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The current theoretical study is devoted to the identification of the factors influencing the interface shear stress and 

respectively, the possibility of delamination appearing in three-layer nanocomposite structure graphene/MoS2/PET under 

mechanical loading. A model criterion for delamination in the structure is proposed and the model interface shear stress 

is calculated at different geometry and external loads [1]. Then, a multi-parametric optimization procedure is performed 

which shows the exact geometrical and external factors influencing the interface shear stress value – layer’s thickness, 

load and length of the considered nanocomposite structure. The obtained results could be used to predict the safe design 

and working conditions in similar nanocomposite devices or parts of them, as sensors, nano- and optical electronic 

devices, energy devices, etc. 
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INTRODUCTION 

In the last ten years, the combinations of two and 

more 2D nanomaterials with different substrates, and 

respectively, the investigation of their properties, are 

in the focus of scientists in the world [3, 4, 6-10]. In 

[3, 4] and [7, 10] graphene/MoS2 or WS2/MoS2 were 

combined with polymers or Si/SiO2 as parts of 

different electronic and sensor devices, etc. The 

obtained heterostructures and their properties, were 

studied mostly experimentally. The performance 

gain-oriented nano-structurization has opened a new 

pathway for tuning mechanical features of solid 

matter vital for application and maintained 

performance [8].  

The 2D materials and their heterostructures offer 

excellent mechanical flexibility, optical 

transparency, and favorable transport properties for 

realizing electronic, sensing, and optical systems on 

arbitrary surfaces [4, 9]. The mechanical and 

physical properties of those heterostructures formed 

by stacking different two-dimensional materials 

show great potential for the next generation of 

electronic and optoelectronic materials. But, the 

interfacial mechanical behavior of those 

heterostructures with different substrates is still a 

critical problem in various fields [3, 10]. 

Understanding the mechanical properties and critical 

limits for safety   work   (without   failure)   in   the 

structure is extremely significant in the engineering 

[3].  

The aim of this work is to find the optimal values 

of geometry (length and thicknesses of all three 

layers), as well as the maximal value of external load 

in graphene/MoS2/PET nanocomposite under 

mechanical loading, without delamination in it. The 

analytical solutions for ISS and model criteria 

guaranteeing no delamination in the nanocomposite 

[1] are implemented in the multi-parameter 

optimization problem. Two optimization procedures 

(with genetic algorithms [2] and Mathematica) were 

defined and solved with objective function – the 

model criteria for ISS limit. As a result, different sets 

of optimal geometry configurations of the layers 

(length and thicknesses of all three layers) and 

optimal load in the considered nanocomposite 

structure, have been obtained. 

Mathematical model 

The mathematical model of the representative 

volume element (Fig. 1) of the three-layer statically 

loaded nanocomposite structure 

graphene/MoS2/PET describing the axial shear stress 

 1 x  is created using a two-dimensional stress-

function method [1]. The model is described with the 

fourth-order ordinary differential equation (ODE) 

(1) with constant coefficients iD : 

 2 1 4 1 1 1 52 2 2 2 0D D D D         (1) 
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This mathematical model is created by making 

the following model assumptions: 

1. The axial stresses in the layers are assumed to 

be functions of axial coordinate x only.  

2. In the MoS2 interface layer the axial stress is 

negligible in respect to the same ones in the other 

two layers.  

3. All stresses in the layers (axial, normal (peel) 

and shear stresses) are determined under the 

assumption of the plane-stress formulation. 

The interface layer is simulated by the approach 

in [5]. 

 

Fig. 1. Representative volume element of the three-

layer nanocomposite structure. Layer 1 – graphene, Layer 

interface – MoS2, Layer 2 - PET 
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For layer (2): 
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The analytical solution of the ODE equation (1) 

for the axial stress  1 x  involves the discriminant 

of the respective characteristic equation. That 

discriminant can be either positive or negative, so the 

roots can be real or complex numbers, respectively. 

