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In the paper is presented a theoretical analysis of the methods for chemical engineering processes modeling. The 

methods for modeling specific processes may be different, but in all cases they must bring the mathematical description 

closer to the real process by using appropriate experimental data. These methods are presented in the cases of co-current 

absorption column without packings, counter-current absorption column with random packings and modeling of 

processes with unknown mechanism.  

PRELUDE 

The main problems in the chemical industry 

(biotechnology, heat energy) are the optimal design 

of new devices and the optimal control of active 

processes, i.e. minimization of the investment and 

operating costs. These problems are solved by 

chemical engineering with modeling methods [1]. 

The creation of the mathematical model begins with 

the formulation of the physical model of the 

complex process, i.e. the definition of the simple 

processes that make it up and the interactions 

between them. The second step is to define simple 

processes that have mathematical descriptions 

(equivalent mathematical operators). The other 

simple processes are introduced into the 

mathematical model through quantitative 

information obtained from experimental data, 

which brings the mathematical model as close as 

possible to the real process. The experiment brings 

mathematics closer to physics (reality). 

The optimal design and control in the chemical 

industry is uniquely related to processes rates, so all 

mathematical descriptions of processes are linked 

to algorithms to determine these rates, i.e. processes 

kinetics. 

Industrial Processes Kinetics 

The industrial systems consist of separate phases 

(gas, liquid, solid) in the industrial apparatuses 

volumes. They are in thermodynamic equilibrium 

when the velocities, temperatures and 

concentrations of substances in the individual parts 

or points of the phases are equal. 

The processes in the chemical industry 

(biotechnology, heat energy) are a result of the 

deviation of the systems from their thermodynamic 

equilibrium [2]. One system is not in a 

thermodynamic equilibrium when the velocities, 

concentrations of the components (substances) and 

the temperatures at the individual points in the 

phase volumes are different. These differences are 

the result of reactions, i.e. of processes that create 

or consume substance and (or) heat. As a result, the 

industrial processes kinetics is equivalent to the 

reactions kinetics [3]. 

The presented analysis shows that processes in 

the chemical industry are result of reactions that 

occur in the phase volume (homogeneous) or on the 

boundary between two phases (heterogeneous). 

Homogeneous reactions are generally chemical, 

while heterogeneous reactions are chemical, 

catalytic, physical and chemical adsorption, 

interphase mass transfer in gas-liquid and liquid-

liquid systems (on the interphase surface the 

substance disappears from one phase and occurs in 

the other phase). The rates of these processes are 

determined by the reaction kinetics [3], which lies 

at the basis of modeling in chemical engineering, 

and solving the basic problems in the chemical 

industry (biotechnology, heat energy). 

Modeling 

The basics of modeling in chemical engineering, 

as part of human knowledge and science, are 

related to the combination of intuition and logic 

that has different forms in individual sciences [4]. 

In mathematics the intuition is the axiom 

(unconditional statements that cannot be proven), 

while the logic is the theorem (the logical 

consequences of the axiom), but logic prevails over 

intuition. In the natural sciences (physics, 

chemistry, biology), the "axioms" (principles, 

postulates, laws) are not always unconditional, but 

logic prevails over intuition too. 

The processes in chemical engineering take 

place in the industrial apparatuses, where gas, 

liquid and solid phases move together or alone.  
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They are described by variables which are 

extensive or intensive. In the case of merging of 

two identical systems, the extensive variables are 

doubled, but the intensive variables are retained. 

In the chemical industry (biotechnology, heat 

energy), processes take place in moving phases 

(gas, liquid, solid). Reactions (reaction processes) 

lead to different concentrations (and temperatures) 

in the phase volumes and the phase boundaries. As 

a result, hydrodynamic processes, diffusion mass 

transfer and heat conduction are joined to the 

reaction processes. Under these conditions there are 

various forms of mass transfer (heat transfer) that 

are convective (as a result of phase movements) 

and diffusion (as a result of concentration 

(temperature) gradients in the phases). 

Convective mass transfer (heat transfer) can be 

laminar or turbulent (as a result of large-scale 

turbulent pulsations). Diffusion mass transfer (heat 

transfer) can be molecular or turbulent (as a result 

of small-scale turbulent pulsations). 

Mathematical models of industrial apparatuses 

aim at determining the concentration of substances 

(flow temperatures) in the phases. They have 

different degrees of approximation – 

thermodynamic, hydrodynamic and Boltzmann's 

approximations. 

