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The new promising VIS NIR-ES (visible near infrared extra sensitive) spectrometer was used to identify a variety of 

apples. The aim of this study was to investigate the applicability of VIS-NIR spectroscopy combined with chemometric 

methods for the classification of different varieties of apples. The study was performed by analyzing the diffuse 

reflectance spectra of three different types of Chinese apples: the Fuji apple, the Red Star apple, and the Gala apple. To 

achieve this, after suitable preprocessing, a variable selection algorithm called interval partial least squares discriminant 

analysis (iPLS-DA)  was used to identify the most significant spectral range. This range was then compared with the 

results obtained by PLS-DA (using the entire NIR spectrum) to discriminate apples of different species. The obtained 

results have shown that the iPLS-DA model outperforms the PLS-DA application in the entire spectral range when it 

comes to apple cultivar identification. The best model achieved an impressive 97.77% accuracy in the calibration set and 

100% accuracy in the prediction set. These results show that the use of NIR spectroscopy is a capable method for 

identifying the apple variety and even the growing region. 
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INTRODUCTION 

There are a large number of apple cultivars 

available around the world. Several cultivars 

dominate the global supply and production: ‘Fuji’, 

‘Red star’, ‘Royal Gala’, ‘Golden Delicious’, 

‘Granny Smith’. However, cases of mixing different 

varieties of fruit at harvest or in the market are 

observed. Therefore, incorrectly labeled or 

manipulated apples have become more frequent. The 

latter is becoming a global problem whose economic 

and social impact is difficult to evaluate. This fact 

highlights the need to implement increasingly 

accessible methods of detection and authentication 

of foods that conform to what is declared.  

Numerous studies have demonstrated the 

effectiveness of VIS-NIR and NIR techniques in 

assessing apple classification and quality, showing 

significant potential for the food industry according 

to the quality of apples without damaging them [1]. 

Another challenge is the development of affordable 

and portable spectroscopic devices that can be easily 

integrated into fruit packaging lines  for  quick  and  

real-time quality assessment, making these 

technologies more widely applicable.  

The study of Pissard et al. [2] confirmed the 

importance of NIR spectroscopy to determine 

phenolic compounds and dry matter in apple peel 

and flesh separately to evaluate fruit quality. It was 

proved that different apple cultivars have different 

content of those parameters between the peel and 

pulp. The outcome of their study is in agreement 

with our findings which shows the differentiation of 

apple varieties based on NIR spectroscopy. 

Similarly, Beghi et al. [3] have used a portable VIS-

NIR system in combination with PLSR to predict the 

total phenolic content in two apple varieties, “Stark 

Red Delicious” and “Golden Delicious”. The latter 

variety had low phenolic concentration, and 

classification was successful. Pissard et al. [4] 

evaluated the performance of benchtop and portable 

devices (MicroNIR) utilizing NIR spectroscopy to 

explore the possibility of assessing various quality 

parameters in apples, including soluble solids 

content, titratable acidity, pulp firmness, and starch-

iodine index.  The results,  based  on  Partial  Least 

Squares (PLS) models, showed that the coefficient 

of determination (R²) and the root mean square error 

of cross-validation  (RMSECV) values were quite 
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similar for both devices. This suggests that 

MicroNIR provides performance comparable to that 

of the XDS device. The best results were achieved 

with the Least Squares Support Vector Machines 

(LS-SVM) chemometric method. The outcome 

supports the idea of our findings in terms of 

promoting NIR-based technologies and 

chemometrics in apple classification. Li et al. [5] 

studied combining NIR spectra with PCA, 

successive projections algorithm (SPA) in apple 

analysis. Three different pattern recognition 

methods, namely, the backpropagation neural 

network (BPNN), SVM, and extreme learning 

machine (ELM) were also applied to create models 

for distinguishing apples based on their varieties and 

geographical origins. Notably, the SPA-ELM model 

achieved an impressive 98.33% accuracy in 

identifying apples in the calibration set and 96.67% 

accuracy in the prediction set. This research suggests 

that NIR spectroscopy is a viable approach for 

identifying the variety and cultivation region of 

apple samples. 