The sign of the discriminant depends on the 

thicknesses and material properties of the structure 

layers described by the coefficients .iD  

The possible general solutions of (1) for the axial 

stress  1 x  are: 

31 2 4

1 1 2 3 4e e e e .
xx x xC C C C A

         (8) 
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 (9) 

where (8) is the solution for the case with 4 real roots 

i  and (9) is the solution for the case with 4 complex 

roots  i   . 

In (8) and (9) iC  and iM  are the integration 

constants in the model solution, determined from the 

boundary conditions (2)−(7). The constant A is the 

solution for non-homogeneous ODE and depends on 

the external static load 
0 2P h   and Young’s 

modulus and thicknesses of the first and third layer 

in the structure as 5 12A D D  or: 



B. Boyadjiev et al.: Optimization of the factors influencing the delamination in graphene/MoS2/PET nanocomposite… 

323 

 

   

1

0

1 2
.

E
A

E E







  (10) 

After finding solution for axial stress 1 , all other 

stresses in the layers of the considered 

graphene/MoS2/PET structure can be obtained using 

this two-dimensional model relations: 
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The model criterion without delamination in the 

considered interface layer of the nanostructure is: 

     a a

1 1 USSISS .xy x h      (12) 

where USS is the ultimate shear stress of the 

interface layer and ISS is the interface shear stress. 

This criterion will be used for multi-parameter 

optimization to determine the model parameters. 

Multi-parameter optimization problem 

The parameters in the model criterion without 

delamination in graphene/MoS2/PET are: length l, 

layers’ thicknesses h1, ha, h2 and external load σ0. 

They are included in the coefficients Di in equation 

(1) and in the integration constants Ci or Mi , 

depending of the type of model solution obtained 

from equation (8) or (9). 

We use genetic algorithms [2] to find all 5 

parameters l, h1, ha, h2, and σ0 which fulfill the 

criterion (12) and assure that there is no 

delamination in the graphene/MoS2/PET 

nanocomposite. 

The possible optimal solutions from the genetic 

algorithms represent a set of different combinations 

of all parameters, which vary within predefined 

boundaries, according to physical and technical 

prescriptions. The equation (12) is the objective 

function of the multi-parameter optimization and the 

abovementioned 5 parameters are the decision 

variables in the genetic algorithms. Those 

parameters are set to vary within predefined 

technological boundaries.  

The block-scheme of genetic algorithms is 

presented on Fig. 2. In general, genetic algorithms 

are metaheuristics inspired by the process of natural 

selection in which population of individuals 

(candidate solutions) evolves toward better solution. 

 

Fig. 2 Block-scheme of genetic algorithms [2] 

Selection is the first stage of genetic algorithms, 

in which individuals are chosen from a population 

for later breeding. Selection mechanisms are also 

used to choose individuals for the next generation. 

There are several different methods of selection: 

a. Roulette wheel selection. In the roulette wheel 

selection, the probability of choosing an individual 

for breeding of the next generation is proportional to 

its fitness, the better the fitness, the higher is the 

chance for that individual to be chosen. Choosing 

individuals can be depicted as spinning a roulette 

that has as many pockets as there are individuals in 

the current generation, with sizes depending on their 
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probability. Probability ip  of choosing individual i 

is: 

1

.
n

i i i

j

p f f


    (13) 

where if  is the fitness of and is the size of current 

generation. In this method one individual can be 

drawn several times. The principle of roulette wheel 

selection is shown on Fig. 3. 

b. Tournament selection. Tournament selection is 

another genetic algorithms method of selecting a 

solution from a population of individuals. 

Tournament selection involves running several 

"tournaments" among a few individuals randomly 

choosed from the population. The winner of each 

tournament is the one with the best fitness, which is 

then selected for crossover. The probability of an 

individual to participate in the tornament depends on 

tournament size. If the tournament size is larger, 

weak individuals have a smaller chance to be 

selected, because, if a weak individual is selected to 

be in a tournament, there is a higher probability that 

a stronger individual is also in that tournament. The 

principle of tournament selection is shown on Fig. 4. 

c. Selection for replacement. Often, to get better 

results, selection of replacement strategies with 

partial reproduction is used. One of them is elitism, 

in which a small portion of the best individuals from 

the last generation is carried over (without any 

changes) to the next one. Then the generation is 

complemented with new individuals and the whole 

process is repeated again. The principle of the 

selection for replacement is shown on Fig. 5. 