Thermodynamic Approximation 

The processes in chemical engineering are the 

result of a deviation from the thermodynamic 

equilibrium between two-phase volumes or the 

volume and phase boundaries of one phase and 

represent the pursuit of systems to achieve 

thermodynamic equilibrium [2]. They are 

irreversible processes and their kinetics use 

mathematical structures derived from Onsager's 

principle of linearity. According to him, the average 

values of the derivatives at the time of the extensive 

variables depend linearly on the mean deviations of 

the conjugated intensive variables from their 

equilibrium states. The principle is valid close to 

equilibrium, and the Onsager's linearity coefficients 

are kinetic constants. When the process is done 

away from equilibrium (high-intensity processes) 

kinetic constants become kinetic complexes, 

depending on the corresponding intensive variables. 

The thermodynamic approximation models cover 

the entire volume of the phase or part of it. 

Hydrodynamic Approximations 

The hydrodynamic level uses the 

approximations of the mechanics of continua, 

where the mathematical point is equivalent to an 

elementary physical volume, which is sufficiently 

small with respect to the apparatus volume, but at 

the same time sufficiently large with respect to the 

intermolecular volumes in the medium. In this level 

the molecules are not visible, as is done in the next 

level of detail of Boltzmann. 

The models of the hydrodynamic 

approximations can be created on the basis of the 

mass (heat) transfer theory, whose models are 

created by the models of the hydrodynamics, 

diffusion, thermal diffusion and reaction kinetics, 

using the logical structures of three main “axioms”, 

related with the impulse, mass and heat transfer: 

1. The postulate of Stokes for the linear 

relationship between the stress and deformation 

rate, which is the basis of the Newtonian fluid 

dynamics models; 

2. The first law of Fick for the linear 

relationship between the mass flow and the 

concentration gradient, which is the basis of the 

linear theory of the mass transfer; 

3. The first law of Fourier for the linear 

relationship between the heat flux and the 

temperature gradient, which is the basis of the 

linear theories of the heat transfer. 

These are the laws of the impulse, mass and 

energy transfer. 

Boltzmann's Approximation 

In Boltzmann's kinetic theory of the ideal gas, 

the hydrodynamic “axioms” are three "theorems" 

that derive from the axiom of the "elastic shock" (in 

a shock between two molecules the direction and 

the velocity of the movement change, but the sum 

of their kinetic energies is retained, i.e. there is no 

loss of kinetic energy) and the rate coefficients are 

theoretically determined by the average velocity 

and the average free run of the molecules. 

Mechanism of Influence of Reaction Kinetics 

The mathematical model of an engineering 

chemical process is a mass (heat) balance in the 

phase’s volumes, where the mathematical operators 

are mathematical descriptions of the composite 

processes, and the relationship between them 

(differential equations) corresponds to the 

mechanism of the complex process. The boundary 

conditions of the differential equations are 

formulated at the interphase boundaries. For this 

purpose, the knowledge of the mathematical 

descriptions of the velocity distribution in the 

phases and the interphase boundaries is necessary. 

Industrial processes are a set of physical and 

chemical reactions, hydrodynamic, diffusion and 

thermal processes that take place in the industrial 
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apparatus volume. The problems in compiling the 

models of the kinetics of industrial apparatuses 

arise from the need for information about the 

interaction between the individual processes in the 

complex process (its mechanism) and a 

mathematical description of the geometry of the 

industrial apparatus volume. 

For the most part, industrial cases do not have 

the above information, which requires 

simplification of the models and introduction of 

some effects through experimentally determined 

parameters. As examples will be considered a co-

current absorption column without packings and a 

counter-current absorption column with random 

packings. 

Co-current Absorption Column without Packings 

In the absorption columns without packings, the 

velocity distributions in the gas and liquid phases 

and the interfacial limits are unknown, i.е. the 

differential equations (mass balances in the phases) 

and their boundary conditions at the interphase 

boundaries (velocity of the interphase mass 

transfer) cannot be formulated. These problems are 

overcome by creating of convection-diffusion and 

average-concentration models [5, 6]. In the 

convection-diffusion model the velocity of the 

interphase mass transfer is replaced by volume 

physical reaction and experimentally determinable 

parameter. In this model, the velocities are 

unknown, so it can only be used for qualitative 

analysis. From it the average-concentration models 

are obtained, by model averaging along the cross 

section of the column. The obtained average-

concentration model involves average velocities 

and concentrations, and the velocity distributions in 

the phase volumes are introduced with 

experimentally determined parameters. 

