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Modelling and optimization of ligand binding to CBR2 
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In the last few years there has been a growing interest in the modelling and optimization of the ligand binding to 

cannabinoid receptor type 2, named CB2. It is G protein coupled receptor which is predominately expressed in the 

immune system. The article represents the structure-activity relationship between the model of the human CB2 receptor 

with crystal structure and a series of cannabinoid ligands. Analysis of ligand binding to the receptor provides important 

insight into the activation mechanism of CB2. The findings suggest that this could be useful for rational drug design 

toward precise modulation of the endocannabinoid system. 
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INTRODUCTION 

The endocannabinoid system consists of 
endogenous cannabinoids (endocannabinoids), 
cannabinoid receptors (primarily CB1 and CB2), 
and the enzymes that synthesize and degrade 
endocannabinoids. CB2 receptors have been the 

subject of considerable attention, primarily due to 
their promising therapeutic potential for treating 
various pathologies while avoiding the adverse 
psychotropic effects that can accompany 
CB1 receptor–based therapies. For example, 
agonists targeting CB2 receptors have been 
proposed as therapies for the treatment or 

management of a range of painful conditions, 
including acute pain, chronic inflammatory pain, 
and neuropathic pain [1]. They may also be helpful 
in treating diseases that have a neuroinflammatory 
or neurodegenerative component, such as multiple 
sclerosis [2-4], amyotrophic lateral sclerosis [5, 6], 
Huntington’s disease [7], and stroke [8, 9]. 

CB2 agonists have also been proposed as 
therapeutics in peripheral disorders that involve 
inflammation, including atherosclerosis [10] 
inflammatory bowel diseases [11, 12], 
ischemia/reperfusion injury [13] renal fibrosis [14], 
and liver cirrhosis [11, 15, 16]. Both epidemiologic 
and preclinical data suggest that activation of 
CB2 receptors may be protective in osteoporosis 

[17]. Finally, CB2 agonists have shown efficacy in 
preclinical cancer models [11, 18, 19]. 

The development of the CB2 receptor as a 
therapeutic target has gained significant momentum 
over the past decade due to the identification of 
CB2-specific synthetic and natural product ligands, 
a better understanding of the range of physiologic 

processes mediated by CB2 receptors, the 
regulation of CB2 receptors, and promising 

preclinical studies. However, the publicly available 
clinical data have thus far been disheartening. One 
reason for this may be discrepancies in pain 

mechanisms between the preclinical models, in 
which CB2 agents show efficacy, and the patients 
enrolled in clinical trials. Thus, efforts to examine 
the clinical efficacy of CB2 agonists in 
(neuro)inflammatory conditions and neuropathic 
pain syndromes (e.g., chemotherapy or diabetic) 
may be more productive. A second potential reason 
for the lack of translation is that CB2 agonists show 

very strong functional selectivity, and this 
functional selectivity may significantly affect 
agonist efficacy across species and types of pain. 
With the availability of increasingly precise and 
selective pharmacological, genetic, preclinical, and 
clinical tools and a more complete understanding of 
the importance of CB2 agonist functional 

selectivity, CB2 receptors still appear to be 
promising targets for drug development, both for 
chronic pain and other indications. 

The aim of the present study is to find some 
dependencies between compound structure and its 
affinity to the CB2 receptor in order to design more 
selective and potent CB2 selective agonists. 

METHODS 

In the current study 24 cannabinoid ligands 
known from literature [20-22] were used. 
Preparation of the ligands for docking experiments 
was performed by the software Avogadro 

(https://avogadro.cc/).  
A model of CB2 receptor with crystal structure 

(RCSB PDBid: 2hff) and ligand рVal113 important 
for ligand recognition were used for the molecular 
docking procedure [23, 24].  
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Docking experiments were performed by the 
software GOLD 5.2 and all scoring functions: 

GoldScore, ChemScore, ChemPLP, ASP [25-27]. 
The best results for the current investigation were 
obtained by the empirically based scoring function, 
named ChemScore, which estimates the total free 
energy change that occurs on ligands binding to the 
receptor (Eq.1): 

- score for hydrogen bonding;
- score for acceptor-metal bonding;

- lipophilic interactions;

- loss of conformational entropy of the

ligand upon binding to the protein; 
- binding energy.

The binding energy between the ligand and the 

receptor is calculated using the MolDock scoring 
functions Мolegro Мolecular Docker [28] (Eq. 2): 

where:        - potential energy of the ligand-

protein interaction;        - internal energy of the 

ligand. This software was also used to optimize the 
structures of the ligands in order to obtain reliable 
molecular geometries. 