RESULTS AND DISCUSSION 

The mechanical properties of the heterostructure 

investigated in this work are presented in Table 1 and 

are given in [3].  

 

Fig. 3. Principle of roulette-wheel selection [2] 
 

 

Fig. 4. Principle of tournament selection [2] 

 

Fig. 5. Principle of the selection for replacement [2] 

In Table 2 the obtained results from the 

performed GA multi-parameter optimization can be 

seen, for the case of complex roots solution for 

derivative of σ1 in the objective function in eq. (12).  

For the case of real roots for ISS the alternative 

Mathematica optimization procedure was developed 

and solved with the same optimization criterion eq. 

(12). The results from Mathematica are presented in 

Table 3.  

Table 1. Input data 

Material Young modulus, 

 GPa 

Poisson 

ratio 

Graphene 1000 0.13 

MoS2 270 0.25 

PET 2.3 0.43 
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Table 2. Obtained results from GA (complex roots).  

Solution No. 1 2 3 4 5 6 8 9 10 

Optimal load σ0 2.84E+09 3.60E+09 3.74E+09 5.61E+09 1.53E+09 5.78E+09 2.77e+08 5.86e+09 4.70e+08 

Optimal length l 1.76E-05 1.75E-05 1.73E-05 3.17E-05 1.87E-05 3.18E-05 7.49e-05 1.46e-05 4.48e-05 

Optimal h1 2.14E-09 3.05E-09 5.00E-09 3.82E-09 1.06E-09 4.49E-09 5.00E-09 4.81E-09 5.00E-09 

Optimal ha 1.00E-09 2.48E-09 1.00E-09 3.09E-09 3.61E-09 1.42E-09 6.83e-10 6.51e-10 6.65e-10 

Optimal h2 3.85E-04 4.15E-04 4.15E-04 8.70E-04 3.32E-04 8.81E-04 9.45e-04 4.64e-04 5.89e-04 

GA population 

samples, generation, 

numbers 

500 

200 

500 

500 

200 

500 

500 

200 

500 

500 

200 

500 

500 

200 

500 

500 

200 

700 

500 

200 

700 

500 

200 

700 

500 

200 

700 

Methods used  
in GA* 

TS,  
AC,  

NM 

RWS,  
AC,  

NM 

RWS, 
TPC,  

NM 

TS,  
BC,  

NM 

RS,  
BC,  

NM 

TS,  
OPC,  

NM 

TS, AC, 
NM 

TS, AC, 
NM 

TS, AC, 
NM 

*  Tournament selection, Arithmetical crossover, Non-uniform mutation (TS, AC, NM);  

Roulette wheel selection, Arithmetical crossover, Non-uniform mutation (RWS, AC, NM);  

Roulette wheel selection, Two-points crossover, Non-uniform mutation (RWS, TPC, NM);  

Tournament selection, Blend crossover, Non-uniform mutation (TS, BC, NM);  

Rank selection, Blend crossover, Non-uniform mutation (RS, BC, NM);  

Tournament selection, One-point crossover, Non-uniform mutation (TS, AC, NM).  

Table 3. Optimal values of parameters from Mathematica optimization procedure for graphene/MoS2/PET (real 

roots) 

Solution* No. M2 M11 M12 M29 MLimit 

Optimal load σ0, MPa 1 1 0.182 1 0.95 

Optimal l, m 1e-05 1e-05 1e-05 1.5e-05 1e-05 

Optimal h1, m 0.35e-09 0.675e-09 0.675e-09 0.35e-09 1e-09 

Optimal ha, m 1e-10 1e-10 1e-10 1e-10 1e-10 

Optimal h2, m 1e-06 1e-06 5.5e-06 1e-06 1e-06 

* to differentiate the solutions in graphic results, these from Mathematica are noted with M 

 
Fig. 6. Optimal solutions for 5 parameters from GA and Mathematica: complex roots CR (blue) and real roots RR (red) 