Convection-diffusion model 

In the stationary case, the convection-diffusion 

model [3, 4] of the co-current chemical absorption 

process, with a pseudo-first-order chemical reaction 

in the liquid phase, in cylindrical coordinate system 

(r, z) [m], has the form: 
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In (1, 2)    , , ,j j j ju u r z v v r z   and 

 ,j jc c r z  are the axial and radial velocity 

components and transferred substance 

concentrations in the gas (j=1) and liquid (j=2) 

phases, jD  are the diffusivities in the phases, 
0

ju  

and 
0

jc  are the inlet velocities and the 

concentrations in the phases, k  is the interphase 

mass transfer rate coefficient,   - the Henry’s 

number, 
0k  - the chemical reaction rate constant. 

The concentrations of the transferred substance in 

the phases are presented as kg-mol of the 

transferred substance in 1 m3 of the phase volume. 

The inlet velocities 0

ju   1,2j   of the gas and 

liquid phases are equal to the average velocities 
ju  

(j=1,2) of the phases in the column. 

On the column wall the velocity components are 

zero  0 , 0, 1,2j jr r u v j    , i.e. there is no 

convective mass transfer. At the surface of the 

column, the motionless gas phase substance is 

absorbed into the motionless liquid phase. As a 

result, the concentration of the absorbent substance 

in the gas on the wall decreases to zero and its 

concentration in the liquid increases maximally 

(until thermodynamic equilibrium is reached), i.e. 
0 1

0 1 2 1, 0,r r c c c     . 

In the physical absorption, the interphase mass 

transfer between gas and liquid phases is a surface 

physical reaction. In (1) this reaction is presented as 

a volume reaction and its rate 
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mass balances in the gas and liquid phases. 

Average-concentration model 

The averaging of the convection-diffusion 

model [5, 6] along the cross section of the column 

leads to the average-concentration model: 
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The functions      , , , 1, 2j j jz z z j     can 

to be presented as the following approximations:
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where the values of 
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Introducing (5) into (3) leads to 
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where the unknown parameters values  1 2 1 2 1 2, , , , , , , 1,2j j j j j jP k a a b b g g j   must be obtained, using 

experimental data, by the minimization of the of the least-squares function Q  with respect to P : 
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where    1 2, , ,c l P c l P  are solutions of the average-

concentration model (7). 

The presented approach is used for modeling of 

chemical, absorption, adsorption and catalytic 

processes in column apparatuses without packings 

[5, 6]. 

Counter-current Absorption Column with Random 

Packings 

Counter-current absorption columns with 

random packings are characterized by the presence 

of a layer of liquid that flows along the wall of the 

column and practically does not participate in the 

absorption process and reduces the working volume 

of the column. The created hydrodynamic situation 

does not allow the approach to be used in the 

modeling of columns without packings. 

Fluid flow along the column wall 

The liquid flow on the surface of the random 

packings and when it reaches the column wall most 

of it flows on this surface and cannot return to the 

column volume due to the small contact surface 

between the wall surface and the random packings. 

The thickness of the flowing layer of liquid 

increases and conditions are created for the return 

of liquid from the layer to the packings and further 

the two effects are equalized. In this way, the layer 

of liquid reaches a constant maximum thickness, 

with which it moves to the end of the column. The 

amount of liquid entering the flowing layer leads to 

a reduction in the amount of liquid in the volume 

of the column, i.е. to the radial non-uniformity of 

the axial component of the liquid velocity in the 

column and to the reduction of the mass transfer 

rate in the liquid phase. In addition, this layer is not 

involved in the absorption process. 

The effect of liquid flowing on the column wall 

is the result only of the geometric shape of the 

random packings and thus determines the rate of 

absorption of slightly soluble gases, which reaches 

a maximum value at maximum packings surface 
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per unit volume of the column and minimum 

thickness of the flowing layer of liquid. 

