4} = 0.41$
PI-PES (glassy-glassy) blend MMM	O_2/N_2	Ideal separation factors of O ₂ /N ₂ is increased	P ₀₂ =4.2 Barrer	$\alpha \frac{O_2}{N_2} = 3.8$
PVAm-PVA with porous PES support	CO_2/N_2	Ultra-thin membrane with good permeability and selectivity	$P_{CO2}=0.58$ m ³ (STP) /(m ² h bar)	$\alpha \frac{CO_2}{N_2} = 74$
PEG-PDMS	CO ₂ /CH ₄	Remarkably, the CO ₂ /H ₂ selectivity is enhanced	P _{CO2} =530 Barrer	$\alpha \frac{CO_2}{CH_4} = 10$
PES-PI (glassy-glassy)	O ₂ /N ₂	Gas permeance of N ₂ increased with increase in feed pressure	P ₀₂ =210.8 GPU	$\alpha \frac{O_2}{N_2} = 5.4$
SPEEK-Matrimid	CO ₂ /CH ₄	Cross-linked for anti- plasticization	P _{CO2} =9.43 Barrer	$\alpha \frac{CO_2}{CH_4} = 27.98$
PEI-PVP	CO ₂ /CH ₄ , CO ₂ /N ₂	Significant improvement in selectivity	P _{CO2} =1.66 GPU	$\alpha \frac{CO_2}{CH_4} = 55.33$
PIM-1/Matrimid	CO ₂ /CH ₄ , CO ₂ /N ₂	Increased selectivity	P _{CO2} =50 Barrer	$\alpha \frac{CO_2}{CH_4} = 31$
PSF-PVP	CO ₂ /CH ₄	Studied effect of solvents	P _{CO2} =275 GPU	$\alpha \frac{CO_2}{CH_4} = 5.75$
PU-PVA	CO ₂ /CH ₄	Increased CO ₂ permeability	P _{CO2} =49.5 Barrer	$\alpha \frac{CO_2}{CH_4} = 10.1$
PEG-PDMS	CO_2/N_2	Significant improvement in selectivity	P _{CO2} =20.0 GPU	$\alpha \frac{CO_2}{N_2} = 18$
CA-TiO ₂ blend	CO ₂ /CH ₄	Permeability of CO ₂ was found to be increased for CA–TiO ₂ blended	$P_{CO2}=3.43\times 10^{3} \text{ Barrer}$	$\alpha \frac{CO_2}{CH_4} = 23.3$
PES-PVAc	CO ₂ /CH ₄	CO_2 permeance increase due to the addition of PVAc in PES	P _{CO2} =4.15 GPU	$\alpha \frac{CO_2}{CH_4} = 1.40$
PSF/PI	CO ₂ /CH ₄	Improved selectivity	P _{CO2} =3.3 Barrer	$\alpha(\frac{CO_2}{CH_4}) = 13.06$
	Polymers PU based PAI-PEI (glassy-glassy) blend PU-PDMS (rubbery-rubbery) cross-linked PI-PES (glassy-glassy) blend MMM PVAm-PVA with porous PES support PEG-PDMS PEG-PDMS PEI-PVP PIM-1/Matrimid PSF-PVP PIM-1/Matrimid PSF-PVP	PolymersGas typePU based PAI-PEI (glassy-glassy) blendCO2/N2PU-PDMS (rubbery-rubbery) cross-linkedCO2/CH4PI-PES (glassy-glassy) blend MMMO2/N2PVAm-PVA with porous PES supportCO2/N2PEG-PDMSCO2/CH4QD2/N2O2/N2SPEEK-MatrimidCO2/CH4PEI-PVPCO2/CH4CO2/N2CO2/CH4PES-PI (glassy-glassy)CO2/CH4PES-PYNCO2/CH4CO2/N2CO2/CH4CO2/N2CO2/CH4PEI-PVPCO2/CH4CO2/N2CO2/CH4PEG-PDMSCO2/CH4PU-PVACO2/CH4PEG-PDMSCO2/CH4PEG-PDMSCO2/CH4PEG-PDMSCO2/CH4PES-PVAcCO2/CH4PES-PVAcCO2/CH4PES-PVAcCO2/CH4	PolymersGas typeRemarksPU based PAI-PEI (glassy-glassy) blendCO2/N2CO2/N2 selectivity of PU- based blend membranes is increasedPU-PDMS (rubbery-rubbery) cross-linkedCO2/CH4Highest permeability, diffusivity, and solubility values are found for the PDMS membranesPI-PES (glassy-glassy) blend MMMO2/N2Ideal separation factors of O2/N2 is increasedPVAm-PVA with porous PESCO2/N2Ideal separation factors of O2/N2 is increasedPEG-PDMSCO2/CH4Remarkably, the CO2/H2 selectivity is enhancedPES-PI (glassy-glassy)O2/N2Gas permeance of N2 increased with increase in feed pressureSPEEK-MatrimidCO2/CH4 CO2/N2Significant improvement in selectivityPI-PVPCO2/CH4, CO2/N2Significant improvement in selectivityPI-PVPCO2/CH4, CO2/N2Studied effect of solventsPU-PVACO2/CH4 CO2/N2Increased CO2 permeabilityPU-PVACO2/CH4, CO2/N2Significant improvement in selectivityPU-PVACO2/CH4 CO2/N2Studied effect of solventsPU-PVACO2/CH4 CO2/N2Permeability of CO2 was found to be increased for CA-TiO2 blenddPES-PVAcCO2/CH4 CO2/CH4CO2 permeance increase due to the addition of PVAc in PESPSF/PICO2/CH4 CO2/CH4CO2 permeance increase due to the addition of PVAc in PES	PolymersGas typeRemarksPermeancePU based PAI-PEI (glassy-glassy) blend CO_2/N_2 CO_2/N_2 selectivity of PU- based blend membranes is increased $P_{CO2}=20.06$ BarrerPU-PDMS (rubbery-rubbery) cross-linked CO_2/CH_4 Highest permeability, diffusivity, and solubility values are found for the PDMS membranes $P_{CO2}=10$ BarrerPI-PES (glassy-glassy) blend MMM O_2/N_2 Ideal separation factors of O_2/N_2 $P_{CO2}=0.5$ BarrerPVAm-PVA with porous PES support CO_2/CH_4 Remarkably, the CO_2/H_2 selectivity is enhanced $P_{CO2}=5.0$ BarrerPEG-PDMS CO_2/CH_4 Remarkably, the CO_2/H_2 selectivity is enhanced $P_{CO2}=10.8$ BarrerPES-PI (glassy-glassy) O_2/N_2 Gas permeance of N_2 increased with increase in feed pressure $P_{CO2}=10.8$ BarrerPES-PI (glassy-glassy) O_2/N_2 Gas permeance of N_2 increased with increase in feed pressure $P_{CO2}=10.8$ BarrerPEI-PVP CO_2/CH_4 Cross-linked for anti- plasticization $P_{CO2}=9.43$ BarrerPBI-PVP CO_2/CH_4 Increased selectivity $P_{CO2}=20.5$ BarrerPSF-PVP CO_2/CH_4 Significant improvement in selectivity $P_{CO2}=20.5$ BarrerPEG-PDMS CO_2/CH_4 Increased CO2 permeability found to be increased for $CA-TiO_2$ blend $P_{CO2}=3.3 \times$ BarrerPEG-PDMS CO_2/CH_4 Permeability of CO2 was found to be increased for $CA-TiO_2$ blended $P_{CO2}=3.3$ Barrer