Results Eli, 12-04-24, Complex, Gr/MoS2/PET, USS=0.26 MPa
and results Alex, 16-04-24, REAL (red), Complex (blue)
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Fig. 7. Model Interface shear stress distribution calculated by the optimal values of parameters (complex roots) 

 
Fig. 8. Model interface shear stress distribution calculated at the optimal values of parameters (real roots) 

In Figure 6, the sets of optimal values of the 

parameters (load, length, thicknesses of the three 

layers) are presented along with criterion equation 

(12) from both optimizations. It can be seen that 

along the ordinate each geometrical parameter 

changes within certain limits (intervals) for each of 

the two types of solutions (8) and (9) for ISS 

included in the objective function. The limits of the 

changes of the optimal thicknesses of PET h2 and of 

the interface layer ha, for the cases of real and 

complex roots, are particularly well differentiated. 

The intervals of variation of l are almost similar for 

both possible solutions (8) and (9). On the abscissa, 

each different set of geometry data corresponds to a 

particular mechanical load such that for each group 

of five parameters criterion (12) is met or the model-

predicted ISS at these load and geometry values is 

equal to or below the critical USS value. 

In order to verify the obtained results, the 

following Figures 7 and 8 present a part of the 

distributions of the ISS along the length of the 

nanocomposite obtained at the optimal values of the 

parameters. As can be seen, for each type of solution, 

the optimal values of the studied parameters actually 

meet the criterion of not having delamination in the 

nanocomposite structure. Graphically, on Figures 7 

and 8, the ISS distribution for both cases does not 

exceed the straight horizontal line corresponding to 

the USS. 
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It turned out that the only data which can be 

compared with ours in the available literature, is the 

thickness of the interface layer – our common 

interval of obtained optimal values for ha is (1e-10 ÷ 

3.6e-09) for the investigated nanostructure. It is 

worth noting that the value obtained by Yu et al., 

2014 [4] (0.8 nm) for graphene/MoS2/Si is in the 

interval of the results obtained here, despite the 

different substrate used. 

CONCLUSIONS 

The multi-parameter optimization problem for 

three-layer nanostructure safety work (without 

delamination) is formulated and solved with genetic 

algorithms and Mathematica approach for axially 

loaded graphene/MoS2/PET nanocomposite. The 

analytical model criterion based on the model ISS 

limit (no delamination), is included in the 

optimization procedures. The minimization of the 

later criteria as an objective function allows 

determining of the optimal values for 5 parameters: 

layers’ thicknesses, length and mechanical loading 

for the considered nanocomposite. 

The obtained optimal solutions represent a set of 

different combinations of all 5 parameters, which 

vary within predefined boundaries, according to 

physical and technical prescriptions.  

The results show that at obtained optimal values 

of 5 parameters, the model ISSs confirmed and 

fulfilled the model criterion in graphene/MoS2/PET. 

The obtained optimal interval of values for ha 

coincides well with available literature data [4]. 

They could be used for predicting the optimal 

geometry design and load for any material 

combinations for three-layer nanocomposite 

structure, which satisfied the model assumptions [1]. 
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Nomenclature 

A - constant, solution of non-homogeneous ODE 

(1) of 4th order; 

Ci, Mi - integration constants in the model 

solutions, determined from the respective boundary 

conditions; 

E - Young modulus of layer material, Pa;  

1 2, ,ah h h  - thickness of the 1st, middle and 2nd 

layer in the nanocomposite, m ; 

ISS - model interface shear stress, Pa; 

l - length of the nanocomposite, m; 

x, y P - applied tension force to the substrate, 

N.m; 

- coordinate system, m; 

USS - ultimate shear stress of middle layer in 

nanocomposite, Pa; 

Greek symbols 

i  - real roots of the characteristic equation 

corresponding to 4th order ODE; 

 i    - complex roots of the characteristic 

equation corresponding to ODE of 4th  order; 

  - Poisson number (ratio), - ; 

0  - external loading stress, applied to substrate, 

Pa;  

1 ,, a

x y   - model axial and shear stress, Pa;  
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