RESULTS AND DISCUSSION 

Docking was performed using the crystal 
structure of CB2 receptor obtained from RCSB 
(PDBid:2hff) [23, 24]. According to Lee et al. [24] 
the most important residue in the receptor sequence 
is Val113. As the residue is hydrophobic, all 
preferred interactions in the binding site of the 

receptor would be hydrophobic. All ligands of CB 
receptors are hydrophobic compounds, most of 
them with long carbon chains. Investigated ligands 
had different structures (Table 1) [20-22]. Residue 
contribution towards ligand binding was computed 
using the MolDock scoring function (Eq. 2) [28]. 

Table 1. Structures of ligands. 
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Tetrahydrocannabinol 
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The study was conducted with known 

cannabinoids and phytocanabinoids from the 
literature [20, 21] in order to find the most 

appropriate assessment function to give satisfactory 
results in terms of biological activity and binding to 
the crystal structure of the CB2 receptor. The 
ChemScore function makes it possible to assess the 
binding of large molecules of ligands to the 
corresponding receptor. 

The investigated compounds have relatively 
large molecules which are of considerable 

hydrophobicity. They have little flexibility of the 
molecule because they have cyclic structures and, 
in some cases, conjugated double bond systems. 

As a result, the ligands occupy a limited number 
of   spatial  conformations  and  this   reduces   the 

possibility of optimizing the structure at the 

receptor binding site. Using the ChemScore 
function in the software GOLD 5.2, this can be 

evaluated and the obtained results correlate well 
with the values of biological activity. 

The obtained values of the other three functions 
in GOLD 5.2 - GoldScore, ChemPLP, ASP cannot 
be used to assess the binding of large, space-limited 
molecules. 

With the exception of anandamide, arachidonyl 
dopamine and arachidonylglycerol, all studied 

compounds have at least one cycle in their 
structure. 

As can be seen from the results in Table 1, 
epigallocatechin gallate has the smallest value of 
the ChemScore function and accordingly the 
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greatest total energy of the ligand-receptor 
complex, i.e. it is the least associated with CB2 

receptor. Previous studies have shown that this 
compound binds very little with the CB2 receptor 
(with an inhibitory constant greater than 50 μM) 
[29]. The compound has three benzene nuclei, but 
also a large number of hydroxyl groups which 
make the molecule more hydrophilic. This fact does 
not contribute to better binding of the compound to 
the CB2 receptor since the binding condition is the 

formation of hydrophobic interactions. In our 
previous studies with cannabinoid receptors and 
cannabinoid ligands we obtained the best results for 
ChemScore function from docking in GOLD 5.2 
for modelling the structure-biological activities [30-
39].  

CBDA and CBDV also have low values of the 

optimization functions, 18.02 and 19.89, 
respectively. CBDA is an acid since it has a 
carboxyl group in its molecule which again leads to 
greater hydrophilicity; in the CBDV molecule the 
hydrophilicity is due to the phenolic hydroxyl 
groups. 

The highest value of the assessment ChemScore 

function has arachidonyl dopamine. Its structure 
contains a hydrocarbon chain that enables the 
molecule to have sufficiently large hydrophobicity 
on the one hand, and on the other hand, due to the 
flexibility, to occupy the most suitable spatial form 
in the receptor binding site. 

The test compounds are not selective for CB1 
and CB2 receptors [34]. A key concept to keep in 

mind when evaluating experiments conducted with 
CB2 ligands is that many of the commonly used 
CB2 ligands are only relatively selective with 
regard to CB1. This is because most of the 
commonly encountered CB2 ligands were evolved 
from molecules that have appreciable affinity for 
CB1 receptors. Therefore, the concentrations of 

CB2-preferring agonists that are commonly 
encountered in the literature (low micromolar) can 
result in significant occupancy of CB1 receptors, 
with subsequent signalling. Similarly, CB2-
preferring antagonists at micromolar concentrations 
can substantially antagonize CB1-mediated 
responses [35]. Therefore, such a study on the 

ability of docking to predict receptor binding will 
allow for the design of CB2 selective compounds 
with a desired effect: both agonists and antagonists. 

CONCLUSION 

As a result of the research we performed 
docking experiments with GOLD 5.2 and all 
optimization functions in the program, and it was 
found that the ChemScore optimization function 

produces the best results with respect to ligand 
binding with the crystal structure of the CB2 

receptor. These results are the starting point in the 
design of new selective ligands with desired 
activity against the CB2 receptor. 
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