Table 1. Different studies on polymeric blend membranes

Fig. 1. Chemical structure of solvent, amine and polymers (a) DMAc (b) MEA (c) PSU (d) PVAc

Membrane	Polyme	Amine		
	PSU	PVAc	10 WL %	
1	100%	0%		
2	0%	100%	-	
3	95%	5%	MEA	
4	90%	10%		
5	85%	15%		
6	80%	20%		

ŀ

Table 2. Composition of enhanced polymeric blend membranes

Monoethanolamine (MEA) (boiling point 170.0°C) and dimethyl acetamide solvent (boiling point 160°C) with 99.99% purity were purchased from Merck. The chemical structures of the solvent, amine and polymers are shown in Figure 1. This study includes the blending of glassy (PSU) and rubbery (PVAc) polymers, and methyl diethanolamine was taken in DMAc solvent. Blending of 20% wt/wt was performed. The different compositions of enhanced polymeric blend membranes are presented in Table 2. Polysulfone was preheated for one night to eliminate moisture. Firstly, the polyvinyl acetate was allowed to dissolve completely in dimethylacetamide. Then PSU and MEA were added under continuous stirring for 24 h at room temperature to attain a homogeneous blend. To clear the solution from air bubbles, bath sonication in a Transonic Digital S, Elma® for one hour was performed. Polysulfone and amine were completely dissolved without any evidence of deposition, which qualified it as a miscible polymer blend. The blend was then cast on a glass plate via casting knife with an opening of 200 µm. These casted membranes were sited in a drying room at ambient temperature for five days to allow for the evaporation of the solvent. The membranes were then peeled from the glass plate to check the performance of CO₂ and CH₄ separation. Table 2

shows the composition of the polymer blended membranes. The equipment used for the gas permeation performance was a CO2SMU unit, where CO₂/CH₄ flow rate (0.1cm³/sec) was measured by a flow controller meter. These trials were performed under ambient pressure (101 \pm 2kPa) at room temperature (302 \pm 2K). Figure 2 shows the methodology for fabrication of polymeric amine blend membrane.

The permeance of the CO₂ and CH₄ gases was calculated by the following equations [24]:

$$\frac{P_{CO_2}}{l} = \frac{J_{CO_2}}{\Delta P_{CO_2}} \tag{5}$$

$$\frac{D_{CH_4}}{l} = \frac{J_{CH_4}}{\Delta P_{CH_4}} \tag{6}$$

where *J* is the flux of CH₄ and CO₂ gases, ΔP is the differential partial pressure across the membrane for the gases and *l* denotes the thickness of the membrane. Thus, the gas selectivity (α_{CO_2/CH_4}) was calculated by taking the ratios of the CO₂ and CH₄ permeance [24]:

$$\alpha_{CO_2/CH_4} = \frac{P_{CO_2}/l}{P_{CH_4}/l}$$
(7)

Fig. 2. Methodology for fabrication of polymeric amine blend membranes

RESULTS & DISCUSSION

Gas Permeance Evaluation

In this study, when the gases CO_2 and CH_4 will pass through the EPBM, the amine absorbs the maximum CO_2 . The CO_2 permeation rate will be higher as compared to CH_4 ; the membrane will not absorb the maximum amount of CH_4 so its permeation rate in the membrane will be less.

Figure 3 shows that base polysulfone membrane's permeance of CO_2 was reduced with increasing pressure due to the fact that the glassy polymer is a mixture of crystalline and amorphous phases. The crystallites act as effectual cross-links to decrease the area accessible for permeation, thus permeance of PSU decreases [25]. On the other hand, for the base PVAc membrane, the permeance of CO_2 (14.48±0.01 to 40.24±0.08 GPU) and CH₄ (3.34±0.1 to 15.09±0.08 GPU) increases with the