Moreover, Xu et al. [6] recently differentiated 

different varieties of apples by combining a 

similarity-based particle swarm optimization 

algorithm with the possibilistic fuzzy c-means 

(PFCM) algorithm, thus SPSO-PFCM. In addition, 

MSC and PCA chemometric methods eliminated the 

interference and reduced the complexity of the 

spectral data. Their results convincingly demonstrate 

that combining NIR diffuse reflectance with SPSO-

PFCM clustering is an effective method for 

classifying different apple varieties. Cortés et al. [7] 

assessed five different apple varieties by using in-

line VIS-NIR reflectance spectroscopy. To extract 

the most critical information from the spectra, PCA 

was employed. Seven principal components were 

then used in LDA and quadratic discriminant 

analysis (QDA). The results revealed that QDA was 

the most effective in-line classification method, 

achieving success rates of 98% for red apple 

varieties and 85% for yellow apple varieties. This 

study confirms that the in-line application of VIS-

NIR spectroscopy is potentially feasible for 

accurately detecting apple varieties. Ongoing 

research and development in spectroscopic 

techniques for apple quality assessment can 

potentially enhance the efficiency, quality, and 

safety of the apple supply chain. 

The aim of the present study was to evaluate the 

applicability of VIS-NIR spectroscopy combined 

with preprocessing and chemometric tools to 

classify three different types of Chinese apples: the 

Fuji apple, the Red Star apple, the Gala apple, and 

compare the results with the ones from Li et al. 

article [5] where data from this study have been 

obtained. To achieve this, a variable selection 

algorithm called interval partial least squares 

discriminant analysis (iPLS-DA), after applying 

appropriate preprocessing, was used to identify the 

best spectral range. This range was then compared 

with the results obtained by applying classical PLS-

DA using the entire NIR spectrum to discriminate 

apples of different varieties. 

MATERIALS AND METHODS 

Sample Preparation Procedure 

For the purpose of this research, data from the 

article from Li et al. [6] were used. A total of 300 

apples were selected to ensure representation and 

accuracy. Among these, 100 Fuji apples, 100 Red 

Star apples, and 100 Gala apples were used. Apples 

were selected from two prominent local markets. All 

selected apples exhibited smooth and unblemished 

skin, ensuring the highest quality for our study. 

Before conducting any measurements, strict 

protocols were followed. First, all apple samples 

were placed in airtight polyethylene bags and stored 

in a refrigerator, maintaining a consistent cold 

temperature of 4 ± 1°C for a duration of 2 days. 

Subsequently, after the designated storage period, 

the apples were removed from the refrigerator, 

thoroughly washed with clean water, meticulously 

wiped dry, and then left to acclimatize at room 

temperature (24 ± 2°C) for approximately 3 hours. 

Only after these meticulous preparation steps the 

apples were suitable for spectral measurements. 

Spectra Acquisition Procedure 

An Ocean Optics USB2000-VIS-NIR-ES 

spectrometer was employed, sourced from Ocean 

Optics in the USA, equipped with HL-2000 tungsten 

halogen light sources also from Ocean Optics, and 

optical fiber reflection probes (QR600-7-VIS-NIR, 

Ocean Optics, USA). 

NIR diffuse reflectance spectra were captured 

within the wavelength range of 400 to 1021nm, with 

an interval of approximately 0.33 nm, resulting in a 

total of 1888 variables for each spectrum. The data 

collection and transformation of spectra were 

facilitated using Ocean View software (Ocean 

Optics, USA). All measurements took place under 

controlled room temperature conditions, precisely at 

24 ± 2°C. 

Before the commencement of spectral 

measurements, a critical step involved the 

spectrometer being powered on for a minimum of 1 

hour to stabilize and reach an optimal operating 

temperature. This ensured that the instrument 
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performed consistently throughout the data 

acquisition process. 