Problems with random packings in the columns 

In the case of modeling the hydrodynamics in 

the gas and liquid phases in columns with random 

packings, the following problems arise: 

1. The flow rate of the liquid flowing on the 

surface of the random packings [m3.s-1] and the 

retention of the liquid on this surface are 

unknown; 

2. The flow rate of the liquid flowing on the 

column wall [m3.s-1] and the retention of the 

liquid on this surface are unknown; 

3. The hydrodynamic resistance of the 

random packings on the gas phase is unknown. 

Theoretical analysis [7] shows that this problem 

can be overcome in the presence of experimental 

data on the flow rate of the liquid flowing along the 

column wall, at different packings heights and on 

the packing pressure drop, during the movement of 

the gas phase. This requires the creation of a 

hydrodynamic model in which the liquid and the 

gas move in separate channels and interact on the 

surface of the flowing layer. The introduction of 

experimentally determined quantities into the 

model brings it as close as possible to the real 

process. 

Experimental data 

The wall flow thickness in columns with random 

packing changes smoothly from 0 to a constant 

maximal value δmax and can be expressed by an 

approximation function δ(z): 

      max

1
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z
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 (9) 

where z is the axial coordinate. The parameters (a, 

b) is possible to be determined from experimental 

data for the flow rate of the wall flow QWF at 

various packing heights l  in the column - 

  , , 1,...,WF iQ z z l i n  . The available 

experimental data can be described by the 

following approximation: 
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From (10) is possible to determine the flow rate 

 Q z  of the wall flow per unit periphery of the 

column ( 02 r ). 
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where 0r  is the column radius. 

Phase volume parts in the column volume 

The volumes of the solid, gas, and liquid phases 

per unit volume of the column can be represented 

as: 

0 1 2, 0,1,2, 1j j       , (12) 

where the indices 0,1,2j   corresponds to solid, 

gas, and liquid phases. 

As a result of the liquid flow on the column 

wall, the liquid phase is divided into two parts: 

   2 21 22z z    , (13) 

where  22 z  is the fraction of the liquid flowing 

along the wall. 

The gas and liquid flow rates , ,G L WFQ Q Q  [m3.s-1] 

permit to obtain the gas-liquid and liquid-liquid 

ratios in the column volume: 
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and gas and liquid hold-up in the packing: 
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The parameters ε1, ε2 denote the volume 

fraction, as well as the cross-section fraction of the 

gas and liquid in the packing and are used to 

determine their inlet average velocities: 

0 0

2 2

1 0 2 0

,G L
z z

Q Q
u v

r r   
  , (16) 

where 
0 0,z zu v  are the average velocities in the void 

cross-section of the gas and liquid phase at the inlet 

of the packing bed, ,G LQ Q  - gas and liquid inlet 

flow rates. 

Pressure drop of random packings columns 

The hydraulic resistance of the fillings H , i.e. 

the pressure drop through a layer of random 

packings with a thickness of 1 meter, at a given gas 

velocity: 

 0

0

0

0,
,

p p z
H

z


  (17) 

is determined from experimental data on the 

pressure difference at both ends  0

00,p p z  of 

the random packings height 
0z . 

The obtained results permit a physical model to 

be used, where the gas and the liquid move in parts 

of the column volume and through parts of the 

column cross section (
1 21 22, ,   ) and contact on a 
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cylindrical surface with variable radius 

   0 0R z r z  . 

Hydrodynamics of the liquid phase in the column 

volume 

The flows in the column are axially symmetrical 

and the model of the hydrodynamics of the liquid 

phase in the volume of the column will be 

presented in a cylindrical coordinate system ( , )r z , 

where r  and z  are the radial and axial coordinates. 

In the packings columns the pressure is constant 

during the movement of liquid under the action of 

weight. In this case the axial and radial components 

of the velocity 
zv  and 

rv  satisfy the Navier and 

Stokes equations: 
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The inlet boundary conditions are: 

00, , 0, 0, 0.z r
z z r

v v
z v v v

z z

 
    

 
 (19) 

The boundary conditions along the axis of the 

column are: 
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The effect of the flow of liquid on the wall of 

the column must be taken into account when 

   0 0r R z r z   , where the amount of liquid 

which enters the wall of the column through the 

surface 
02 R dz  by the radial velocity component 

rv , i.e. 
02 rR v dz  must be equal to the volume of 

the liquid layer obtained on the wall of the column 

0 02 r v d  , where  0 0v v z  is the surface 

velocity of the liquid layer: 

   0 0 0 02π , 2π .rR v R z dz r v z d  (21) 

As a result 
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The axial component of the liquid velocity 
zv  at 

the boundary r = r0 - δ(z) must be equal to the 

surface velocity of the film flowing down the 

column wall  0v z : 

   0 0 0, ,z

z
r r z r v v z

a bz
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
 (23) 

where the surface velocity changes smoothly from 

0 to a constant maximal value and can be expressed 

by an approximation function: 

 0

z
v z

z 



. (24) 

The parameters (a,b,a,β) in the approximation 

functions (9, 24) must be obtained using 

experimental data. 