increase of pressure (2-10 bar) as shown in Figures 3 and 4. Due to PVAc membrane that exists above T_{g} there is a large intersegmental polymer chain motion [26, 27]. Figure 3 represents the increasing trend of CO₂ permeance when MEA amine is blended in PSU and PVAc. The CO₂ permeance increased in various compositions of PSU/PVAc with MEA amine membranes. The maximum CO₂ permeance for PSU80%/PVAc20%/MEA was 12.14±0.02 GPU to 53.20±0.29 GPU with an increase in the pressure from 2 to 10 bar as shown in Figure 3. The PVAc percentage increased in PSU with MEA 10 wt. %, the permeance of CO₂ also rose with pressure increase due to the fact that MEA amine has captured the CO₂. The high CO₂ permeance of membranes with increased PVAc content in PSU was likely due to the blended membrane's rising affinity for CO₂, especially since CO₂ has a non-polar linear structure and smaller kinetic diameter (3.3Å) [28-33]. In Figure 4 the CH₄ permeance slightly increased in various compositions of PSU/PVAc with MEA amine membranes, for PSU80%/PVAc20%/MEA from 1.33±0.01 GPU to 1.78±0.02 GPU with an increase in the pressure from 2 to 10 bar. As compared to CO₂, the slow moving CH₄ molecule has a kinetic diameter of 3.8Å and a tetrahedral structure [28]. By addition of MEA amine in the PSU/PVAc blend membranes, the CO_2 permeance increased. Figure 5 shows that pure PSU selectivity CO₂/CH₄ is rising with pressure from 2 to 10 bar whereas selectivity (CO₂/CH₄) of pure PVAc membrane decreased with pressure increase. The enhanced polymeric membrane's selectivity also rose with increased feed pressure as shown in Figure 5. In the blend MEA amine molecules conjoint into the pores of the microporous materials. So for the blended membranes, the maximum selectivity of the PSU95%/PVAc5%/MEA is 9.43±0.1–30.17±0.7 from 2 to 10 bar. The membrane microporous structure incorporates MEA molecules. These amine molecules increase CO2 adsorption due to interactions between CO₂ and –NH₂ groups [34, 35].

Fig. 3. Comparison of CO_2 permeance at various feed pressures for MEA amine polymeric blend membrane.

Fig. 5. Comparison of selectivity (CO₂/CH₄) at various feed pressures for MEA amine polymeric blend membrane

Hence, it was concluded that base polysulfone and polyvinyl acetate membrane and enhanced polymeric blend membranes were completely miscible and also characteristically increased CO₂ permeance and selectivity with rising feed pressure. The pressure difference across the membrane increased the volume of CO2 gas across the membrane surface, increasing the formation rate of CO2-amine complexes. Therefore, most amine molecules became involved in CO₂-amine interactions as the amine carrier concentration gently reached a state of saturation. Transporter saturation with a gradual reduction in gas flux under increased pressure describes the behavior of facilitated transport membranes. The observed results are in good agreement with former ones [29-33, 36].

Regression Graph between Pressure & Experimental Data for CO₂ Permeance, CH₄ Permeance & Selectivity CO₂/CH₄ of Different Polymeric Blend Membranes

Figures 6 and 7 show the correlation coefficients between the pressure and experimental values as given by a polynomial quadratic fit obtained with an R^2 value of 0.999. Hence, a proof is provided of the accuracy of the values obtained through the experimental setup based on the permeance performance of the different blend membranes.

Correlationship Graph between Polynomial Predicted & Experimental Data for CO₂ and CH₄ Permeance & Selectivity CO₂/CH₄ of Polymeric Blend Membrane

Data analysis aims at understanding information gathered in an experiment and assessing the expected extent of one variable to rely on another which is autonomously known.

Fig. 6. Permeance (a) CO₂ (b) CH₄ in 'GPU' and (c) Selectivity CO₂/CH₄ against pressure 'bar' along with the correlation coefficient for base polysulfone membrane

Fig. 7. Permeance (a) CO₂ (b) CH₄ in 'GPU' and (c) Selectivity CO₂/CH₄ against pressure 'bar' along with the correlation coefficient for PSU 80%/PVAc20%/MEA membrane.

Fig. 8. Experimental permeance against polynomial predicted permeance and their selectivity along with the correlation coefficient for base polysulfone membrane

Fig. 9. Experimental permeance against polynomial predicted permeance and their selectivity along with the correlation coefficient for PSU 80%/PVAc20%/MEA membrane.

It will just manage the (regular) one-dimensional case in which the indigent variable is an element of one autonomous variable. The objective is to identify and evaluate the relationship between the two variables. The relationship between the polynomial-predicted, and experimental permeance values given in Figures 8 and 9 are in accordance with the linear fit obtained with an R^2 value of 0.999. Hence, a proof is provided of the accuracy of the values obtained through the experimental setup based on the permeance performance of the different blend membranes comprising pure PSU membrane and PSU 80%/PVAc 20%/MEA membrane. On the whole, a model fits the data if the difference between the experimental and the predicted values is small and unbiased.