During the actual spectral measurements, close 

proximity of the NIR optical fiber probe to the 

surface of the apple samples was maintained. This 

approach was adopted to minimize surface 

reflectance and eliminate any potential interference 

from the surrounding air. 

A systematic approach was implemented to 

ensure robust data representation and reliability. For 

each intact apple sample, diffuse reflectance spectra 

were obtained at 15 distinct points, which were 

randomly selected along the equator of the apple. At 

each of these points, the spectral scan was repeated 

10 times, resulting in a total of 150 scans. These 150 

scans were then averaged to form a comprehensive 

and representative spectral dataset for each apple, 

subsequently serving as the dataset for chemometric 

analysis. 

Data Analysis 

Principal component analysis (PCA) and partial 

least square discriminant analysis (PLS-DA) models 

were applied by using Solo, version 9.2.1, a software 

solution developed by Eigenvector Research, Inc., 

headquartered in Wenatchee, WA, USA. Diverse 

spectral ranges were systematically explored by 

applying data preprocessing techniques to get the 

most suitable prediction models. 

Principal Component Analysis (PCA) 

Principal Component Analysis, often abbreviated 

as PCA, stands as a highly effective data mining 

technique that has found widespread application in 

spectral data analysis. The core principle behind 

PCA revolves around dimensionality reduction and 

orthogonalization of the original multidimensional 

dataset. The ultimate aim is to derive a set of linearly 

uncorrelated variables, termed principal components 

(PCs), with several key objectives in mind. 

One primary goal is to minimize the risk of 

overfitting, a phenomenon where a model becomes 

too complex and starts fitting noise in the data rather 

than the true underlying patterns. Additionally, PCA 

enhances the training procedure’s computational 

efficiency, making it more manageable and 

resource-efficient. 

These principal components are calculated 

simultaneously through a single matrix 

decomposition, which extracts essential information 

from the original data while significantly reducing 

the number of variables. The first principal 

component is designed to capture as much variability 

as possible in the original dataset, thus providing a 

comprehensive overview of the data’s main patterns. 

Subsequent components follow, each exhibiting 

lower variance than its predecessors. 

One of the key strengths of PCA is its ability to 

transform high-dimensional data into a lower-

dimensional representation while preserving the 

essential information present in the original dataset. 

Despite this reduction in variable numbers, the 

principal components remain powerful descriptors 

that effectively encapsulate the majority of the 

original data’s variance. This capacity to condense 

information while retaining its significance is a 

hallmark of PCA’s utility in data analysis and 

dimensionality reduction [8]. 

Partial Least Squares Discriminant Analysis 

(PLS-DA). Partial Least Squares Discriminant 

Analysis, commonly called PLS-DA, is a 

superVISed classification algorithm that leverages 

the principles of PLS regression and linear 

discriminant analysis to effectively categorize 

datasets into distinct classes. This powerful 

technique establishes a crucial connection between 

predictor variables and response variables by 

employing a reduced number of latent variables. The 

primary aim of PLS-DA is to maximize the 

covariance between predictor variables and response 

variables, thus unraveling the underlying 

relationships within the data. 

In the realm of binary classification, the PLS1 

variant is frequently utilized. Here, the response 

variable typically assumes values of 0 or 1, 

signifying whether a data point belongs to a specific 

class or not.  

iPLS-DA Classification. Interval PLS (iPLS) is a 

data modeling technique designed to enhance 

prediction accuracy by selecting a subset of variables 

from a dataset and optimizing performance using all 

available variables. iPLS employs a sequential and 

exhaustive search approach to identify the best 

individual or combination of variables for the task. 