Finally, the hydrodynamic model of the liquid 

phase in column volume can be written as: 

   
 

 

 

2 2

2 2

2 2

2 2 2

0

0 0

0 0

0

1
,

1
;

0, , 0, 0, 0;

0, 0, 0; , , ;

,

z z z z z
z r

r r r r r r
z r

z r
z z r

z r
z r

v v v v v
v v g

z r z r r r

v v v v v v
v v

z r z r r r r

v v
z v v v

z z

r v zv v d
r r r z v v z v

r r r z dz

z d
z

a bz dz













     
     

     

     
     

     

 
    

 

 
      

  

 
  

 02
, .

a z
v z

za bz  




 (25) 

Liquid layer hydrodynamics 

The wall flow in the column is described by the equations: 
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   
 

 

 

2 2

2 2

2 2

2 2 2

0 0

0 0 0

0

1
,

1
;

0, 0, 0, 0, 0;

, 0, 0; , , ;

,

z z z z z
z r

r r r r r r
z r

z r
z r

z r z r r

w w w w w
w w g

z r z r r r

w w w w w w
w w

z r z r r r r

w w
z w w

z z

r v z d
r r w w r r z w v z w v

r z dz

z d a
z

a bz dz a b













     
     

     

     
     

     

 
    

 

       


 
  

 02
, .

z
v z

zz  




 (26) 

Parameters identification 

The comparison of (25) and (26) shows that 

there is a common boundary condition at an 

unknown boundary  z : 

   0 0, z zr r z w v v z    , (27) 

where the surface velocity of the wall flow  0v z  

is unknown too. 

The flow rate of the liquid flowing on the wall, 

per unit of column circumference  Q z  in (11), 

which has passed from the bulk of the liquid in the 

column, depends on the functions    0,z v z  

and must be determined by the equations: 

 
 

 0

0 0

2

1 2 2 00

, ,
o

o

r zr

L
z z z z

r z

Qz
Q z w dr v v dr v

m m z r




 





        

 (28) 

i.e. the flow rate of the wall flow is equal to the 

difference in the flow rates of the liquid in the bulk 

of the column in presence and absence of a wall 

flow. The conditions (28) and the solution of the 

system of equations (25, 26) permit to obtain the 

parameters (a,b,a,β), using a suitable algorithm [7]. 

Gas phase hydrodynamics 

The hydrodynamics of the gas phase will be 

represented in a cylindrical coordinate system 

0 0( , ),r z z l z  , where the axial coordinate is 

directed back to the axial coordinate of the liquid 

phase. The movement of the gas is the result of the 

pressure gradient along the height of the column 

(hydraulic resistance), which depends on the 

packings and is determined experimentally. The 

axial 
zu  and radial 

ru  components of velocity in 

the gas phase and pressure (per unit volume) p  

satisfy the Navier-Stokes equations: 

2 2

2 2

0 0 0

2 2

2 2 2

0 0

0

0 0

0

0 0

1 1
,

1 1
,

0;

0, , 0, 0, 0, ;

0, 0, 0,

z z z z z
z r

r r r r r r
z r

z r r

z r
z z r

z r

u u u u up
u u

z r z z r r r

u u u u u up
u u

z r r z r r r r

u u u

z r r

u u
z u u u p p

z z

u u
r p

r r







     
      

      

     
       

      

 
  

 

 
     

 

 
  

 
 

 
 0

0 0 0

0

0, ;

, , 0.z r

p z

l z
r r u v l z u

a b l z




     

 

 (29) 

The pressure in the gas phase  0,p r z  can be 

presented in (29) as 

 0

0

0 0

0,
0,

p p zp p
H

r z z

 
  

 
, (30) 

where H  is the packing pressure drop, i.e. the 

pressure drop through a packing layer of a 

thickness of 1 meter at a given gas velocity. 