CONCLUSION

An enhanced polymeric blend membrane was successfully developed. Moreover, the addition of MEA made an incredible improvement in the membrane's perm-selectivity. The soluble nature of CO_2 in MEA enhanced CO_2 solubility across the membrane. The enhanced polymeric amine blend membranes have a high proficiency of capturing CO_2 from natural gas. The relationship between the polynomial-predicted and experimental permeance values by a linear fit was obtained with an R² value of 0.999. For future work, propensity to add inorganic fillers such as zeolites or carbon molecular sieves in the blend would promote the enhanced polymeric blend membrane.

Acknowledgement: The authors would like to acknowledge the Universiti Teknologi PETRONAS for supporting this research work and the NED University of Engineering & Technology, Karachi, Pakistan for financial support to Asim Mushtaq studying at this University.

NOMENCLATURE

DMAc	Dimethyl acetamide
GPU	Gas Permeation Unit
MEA	Monoethanolamine
PSU	Polysulfone
PAI	Polyamide-imide
PDMS	Polydimethylsiloxane
PEA	Aromatic polyether amide
PEG	Polyethylene glycol
PEI	Polyether imide
PEO	Polyethylene oxide
PES	Polyethersulfone
PI	Polyimide
PIM-1	Polymer of intrinsic microporosity
PPO	Polypropylene oxide
PU	Polyurethane
PVA	Polyvinyl alcohol
PVAc	Polyvinyl acetate

PVAm	Polyvinyl amine
PVDF	Polyvinylidene fluoride
PVP	Polyvinyl propylene
SPEEK	Sulfonated aromatic poly(ether-
	ether-ketone)

REFERENCES

- 1. H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, Bland, J. Environ. Sci., **20**, 14 (2008).
- 2. R. Abedini, A. Nezhadmoghadam, *Pet. Coal*, **52**, 69 (2010).
- 3. J. Ahn, W.-J. Chung, I. Pinnau, M.D. Guiver, *J. Membr. Sci.*, **314**, 123 (2008).
- M. A. Aroon, A. F. Ismail, M. M. Montazer-Rahmati, T. Matsuura, *Sep. Purif. Technol.*, **72**, 194 (2010).
- S. H. A. Abdul Hadi, H. Mukhtar, H. Abdul Mannan, T. Murugesan, *Appl. Mech. Mater.*, **754**, 44 (2015).
- R. W. Baker, in: Membrane Technology and Applications 3rd Edn, R. W. Baker (eds), Wiley, California, 2012.
- P. M. M. Blauwhoff, G. F. Versteeg, W. P. M. van Swaaij, *Chem. Eng. Sci.*, **39**, 207 (1984).
- 8. P. V. Danckwerts, Chem. Eng. Sci., 34, 443 (1979).
- 9. C.-H. Yu, Aerosol and Air Quality Research, 745 (2012).
- G. C. Kapantaidakis, G. H. Koops, M. Wessling, *Desalination*, **145** (1), 353 (2002).
- 11. M.-J. Kim, B. Sea, K.-H. Youm, K.-H. Lee, *Desalination*, **193**, 43 (2006).
- 12. P. Tremblay, M. Savard, J. Vermette, R. Paquin, J. *Membr. Sci.*, **282**, 245 (2006).
- 13. A. F. Ismail, R.A. Rahim, W.A.W.A. Rahman, *Sep. Purif. Technol.*, **63**, 200 (2008).
- 14. L. Deng, T.-J. Kim, M.-B. Hägg, J. Membr. Sci., 340, 154 (2009).
- S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, M. Wessling, J. Membr. Sci., 352, 126 (2010).
- J. Han, W. Lee, J.M. Choi, R. Patel, B.-R. Min, J. Membr. Sci., 351, 141 (2010).
- A. L. Khan, X. Li, I.F.J. Vankelecom, J. Membr. Sci., 380, 55 (2011).
- W. N. W. Salleh, A. F. Ismail, *AlChE J.*, 58, 3167 (2012).
- W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong, J. Membr. Sci., 407-408, 47 (2012).
- P. Moradihamedani, N. A. Ibrahim, W. M. Z. W. Yunus, N. A. Yusof, *J. Appl. Polym. Sci.*, **130**, 1139 (2013).
- 21. M.A. Semsarzadeh, B. Ghalei, J. Membr. Sci., 432, 115 (2013).
- 22. T. Hu, G. Dong, H. Li, V. Chen. J. Membr. Sci., 432, 13 (2013).
- 23. S. Farrukh, S. Javed, A. Hussain, M. Mujahid, Asia-Pacific J. Chem. Eng., 543 (2014).
- 24. A. Javaid, Chem. Eng. J., 112, 219 (2005).
- 25. A. Y. Houde, S. S. Kulkarni, M. G. Kulkarni, J. *Membr. Sci.*, **71**, 117 (1992).
- 26. C. J. Orme, M. K. Harrup, Th. A. Luther, R.t P. Lash, K. S. Houston, D. H. Weinkauf, F. F. Stewart, J. *Membr. Sci.*, **186**, 249 (2001).