In the context of iPLS, an “interval” can refer to 

either a single variable or a “window” encompassing 

adjacent variables. This concept of an “interval” is 

particularly relevant in situations where adjacent 

variables are interrelated, such as in 

spectroscopically correlated or time-correlated 

datasets, where variables in proximity exhibit related 

behaviors. For the discussion, an “interval” will be 

selected while recognizing that it may encompass 

one or more variables. The iPLS process initiates by 

creating individual Partial Least Squares (PLS) 

models, each utilizing only one of the predefined 

variable intervals. For instance, if a dataset has 100 

defined intervals, the initial step involves calculating 

100 models, each corresponding to a distinct 

interval. Cross-validation is conducted for each of 
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these models, and the interval yielding the lowest 

model root-mean-square error of cross-validation 

(RMSECV) is chosen as the optimal single-interval 

model, denoted as I1. If the objective is to select just 

one interval, the algorithm can conclude at this point, 

providing the selected interval as the outcome. 

However, if the aim is to incorporate multiple 

intervals, thereby enriching the information 

available to the model and potentially improving its 

performance, additional cycles are executed. In the 

subsequent cycle, the first selected interval (I1) is 

retained in all models and combined sequentially 

with each of the other remaining intervals. This 

process generates a new set of PLS models for each 

combination. Once again, using RMSECV as the 

guiding metric, the best combination of two intervals 

(I1 and an additional interval, denoted as I2) is 

determined. It’s important to note that, at this stage, 

the first selected interval (I1) remains fixed. This 

procedure is iteratively repeated for as many 

intervals as needed (up to In), enhancing the model’s 

capacity to harness information and optimize 

predictive performance [9]. 

As for the full range model, our approach started 

by dividing our sample dataset into two subsets, after 

removing one sample as outlier: a training set 

comprising 225 samples, meticulously selected 

using the Kennard & Stone algorithm [10], and a 

prediction set consisting of 74 samples This 

partitioning facilitated our models’ development and 

subsequent evaluation, a critical step in assessing 

their applicability to external samples. In line with 

the previous methodology, we pursued developing 

and evaluating various chemometric models, 

mirroring the procedures employed in the full-range 

model. These models were fine-tuned to optimize 

performance. 

Spectral Data Treatment and Model Construction 

To harness the full potential of our spectral data, 

a comprehensive journey of data treatment and 

model development was performed. This 

encompassed the utilization of Solo, version 9.2.1, 

developed by Eigenvector Research, Inc. in 

Wenatchee, WA, USA. 

Various spectral ranges and data preprocessing 

techniques underwent a thorough evaluation to 

ascertain the creation of robust prediction models. 

Classification models were meticulously crafted 

using a split of 2/3 of the samples for calibration and 

1/3 for validation, ensuring a representative dataset 

that included samples from all batches. Sample 

selection was executed with precision, employing 

the Kennard & Stone algorithm [9]. 

The exploration delved into multiple data 

preprocessing techniques, including Standard 

Normal Variate (SNV), Mean Center (MC), first and 

second derivatives of Savitzky–Golay, employing 

various window sizes and polynomial orders, 

Multiplicative Scattering Correction (MSC), 

Orthogonal Signal Correction (OSC), and 

combinations thereof. 

In the final stages, classification models were 

meticulously constructed through Partial Least 

Squares Discriminant Analysis (PLS-DA). PLS-DA, 

a linear classification method rooted in the PLS 

regression algorithm [11], was employed for its 

proven effectiveness. 

Performance evaluation was a paramount aspect 

of our methodology. This was achieved through the 

analysis of contingency tables and the calculation of 

sensitivity, specificity, and precision. Sensitivity, as 

defined in Equation (1), measured the model’s 

proficiency in correctly classifying positive samples 

as positive: 

Sensitivity = TP / (TP + FN) (1) 

where: TP = number of positive samples correctly 

classified as positive; FN = number of positive 

samples erroneously classified as negative. 

Specificity, captured by Equation (2), assessed 

the model’s ability to accurately classify negative 

samples as negative: 

Specificity = TN / (TN + FP)  (2) 

where: TN = number of negative samples correctly 

classified as negative; FP = number of negative 

samples erroneously classified as positive. 