Modeling of Processes with Unknown Mechanism 

There are complex processes whose mechanism 

is unknown. A typical example of this are the 

complex chemical reactions, the rate of which 

depends on the concentrations of several 

substances, but the simple chemical reactions and 

the relationships between them are unknown. 

The kinetics of processes with an unknown 

mechanism can be modeled on the basis of the 

axiom, according to which "The mathematical 

structure of the quantitative description of real 

processes does not depend on the measuring system 

of the quantities involved in them". On the basis of 

this axiom, Guchmann's theorem can be proved [8] 

– “If the mathematical structure is invariant with 

respect to similar transformations, it can be 

presented as power functions complex”, i.e. 

„Мathematical structure of the quantitative 
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description of real systems can be presented as 

power functions complex“, because the 

mathematical structure which is invariant with 

respect to similar transformations is a mathematical 

structure of real processes which does not depend 

on the measuring system. 

The kinetics of the chemical engineering 

processes depends on a set of variables. If the 

velocity of these processes is denoted by y and the 

values of these variables are 
1,..., nx x , the equation 

of the kinetic model will have the form: 

 1,..., .ny f x x  (31) 

This function is a mathematical structure that is 

retained when changed the measurement system of 

the variable, i.e. this mathematical structure is 

invariant with respect to similar transformations 

[7]: 

, 1,..., ,i i ix k x i n   (32) 

i.e. f  is a homogeneous function: 

       1 1 1 1 1,..., ,..., . ,..., , ,..., .n n n n nky f k x k x k k f x x k k k   

 (33) 

A short recording of (33) is: 

     .i i if x k f x  (34) 

The problem consists in finding a function f that 

satisfies equation (34). A differentiation of equation 

(34) concerning 
1k leads to: 

 
 

1 1

.
i

i

f x
f x

k k

 


 
 (35) 

On the other hand 

     
1

1

1 1 1 1

.
i i if x f x f xx

x
k x k x

  
 

   
                          (36) 

From (35, 36) follows 

 
 1 1

1

,
i

i

f x
x f x

x






                                           (37) 

where 

1

1 1

.

ik
k






 
  

 

                                                        (38) 

The equation (37) is valid for different values of 

ik  including 1ik    1,..., .i n  As a result 

, 1,...,i ix x i n   and from (37) follows 

1

1 1

1
,

f

f x x





                                                         (39) 

i.e. 
1

1 1 .f c x  (40) 

When the above operations are repeated for 

2,..., nx x , the homogenous function f assumes the 

form: 
1

1 ,..., ,n

nf kx x


  (41), 

i.e. the function f is homogenous if it represents a 

power functions complex and as a result is invariant 

with respect to similarity (metric) transformations. 

The parameters k, a1,…an are determined by 

experimental data of the industrial process velocity. 

The power functions complex (41) is used in the 

similarity criterion models equation in the 

similarity theory [7], where , 1,...,ix i n  are 

similarity criteria. The information about the 

process mechanism permits to obtain dimensionless 

combinations of the model parameters (similarity 

criteria) which represent the ratio of the efficiency 

of two processes, for example [1]: 

0 2 0

0

Fo , Da ,
Dl kl

u r u
   (42) 

are the Fourier and Damkohler numbers and 

represent the ratio of the efficiency of the 

convective and diffusion mass transfer ( Fo ) and 

convective mass transfer and chemical reaction rate 

( Da ). In (42) D  is diffusivity, 
0 ,r l  - linear 

characteristic scales, 
0u - velocity characteristic 

scale. 

The power functions complex (41) is used by 

the dimension analysis [1], but the dimension 

criteria do not represent the ratio of the efficiency 

of two processes, because the method is used in 

absence of the processes mechanism information. 

CONCLUSIONS 

In the paper is presented a theoretical analysis of 

the methods for chemical engineering processes 

modeling. The methods for modeling specific 

processes may be different, but in all cases they 

must bring the mathematical description closer to 

the real process by using appropriate experimental 

data. 

The role of the kinetics of industrial apparatuses 

for solving the problems of optimal design and 

control is analyzed. The thermodynamic, 

hydrodynamic and Boltzmann approximations for 

the mathematical description of the kinetics of 

industrial apparatuses are described. 

They are presented for the cases of co-current 

absorption column without packings, counter-

current absorption column with random packings 

and modeling of processes with unknown 

mechanism. 
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