590

- 27. T. C. Merkel, R. P. Gupta, B. S. Turk, B. D. Freeman, *J. Membr. Sci.*, **191**, 85 (2001).
- R. W. Baker, K. Lokhandwala, *Ind. Eng. Chem. Res.*, 47, 2109 (2008).
- 29. R. Raslan, A. W. Mohammad, *J. Appl. Sci.*, **10**, 2628 (2010).
- A. Torres-Trueba, F.A. Ruiz-Treviño, G. Luna-Bárcenas, C.H. Ortiz-Estrada, J. Membr. Sci., 320, 431 (2008).
- F.G. Kerry, in: Industrial gas handbook: gas separation and purification 1st Edn, F.G. Kerry (eds), CRC Press, New York, 2007.
- L. Wang, Y. Cao, M. Zhou, S.J. Zhou, Q. Yuan, J. Membr. Sci., 305, 338 (2007).

- 33. M. Ulbricht, *Polymer*, 47, 2217 (2006).
 34. J. Franco, D. de Montigny, S. Kentish, J. Perera, G. Stevens, *Sep. Sci. Tecnol.*, 43, 225 (2008).
- 35. P.D. Vaidya, E.Y. Kenig, *Chem. Eng. Sci.*, **62**, 7344 (2007).
- Y. Tanabe, in: Macromolecular Science and Engineering, R. Hull . R. M. Osgood, Jr. H. Sakaki . A. Zunger (eds), Springer, Berlin Heidelberg, 2013.

ВЛИЯНИЕ НА МОНОЕТАНОЛАМИН ВЪРХУ ЕФЕКТИВНОСТТА НА СМЕСЕНИ ПОЛИСУЛФОН/ПОЛИВИНИЛОВИ МЕМБРАНИ

А. Муштак^{*}, Х. Мухтар, А. М. Шариф

Департамент по инженерна химия, Технологичен университет PETRONAS, 32610 Сери Искандар, Перак Дарул Риджуан, Малайзия

Постъпила на 9 януари, 2018; коригирана на 2 август, 2018

(Резюме)

Разделянето на CO_2 от природния газ с мембранна технология е използвано отдавна. За успешно разделяне на CO_2/CH_4 са необходими ефективни мембрани. Техниката на смесване повишава химичната и термичната стабилност, подобрява разделителната способност и икономическата устойчивост. В настоящата работа е изследвана ефективността на селективната проницаемост на смесените полимерни мембрани, стъкловидния полимер (полисулфон) и каучуковидния полимер (поливинилацетат) при добавяне на моноетаноламин (MEA). Амин-съдържащи смесени полимерни мембрани с подобрени свойства са синтезирани при различни съотношения в разтворител диметилацетамид. Поливинилацетат с различна концентрация в интервала от 5 до 20 wt.% е смесен с полисулфон и MEA и е използван за получаване на плоски мембранни филми по метода на изпаряване. Резултатите показват, че проницаемостта по отношение CO_2 нараства с увеличаване на захранващото налягане.