Precision, as per Equation (3), quantified the 

proportion of all samples classified as one class that 

genuinely belonged to that class: 

Precision = TP / (TP + FP) (3) 

The constructed PLS-DA models underwent 

rigorous internal validation through the venetian 

blinds cross-validation method. Key model 

parameters, including the R2 model, root mean 

squared error of calibration (RMSEC) (as defined in 

Equation 4), and root mean squared error of cross-

validation (RMSECV) (as defined in Equation 5), 

were scrutinized for the selection of the optimal 

model. 

Further evaluation of the model’s predictive 

capacity was executed using distinct statistical 

parameters, such as the root mean squared error of 

prediction (RMSEP), applied to the validation set 

samples (as defined in Equation 6). This thorough 

process ensured the robustness and accuracy of our 

predictive and classification models. 
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RMSEC = √
∑ (yi-ŷi)

2n
i=1

n
(4) 

RMSECV = √
∑ )yi-ŷi(

2n
i=1

n
(5) 

RMSEP = √
∑ )yi-ŷi(

2n
i=1

n
(6) 

In the context of our analysis, where ‘yi’ 

represents the reference value for validation set 

sample ‘i’, ‘ŷi’ signifies the predicted value for the 

same validation set sample ‘i’, and ‘n’ stands for the 

total number of samples within the validation set, a 

critical step was taken to optimize our model. 

A plot illustrating the explained variance against 

the number of factors was generated to select the 

optimal number of factors. This VISual 

representation played a pivotal role in guiding our 

selection process. 

Subsequently, an initial model was honed by  

choosing the factors that yielded the lowest Root 

Mean Squared Error of Prediction (RMSEP) for the 

validation set. Furthermore, our selection criteria 

incorporated a preference for factors that exhibited 

sensitivity and specificity coefficients that closely 

approached a value of 1. This comprehensive 

approach ensured the refinement of the final model 

to enhance its predictive accuracy and reliability. 

RESULTS AND DISCUSSION 

Vis-NIR spectra 

As mentioned in the introduction and materials 

and methods section, Vis-NIR spectra from Li et al. 

[6] have been used for the purpose of classifying

three different types of apples: the Fuji apple, the

Red Star apple, and the Gala apple.

Figure 1 shows the mean apple spectra from the 

3 apple classes.  As it can be observed, Fuji and Red 

Star present similar spectra while Golden Gala, has 

a slight difference due to its different color. So that 

by observing the spectra the principal challenge from 

this study would be the differentiation of  Red Star 

and Golden Gala varieties.  

Classification models. With this data, non-

supervised PCA models and supervised PLS-DA 

models are performed, as shown in the following 

sections.   

PLS-DA classification using the full spectral 

range. Our dataset was thoughtfully divided into two 

distinct subsets: a training set consisting of 225 (2/3) 

samples for the development of our predictive 

models and a prediction set comprising 74 (1/3) 

samples. This segregation was achieved utilizing the 

Kennard & Stone algorithm. Various chemometric 

models were meticulously formulated and evaluated 

to enhance the model’s efficacy and applicability. 

These models were tailored using carefully selected 

data treatment techniques. 

The array of data treatments encompassed 

fundamental methods such as mean centering (MC), 

auto-scaling, and advanced techniques, including 

Savitzky-Golay first (FD) and second derivative 

(SD), multiplicative scattering correction (MSC), 

standard normal variation (SNV), orthogonal signal 

correction (OSC), and inventive combinations 

thereof. 

Our approach commenced with an unsupervised 

classification analysis, primarily employing 

Principal Component Analysis (PCA) to take a 

general overview of the samples by using the Near-

Infrared (NIR) spectra. The first two principal 

components in the PCA model encapsulated an 

impressive 92.30% of the total variation. However, 

it was evident from Figure 2 that the unsuperVISed 

model revealed a predominant cluster, indicating a 

lack of distinct clusters for the three apple categories 

when the full 400 to 1021nm spectral range was 

used. 

Figure 1. Mean Visible-NIR spectra from Fuji apple, Red Star apple, and Golden Gala apple. 
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Figure 2. PCA score plot PC1 vs. PC2 of all apple SNV pretreated full VIS-NIR spectra data. 

Table 1. Key model parameter from the SNV full range PLS-DA. 

Calibration Cross Validation Prediction 

Fuji Gala Red Star Fuji Gala Red Star Fuji Gala Red Star 

RMSE 0.194 0.264 0.263 0.198 0.272 0.268 0.288 0.339 0.306 

R2 0.814 0.704 0.693 0.806 0.685 0.680 0.687 0.442 0.582 

Table 2. Confusion Table obtained from the SNV full range PLS-DA. 

Cross Validation Prediction 

Actual class Actual class 

Fuji Gala Red Star Fuji Gala Red Star 

Predicted as Fuji 62 4 0 37 1 0 

Predicted as Gala 1 81 1 0 13 2 

Predicted as Red Star 0 0 76 0 1 21 

Sensitivity 1.000 0.988 0.909 0.973 1.000 0.957 

Specificty 0.981 0.993 0.973 0.946 0.900 0.961 

A Partial Least Squares Discriminant Analysis 

(PLS-DA) supervised classification model was 

performed to refine the classification. By utilizing 

predictive components, PLS-DA significantly 

improved class separation. The selection of the most 

suitable number of latent variables was determined 

based on the lowest value of the Root Mean Square 

Error of Cross-Validation (RMSECV). In our case, 

6 latent variables were chosen to construct the 

classification model. 

The performance evaluation of our classification 

model encompassed both internal validation (cross-

validation) and external validation using the 

prediction set. Our model exhibited commendable 

R2 values for calibration, cross-validation, and 

prediction, as showcased in Table 1.  

Furthermore, the Root Mean Square Error of 

Calibration (RMSEC), Root Mean Square Error of 

Cross-Validation (RMSECV), and Root Mean 

Square Error of Prediction (RMSEP) for all three 

apple classes demonstrated excellent agreement. 

This alignment indicated that the RMSECV value 

effectively approximated the standard error of 

prediction observed for the test set. 
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Table 2 shows the confusion table for the 3 

categories with very good results. Only 2 samples for 

Gala apples and 2 for Redstar are misclassified in the 

validation set, while in the cross-validation, only 1 

sample for Fuji apples, 4 for Gala apples, and 1 for 

Redstar are misclassified.  

The ROC curves provided a comprehensive view 

of the models’ performance. Sensitivity and 

specificity (Table 2) were integral components of 

our evaluation criteria. Sensitivity, indicative of the 

rate of correctly identified samples within a specified 

class, was plotted against 1-specificity, representing 

the rate of correctly identified samples within 

different classes. 

The Area Under the Curve (AUC) of the ROC 

plots was instrumental in assessing method 

performance. The AUC value, which ranges from 

0.5 (indicative of random decision) to 1 

(representing a perfect model), offered insights into 

the model’s accuracy. Remarkably, the AUC values 

for the full range PLS-DA model ranged from 0.975 

for Gala apples to an impressive 0.996 for Fuji 

apples. According to the suggestion of Swets, 

models could be classified as non-informative 

(AUC=0.5), less accurate (0.5<AUC≤0.7), 

moderately accurate (0.7<AUC≤0.9), highly 

accurate (0.9<AUC<1) and perfect tests (AUC=1).  

In addition to the confusion table, sensitivity and 

specificity values for the validation set and the cross-

validation are close to 1. Table 3, with the Total 

positive results (TPR), false positive results (FPR), 

total negative results (TNR), false negative results 

(FNR), and % classification error (Err), shows for 

both prediction and cross-validation values close to 

1 for TPR and TNR and 0 for FPR and FNR. 

Receiver-operating characteristic (ROC) curves 

were created for the data sets following the external 

prediction set to determine the performance of the 

chosen models, which can be seen in Figure 3.  

Table 3. Total positive results (TPR), false positive results (FPR), total negative results (TNR), false 

negative results (FNR), and % classification error (Err) obtained from the cross-validation and prediction sets 

from the SNV full range PLS-DA 

N TPR FPR TNR FNR Error 

Cross 

Validation 

Fuji 63 0.968     0.049     0.951     0.032    0.058 

Gala 85 0.894     0.029    0.971    0.106     0.058 

Red Star 77 0.974     0.007     0.993    0.026     0.013 

Prediction Fuji 37 1.000     0.027     0.973     0.000 0.014 

Gala 14 0.929     0.033     0.967     0.071     0.041 

Red Star 23 0.913     0.000     1.000     0.087     0.027 

Figure 3. ROC curves obtained for full range SNV PLS-DA model 
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Figure 4. PCA score plot PC1 vs. PC2 of all apple SNV pretreated selected ranges of VIS-NIR spectra. 

Table 4. Key model parameter from the SNV full range PLS-DA. 

Calibration Cross Validation Prediction 

Fuji Gala Red Star Fuji Gala Red Star Fuji Gala Red Star 

RMSE 0.166 0.275 0.183 0.195 0.323 0.202 0.267 0.412 0.269 

R2 0.864 0.679 0.851 0.812 0.556 0.818 0.730 0.276 0.663 

In accordance with Swets’ classification, the 

models were unequivocally classified as highly 

accurate.  

iPLS-DA classification using the selected 

spectral range. After application of PCA method, 

the first two principal components (PC1 and PC2) 

accounted for an impressive 90.39% of the total 

variation. While the score plot in Figure 4 indicated 

the presence of a predominant cluster, a closer 

examination revealed that the three apple categories 

were distinguishable within this cluster. This 

observation underscored that, although PCA did not 

delineate specific clusters for the three apple 

categories, it exhibited the ability to differentiate 

them more effectively when the iPLS-DA 400.093-

508.864, 615.223-716.993, and 815.113-861.991 

nm spectral ranges were only chosen.  

The implementation of the PLS-DA superVISed 

classification model notably enhanced the separation 

of distinct classes. Following a meticulous 

evaluation process, which considered the lowest 

Root Mean Square Error of Cross-Validation 

(RMSECV), three latent variables as the optimal 

number for constructing the classification model. 

This selection of latent variables laid the foundation 

for a robust classification model, and its 

performance was rigorously scrutinized through 

both internal validation (cross-validation) and 

external validation using the prediction set. 

The results of this assessment were indicative of 

the model’s excellence, as reflected in Table 4. 

Therefore, the SNV full range PLS-DA model 

consistently demonstrated good performance across 

multiple metrics, including R2 for calibration, cross-

validation, and prediction. Moreover, the Root Mean 

Square Error of Calibration (RMSEC), Root Mean 

Square Error of Cross-Validation (RMSECV), and 

Root Mean Square Error of Prediction (RMSEP) for 

all three apple classes exhibited strong agreement. 

Table 5 presents the confusion table for the three 
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apple categories, yielding excellent results with no 

misclassifications in the validation set. In cross-

validation, only 5 misclassifications were observed 

for the Red Star category. Supplementing the 

confusion table, sensitivity and specificity values for 

both the validation set and cross-validation were 

found to be closely approaching a value of 1. 

Table 6 shows the model’s proficiency, with 

values of 1 for True Positive Rate (TPR) and True 

Negative Rate (TNR) in the prediction set, alongside 

0 values for False Positive Rate (FPR) and False 

Negative Rate (FNR). Cross-validation results 

mirror this performance, with TPR and TNR values 

nearing 1 and FPR and FNR registering close to 0. 

To further evaluate the efficacy of our chosen 

models, Receiver-Operating Characteristic (ROC) 

curves have been created, a key step for external 

prediction using the prediction set. Figure 4 

graphically represents the ROC curves, providing an 

insightful assessment of model performance. The 

Area Under the Curve (AUC) for the iPLS-DA range 

model ranged from 0.9569 for Red Star apples to 1 

for Gala apples. In accordance with Swets’ 

classification, our model for Gala apples would be 

classified as excellent, while the models for the other 

two apple varieties would be deemed highly 

accurate. This extensive evaluation reaffirmed the 

excellence and reliability of our classification model 

in classifying apple varieties. The classification 

performance of the model was also evaluated 

through sensitivity and specificity, as presented in 

Table 5.  

Table 5. Confusion Table obtained from the SNV full range PLS-DA. 

Cross Validation Prediction 

Actual class Actual class 

Fuji Gala Red Star Fuji Gala Red Star 

Predicted as Fuji 63 0 3 37 0 0 

Predicted as Gala 0 85 2 0 14 0 

Predicted as Red Star 0 0 72 0 0 23 

Sensitivity 0.984 0.882 0.987 1.000 1.000 1.000 

Specificty 0.957 0.871 1.000 0.973 1.000 0.863 

Table 6. Total positive results (TPR), false positive results (FPR), total negative results (TNR), false negative 

results (FNR), and % classification error (Err) obtained from the cross-validation and prediction sets from the SNV full 

range PLS-DA. 

N TPR FPR TNR FNR Error 

Cross Validation Fuji 63 1.000     0.019     0.981 0.000 0.013 

Gala 85 1.000     0.014     0.986   0.000     0.009 

Red Star 77 0.935     0.000     1.000     0.065   0.022 

Prediction Fuji 37 1.000     0.000     1.000     0.000 0.000 

Gala 14 1.000     0.000     1.000     0.000 0.000 

Red Star 23 1.000     0.000     1.000     0.000 0.000 

Figure 5. ROC curves obtained for iPLS-DA SNV model 
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Comparing the obtained results with the ones of 

Li et al. [6], we can affirm that with less complex 

models, PLS-DA and iPLS-DA,  similar or even 

better accuracies are obtained than the ones obtained 

by SVM models and ELM models in Li et al. 

manuscript. So, models with less computation 

complexity can give us similar results in classifying 

apples among their variety.  

In addition, these more complex models are more 

potent in classifying the apples regarding their 

origin. The next step in our study will be the research 

of the optimal conditions for obtaining comparable 

classification accuracies to those obtained by SVM 

and ELM, classifying apples regarding their origin 

with a more straightforward classification method. 

CONCLUSIONS 

In conclusion, this study highlights the efficacy 

of employing chemometrics in tandem with VIS-

NIR direct analysis to effectively differentiate 

between various apple varieties, as exemplified by 

the successful application of PLS-DA particularly. 

The encouraging outcomes of the green 

methodology notably add another advantage to this 

approach.  

Nevertheless, a pivotal juncture in our journey 

toward enhancing the classification model was the 

judicious selection of the most pertinent spectral 

range. In this crucial endeavor, the introduction of 

iPLS-DA emerged as a game-changer, leading to 

significant advancements in classifying the three 

distinct apple categories. This improvement was not 

solely confined to eliminating prediction errors 

within the prediction dataset; it also entailed 

reducing the number of latent variables within the 

model. 

It becomes evident that the choice of an optimal 

spectral range not only simplifies the final model in 

terms of latent variables but also plays a pivotal role 

in elevating the predictive prowess of the model. 

This observation highlights the pivotal importance 

of spectral range optimization in refining 

classification models and further reaffirms its central 

role in improving the accuracy and efficacy of such 

models. Subsequently, this research demonstrates 

the power of precision and optimization in the field 

of apple spectral analysis and classification. 

As mentioned in the Results section, the results 

obtained with PLS-DA and iPLS-DA have similar or 

evern better accuracies than those obtained by more 

complex algorithms in [6].  
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